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Abstract

A central goal in computational molecular biology is to be able to de-
termine the evolutionary distance between two individuals based on their
genomes. As Dobzhansky and Sturtevant [6] proposed, the fewer muta-
tions needed to transform the genome of one individual to the genome
of another, the more closely the two individuals are related. Thus, this
paper seeks to provide insight into the genome rearrangement problem:
given two genomes and a set of allowed mutations, what is the fewest num-
ber of mutations transforming one into the other. Building off the work
of Galvão and Dias [4] and Konstantinova and Medvedev [10], we seek
to determine formulae, as functions of n, for the k-slices of the symmet-
ric group Sn under various genome rearrangement models. The models
considered include reversals, prefix reversals, transpositions, and prefix
transpositions for unsigned linear permutations. We conjecture that the
size of each k-slice is given by a polynomial function of the size of the sym-
metric group, for n sufficiently large. We prove that this conjecture holds
for the 1-slice and give computer calculations supporting the conjecture
for all k-slices.

1 Permutations

Definition A permutation π is a bijection of the set {1, 2, . . . , n}. The image
of i ∈ {1, 2, . . . , n} by π is denoted by πi. Permutations are often represented
using a two-line notation, in which the first row contains the inputs and the
second row contains the outputs:

π =

(
1 2 · · · n
π1 π2 · · · πn

)
In this paper, however, we usually adopt a one-line notation: π = [π1, π2, . . . , πn].
In this way, a permutation can be thought of as an arrangement of n genes in
a genome.

Definition The product of two permutations π and σ over the set {1, 2, . . . , n}
is defined as their composition:

πσ = π ◦ σ = π ◦ [σ1, σ2, . . . , σn] = [πσ1
, πσ2

, . . . , πσn ]

Remark Multiplication is performed from right to left.

A permutation can also be thought of as a mutation, or rearrangement, of the
n genes in the genome. In the above example, σ transforms the genome π into
πσ.

Remark Mutations must be multiplied on the right of the permutation they
are mutating, since they involve switching the positions of the permutation.

Definition The symmetric group on n, Sn, is defined to be the set of all per-
mutations on {1, 2, . . . , n} together with the multiplication operation. Thus,
the symmetric group on n is the set of all the possible arrangements of n genes.

Theorem 1.1. Sn is a group.
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Proof. Since composition of functions is associative, the multiplication operation
is associative. Define en ∈ Sn to be the permutation [1,2,. . . ,n]. Let π ∈
Sn. Then π ◦ en = π ◦ [1, 2, . . . , n] = [π1, π2, . . . , πn] = π and en ◦ π = en ◦
[π1, π2, . . . , πn] = [π1, π2, . . . , πn] = π. Thus, en is the multiplicative identity
of Sn. Define π−1 by π−1πi = i for 1 ≤ i ≤ n. Applying π to both sides yields

π◦π−1πi = πi for 1 ≤ i ≤ n. Since π is a bijection, this is equivalent to π◦π−1i = i

for 1 ≤ i ≤ n. So we have π ◦ π−1 = π ◦ [π−11 , π−12 , . . . , π−1n ] = [1, 2, . . . , n] = en
and π−1 ◦ π = π−1 ◦ [π1, π2, . . . , πn] = [1, 2, . . . , n] = en. Thus, π−1 is the
multiplicative inverse of Sn.

2 Genome Rearrangement Problem

Definition The genome rearrangement problem [7]: Given any two permuta-
tions π and σ in Sn and a set G of allowed mutations, find a minimum length
sequence ρ1, ρ2, . . . , ρk of elements of G such that π ◦ ρ1 ◦ ρ2 ◦ . . . ◦ ρk = σ. In
other words, find a minimum length sequence of elements of G transforming π
into σ.

Definition A related problem is the distance problem: Given any permutation
π in Sn and a set G of allowed mutations, find a mimimum length sequence
ρ1, ρ2, . . . , ρk of elements of G such that ρ1 ◦ ρ2 ◦ . . . ◦ ρk = π. In other words,
find a minimum length factorization of π that consists only of elements of G.

Note that in general the genome rearrangement problem (GRP) and the distance
problem (DP) are not solvable in all cases. However, by Lemma 2.1, requiring
G to be a generating set ensures that both the GRP and the DP are solvable.

Definition A generating set G of Sn is a subset of Sn such that any element
of Sn can be written as a product of the elements of G. The elements of G are
said to be generators of Sn. Note that the empty product in Sn is equal to the
identity en by definition.

In this paper, the only sets of allowed mutations (rearrangement models) we
consider are generating sets. Thus, by Lemma 2.1, both the GRP and the DP
are solvable in the cases we consider.

Lemma 2.1. If G is a generating set, then both the genome rearrangement
problem and the distance problem are solvable.

Proof. Let G be a generating set of Sn. Let π, σ ∈ Sn. Then π−1 ◦ σ ∈ Sn.
Since G is a generating set, there exists a sequence of elements of G such that
π−1 ◦ σ is a product of these elements. Let ρ1, ρ2, . . . , ρk be a minimum length
sequence meeting this requirement. Thus, ρ1◦ρ2◦. . .◦ρk = π−1◦σ. This implies
π ◦ ρ1 ◦ ρ2 ◦ . . . ◦ ρk = σ. We need to show that ρ1, ρ2, . . . , ρk is a minimum
length sequence satisfying this equation. Assume to the contrary, then there
exists ρ′1, ρ

′
2, . . . , ρ

′
l with l < k such that π ◦ ρ′1 ◦ ρ′2 ◦ . . . ◦ ρ′l = σ. This would

imply ρ′1 ◦ ρ′2 ◦ . . . ◦ ρ′l = π−1 ◦ σ with l < k. This contradicts the fact that
ρ1, ρ2, . . . , ρk was minimal. Thus, ρ1, ρ2, . . . , ρk is a solution to the GRP.

Likewise, there exists a sequence of elements of G such that π is a product
of these elements. Let τ1, τ2, . . . , τm be a minimum length sequence meeting
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this requirement. This implies τ1 ◦ τ2 ◦ . . . ◦ τm = π. Thus, τ1, τ2, . . . , τm is a
solution to the DP.

Theorem 2.2. For a given generating set G, the genome rearrangement prob-
lem and the distance problem are equivalent.

Proof. Let G be a generating set. We first need to show that if we have solved
the genome rearrangement problem for all (π, σ) ∈ Sn×Sn, then we have solved
the distance problem for all π′ ∈ Sn.

Let τ ∈ Sn. Let ρ1, ρ2, . . . , ρk be a solution to the genome rearrangement
problem with input (en, τ). Then, en ◦ ρ1 ◦ ρ2 ◦ . . . ◦ ρk = τ . This implies
ρ1 ◦ ρ2 ◦ . . . ◦ ρk = τ . We need to show that ρ1, ρ2, . . . , ρk is a minimum length
sequence satisfying this equation. Assume to the contrary, then there exists
ρ′1, ρ

′
2, . . . , ρ

′
l with l < k such that ρ′1 ◦ ρ′2 ◦ . . . ◦ ρ′l = τ . This would imply

en ◦ ρ′1 ◦ ρ′2 ◦ . . . ◦ ρ′l = τ with l < k. This contradicts the fact that ρ1, ρ2, . . . , ρk
is a solution to the genome rearrangement problem with input (en, τ). Thus,
ρ1, ρ2, . . . , ρk is a solution to the distance problem with input τ . Since τ was
arbitrary, we have solved the distance problem.

We now need to show that if we have solved the distance problem for all π ∈ Sn,
then we have solved the genome rearrangement problem for all (π′, σ′) ∈ Sn×Sn.

Let τ, υ ∈ Sn. Then, τ−1 ◦ υ ∈ Sn. Let ρ1, ρ2, . . . , ρk be a solution to the
distance problem with input τ−1 ◦ υ. Then, ρ1 ◦ ρ2 ◦ . . . ◦ ρk = τ−1 ◦ υ. This
implies τ ◦ρ1◦ρ2◦. . .◦ρk = υ. We need to show that ρ1, ρ2, . . . , ρk is a minimum
length sequence satisfying this equation. Assume to the contrary, then there ex-
ists ρ′1, ρ

′
2, . . . , ρ

′
l with l < k such that τ ◦ρ′1 ◦ρ′2 ◦ . . . ◦ρ′l = υ. This would imply

ρ′1 ◦ρ′2 ◦ . . .◦ρ′l = τ−1 ◦υ with l < k. This contradicts the fact that ρ1, ρ2, . . . , ρk
is a solution to the distance problem with input τ−1 ◦ υ. Thus, ρ1, ρ2, . . . , ρk is
a solution to the genome rearrangement problem with input (τ, υ). Since τ and
υ were arbitrary, we have solved the genome rearrangement problem.

In this paper, we specifically investigate the distance problem. However,
by Theorem 2.2, our results are also pertinent to the genome rearrangement
problem.

3 Distance, Diameter, and k-Slices

Definition For any permutation π ∈ Sn and generating set G of Sn, the dis-
tance of π under G, denoted by dG(π), is defined to be the number of elements
in a minimum length factorization of π that consists only of elements of G.

The distance of a permutation τ can be thought of as the fewest number of
mutations necessary to transform the identity permutation into τ . Likewise, by
Theorem 2.2, if τ = π−1 ◦ σ for some π, σ ∈ Sn, then dG(τ) is equivalent to the
fewest number of mutations necessary to transform π into σ.

Remark Since the minimum length factorization of en is the empty product,
dG(en) = 0.
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Definition Let G be a generating set of Sn. The diameter of Sn under G,
denoted by DG, is given by:

DG = max
π∈Sn

dG(π)

The diameter gives an indicator for how closely related the genomes in the
symmetric group are. The greater the diameter, the greater the distance of the
genome or genomes that are furthest from the identity.

Definition Let G be a generating set of Sn. The k-slice of Sn under G, denoted
by Skn, is given by:

Skn = {π ∈ Sn | dG(π) = k}

Remark Since en is the only permutation with distance 0, S0
n = {en}. Fur-

thermore, it is easily seen that S1
n = G for any G that does not include the

identity.

Remarkably, breaking the symmetric group into k -slices led to the observation of
patterns concerning the size of the k -slice in relation to the size of the symmetric
group. For now, however, we go into more detail concerning the rearrangement
models under consideration in this paper.

4 Rearrangement Models

Definition A rearrangement is a permutation in Sn that acts on another per-
mutation according to a specific rule. Common genome rearrangements in na-
ture include reversals, prefix reversals, transpositions, and prefix transpositions.
In this paper, we consider genome rearrangements only on unsigned linear per-
mutations.

Definition Let 1 ≤ a < b ≤ n. A reversal on Sn, denoted by ρ(a, b), is a
rearrangement given by:

ρ =

(
1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · n
1 · · · a− 1 b b− 1 · · · a+ 1 a b+ 1 · · · n

)
Thus, a reversal reverses the closed interval determined by a and b. Equivalently,

ρi =

{
i if 1 ≤ i ≤ a− 1 or b+ 1 ≤ i ≤ n
(b+ a)− i if a ≤ i ≤ b

Definition Let 1 < b ≤ n. A prefix reversal on Sn, denoted by ρ(1, b), is a
reversal with a = 1. Equivalently,

ρi =

{
i if b+ 1 ≤ i ≤ n
(b+ 1)− i if 1 ≤ i ≤ b

Definition Let 1 ≤ a < b < c ≤ n + 1. A transposition on Sn, denoted by
τ(a, b, c), is a rearrangement given by:

τ =

(
1 · · · a− 1 a a+ 1 · · · b− 2 b− 1 b b+ 1 · · · c− 1 c · · · n
1 · · · a− 1 b b+ 1 · · · c− 1 a a+ 1 · · · b− 2 b− 1 c · · · n

)
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Thus, a transposition swaps two adjacent blocks. Equivalently,

τi =


i if 1 ≤ i ≤ a− 1 or c ≤ i ≤ n
(b− a) + i if a ≤ i ≤ a− b+ c− 1

(b− c) + i if a− b+ c ≤ i ≤ c− 1

Definition Let 1 < b < c ≤ n + 1. A prefix transposition on Sn, denoted by
τ(1, b, c), is a transposition with a = 1. Equivalently,

τi =


i if c ≤ i ≤ n
(b− 1) + i if 1 ≤ i ≤ c− b
(b− c) + i if c− b+ 1 ≤ i ≤ c− 1

Lemma 4.1. Let ρ(a, b), ρ(c, d) ∈ Sn. Then ρ(a, b) = ρ(c, d) ⇐⇒ a = b and
c = d.

Proof. This is straightforward from the definition of a reversal.

Lemma 4.2. Let τ(a, b, c), τ(d, e, f) ∈ Sn. Then τ(a, b, c) = τ(d, e, f) ⇐⇒
a = d and b = e and c = f .

Proof. This is straightforward from the definition of a transposition.

Theorem 4.3. Let ρ−1(a, b) and τ−1(a, b, c) denote the inverse of ρ(a, b) and
τ(a, b, c) respectively. Then ρ−1(a, b) = ρ(a, b) and τ−1(a, b, c) = τ(a, a−b+c, c).

Proof. We need to calculate (ρ(a, b)◦ρ(a, b))i for 1 ≤ i ≤ n. Case 1: 1 ≤ i ≤ a−1
or b+ 1 ≤ i ≤ n. Then ρ(a, b)ρ(a,b)i = ρ(a, b)i = i. Case 2: a ≤ i ≤ b. This im-
plies a ≤ (b+a)−i ≤ b. Thus, ρ(a, b)ρ(a,b)i = ρ(a, b)(b+a)−i = (b+a)−((b+a)−i)
= i. Thus, ρ(a, b) ◦ ρ(a, b) = en which implies ρ−1(a, b) = ρ(a, b).

We also need to calculate (τ(a, b, c) ◦ τ(a, a− b+ c, c))i and (τ(a, a− b+ c, c) ◦
τ(a, b, c))i for 1 ≤ i ≤ n. We first calculate (τ(a, b, c) ◦ τ(a, a − b + c, c))i for
1 ≤ i ≤ n. Case 1: 1 ≤ i ≤ a − 1 or c ≤ i ≤ n. Then τ(a, b, c)τ(a,a−b+c,c)i =
τ(a, b, c)i = i. Case 2: a ≤ i ≤ a − (a − b + c) + c − 1. This implies
a−b+c ≤ c−b+i ≤ c−1. Thus, τ(a, b, c)τ(a,a−b+c,c)i = τ(a, b, c)((a−b+c)−a)+i =
τ(a, b, c)c−b+i = (b− c) + (c− b+ i) = i. Case 3: a− (a− b+ c) + c ≤ i ≤ c− 1.
This implies a ≤ a − b + i ≤ a − b + c − 1. Thus, τ(a, b, c)τ(a,a−b+c,c)i =
τ(a, b, c)((a−b+c)−c)+i = τ(a, b, c)a−b+i = (b − a) + (a − b + i) = i. Thus,
τ(a, b, c) ◦ τ(a, a− b+ c, c) = en.

We now calculate (τ(a, a−b+c, c)◦τ(a, b, c))i for 1 ≤ i ≤ n. Case 1: 1 ≤ i ≤ a−1
or c ≤ i ≤ n. Then τ(a, a − b + c, c)τ(a,b,c)i = τ(a, a − b + c, c)i = i. Case 2:
a ≤ i ≤ a− b+ c−1. This implies a− (a− b+ c) + c ≤ (b−a) + i ≤ c−1. Thus,
τ(a, a−b+c, c)τ(a,b,c)i = τ(a, a−b+c, c)(b−a)+i = ((a−b+c)−c)+((b−a)+i) = i.
Case 3: a−b+c ≤ i ≤ c−1. This implies a ≤ (b−c)+ i ≤ a− (a−b+c)+c−1.
Thus, τ(a, a − b + c, c)τ(a,b,c)i = τ(a, a − b + c, c)(b−c)+i = ((a − b + c) −
a) + ((b − c) + i) = i. Thus, τ(a, a − b + c, c) ◦ τ(a, b, c) = en. This gives
τ−1(a, b, c) = τ(a, a− b+ c, c) as required.
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Definition A rearrangement model is another name for the set of allowed mu-
tations. Define Rn, PRn, Tn, and PTn to be the set of all reversals, the set
of all prefix reversals, the set of all transpositions, and the set of all prefix
transpositions on Sn.

Definition Let 1 ≤ a ≤ n− 1. A simple transposition on Sn, denoted by µ(a),
is a rearrangement given by:

µ =

(
1 · · · a− 1 a a+ 1 a+ 2 · · · n
1 · · · a− 1 a+ 1 a a+ 2 · · · n

)
Thus, a simple transposition switches the elements a and a+ 1. Equivalently,

µi =

{
i if 1 ≤ i ≤ a− 1 or a+ 2 ≤ i ≤ n
(2a+ 1)− i if a ≤ i ≤ a+ 1

Lemma 4.4. The simple transposition µ(a) can be factored into reversals:
µ(a) = ρ(a, a+ 1) for 1 ≤ a ≤ n− 1; into prefix reversals: µ(a) = ρ(1, a+ 1) ◦
ρ(1, 2)◦ρ(1, a+1) for 1 ≤ a ≤ n−1; into transpositions: µ(a) = τ(a, a+1, a+2)
for 1 ≤ a ≤ n − 1; and into prefix transpositions: µ(1) = τ(1, 2, 3) and
µ(a) = τ(1, a, a+ 1) ◦ τ(1, 2, a+ 2) for 2 ≤ a ≤ n− 1.

Proof. We first show that µ(a) is equivalent to ρ(a, a+1). Case 1: 1 ≤ i ≤ a−1
or a + 2 ≤ i ≤ n. Then, ρ(a, a + 1)i = i. Case 2: a ≤ i ≤ a + 1. Then
ρ(a, a+ 1)i = ((a+ 1) + a)− i = (2a+ 1)− i. So, µ(a) = ρ(a, a+ 1).

Second, we show that µ(a) is equivalent to ρ(1, a + 1) ◦ ρ(1, 2) ◦ ρ(1, a + 1).
Case 1: 1 ≤ i ≤ a − 1. This implies 1 ≤ i ≤ a + 1, 3 ≤ a + 2 − i ≤ n, and
1 ≤ a+2− i ≤ a+1. Thus, ρ(1, a+1)ρ(1,2)ρ(1,a+1)i

= ρ(1, a+1)ρ(1,2)((a+1)+1)−i =

ρ(1, a + 1)ρ(1,2)a+2−i = ρ(1, a + 1)a+2−i = ((a + 1) + 1) − (a + 2 − i) = i. Case
2: a + 2 ≤ i ≤ n. This implies 3 ≤ i ≤ n. Thus, ρ(1, a + 1)ρ(1,2)ρ(1,a+1)i

=

ρ(1, a + 1)ρ(1,2)i = ρ(1, a + 1)i = i. Case 3: a ≤ i ≤ a + 1. This implies
1 ≤ i ≤ a + 1, 1 ≤ a + 2 − i ≤ 2, and 1 ≤ 1 − a + i ≤ a + 1. Thus,
ρ(1, a + 1)ρ(1,2)ρ(1,a+1)i

= ρ(1, a + 1)ρ(1,2)((a+1)+1)−i = ρ(1, a + 1)ρ(1,2)a+2−i =

ρ(1, a+1)(2+1)−(a+2−i) = ρ(1, a+1)1−a+i = ((a+1)+1)−(1−a+i) = (2a+1)−i.
So, µ(a) = ρ(1, a+ 1) ◦ ρ(1, 2) ◦ ρ(1, a+ 1).

Third, we show that µ(a) is equivalent to τ(a, a+1, a+2). Case 1: 1 ≤ i ≤ a−1
or a + 2 ≤ i ≤ n. Then τ(a, a + 1, a + 2)i = i. Case 2: i = a. This implies
a ≤ i ≤ a− (a+ 1) + (a+ 2)− 1. Thus, τ(a, a+ 1, a+ 2)i = ((a+ 1)− a) + i =
i + 1 = a + 1 = (2a + 1) − a = (2a + 1) − i. Case 3: i = a + 1. This im-
plies a − (a + 1) + (a + 2) ≤ i ≤ (a + 2) − 1. Thus, τ(a, a + 1, a + 2)i =
((a+1)−(a+2))+i = −1+i = −1+(a+1) = a = (2a+1)−(a+1) = (2a+1)−i.
So, µ(a) = τ(a, a+ 1, a+ 2).

Fourth, µ(1) = τ(1, 2, 3) follows directly from the previous section of this proof
with a = 1.

Lastly, we show that µ(a) is equivalent to τ(1, a, a + 1) ◦ τ(1, 2, a + 2) for
2 ≤ a ≤ n− 1. Case 1: 1 ≤ i ≤ a− 1. This implies 1 ≤ i ≤ 1− 2 + (a+ 2)− 1,
and 1 − a + (a + 1) ≤ 1 + i ≤ (a + 1) − 1. Then, τ(1, a, a + 1)τ(1,2,a+2)i =
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τ(1, a, a + 1)(2−1)+i = τ(1, a, a + 1)1+i = (a − (a + 1)) + (1 + i) = i. Case 2:
a + 2 ≤ i ≤ n. This implies a + 1 ≤ i ≤ n. Thus, τ(1, a, a + 1)τ(1,2,a+2)i =
τ(1, a, a + 1)i = i. Case 3: i = a. This implies 1 ≤ i ≤ 1 − 2 + (a + 2) − 1,
and a + 1 ≤ 1 + i ≤ n. Thus, τ(1, a, a + 1)τ(1,2,a+2)i = τ(1, a, a + 1)(2−1)+i =
τ(1, a, a+ 1)1+i = 1 + i = 1 + a = (2a+ 1)− a = (2a+ 1)− i. Case 4: i = a+ 1.
This implies 1−2+(a+2) ≤ i ≤ (a+2)−1, and 1 ≤ −a+ i ≤ 1−a+(a+1)−1.
Thus, τ(1, a, a + 1)τ(1,2,a+2)i = τ(1, a, a + 1)(2−(a+2))+i = τ(1, a, a + 1)−a+i =
(a−1)+(−a+ i) = −1+ i = −1+(a+1) = a = (2a+1)− (a+1) = (2a+1)− i.
So, µ(a) = τ(1, a, a+ 1) ◦ τ(1, 2, a+ 2) for 2 ≤ a ≤ n− 1.

Theorem 4.5. The rearrangement models Rn, PRn, Tn, and PTn are each
generating sets of Sn.

Proof. It is a well known fact that the symmetric group Sn is generated by simple
transpositions [8]. Thus, for each π ∈ Sn, there exists a sequence of simple
transpositions µ1, µ2, . . . , µk such that µ1 ◦ µ2 ◦ . . . ◦ µk = π. By Lemma 4.4,
each of these simple transpositions can factor into just reversals, into just prefix
reversals, into just transpositions, or into just prefix transpositions. Thus, π can
be factored into just reversals, into just prefix reversals, into just transpositions,
or into just prefix transpositions.

Remark By Theorem 4.3, all of the rearrangement models we consider are
closed under inverses.

Definition Let π ∈ Sn. We call dRn(π), dPRn(π), dTn(π), and dPTn(π) the re-
versal distance, prefix reversal distance, transposition distance, and prefix trans-
position distance of π respectively. We call DRn , DPRn , DTn , and DPTn the
reversal diameter, prefix reversal diameter, transposition diameter, and prefix
transposition diameter of Sn respectively.

5 Recursive Formulae for 1-Slice

Definition Let m,n ∈ N with m < n. The symmetric group on n restricted to
m, denoted by Sn|m, is given by:

Sn|m = {π ∈ Sn | πi = i for m+ 1 ≤ i ≤ n}

Theorem 5.1. Sn|m is a group.

Proof. Sn|m is a subset of Sn by definition. Thus, we need to show that Sn|m
is not empty, that it is closed under multiplication, and that it is closed un-
der inverses. Since en ∈ Sn|m, it is nonempty. Let π, σ ∈ Sn|m. Then
π ◦ σ = π ◦ [σ1, σ2, . . . , σm, σm+1, . . . , σn] = π ◦ [σ1, σ2, . . . , σm,m + 1, . . . , n] =
[πσ1 , πσ2 , . . . , πσm , πm+1, . . . , πn] = [πσ1 , πσ2 , . . . , πσm ,m+ 1, . . . , n] ∈ Sn|m. Let

m+ 1 ≤ i ≤ n. Then π−1i = π−1πi = i. Thus, π−1 ∈ Sn|m.

Definition The restriction function, φ : Sn|m → Sm, is given by:

φ([π1, π2, . . . , πm,m+ 1, . . . , n]) = [π1, π2, . . . , πm]

Theorem 5.2. The restriction function, φ : Sn|m → Sm, is a group isomor-
phism.
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Proof. Let π, σ ∈ Sn|m. Then φ(π ◦ σ) = φ([πσ1
, πσ2

, . . . , πσm ,m+ 1, . . . , n]) =
[πσ1

, πσ2
, . . . , πσm ] = [π1, π2, . . . , πm] ◦ [σ1, σ2, . . . , σm] = φ([π1, π2, . . . , πm,m +

1, . . . , n]) ◦φ([σ1, σ2, . . . , σm,m+ 1, . . . , n]) = φ(π) ◦φ(σ). We must also show φ
is a bijection. Let ρ, τ ∈ Sn|m such that φ(ρ) = φ(τ). This implies φ([ρ1, ρ2, . . . ,
ρm,m+1, . . . , n]) = φ([τ1, τ2, . . . , τm,m+1, . . . , n]) which implies [ρ1, ρ2, . . . , ρm]
= [τ1, τ2, . . . , τm]. This implies ρi = τi for 1 ≤ i ≤ m which implies ρ = τ . Thus,
φ is one-to-one. Now let υ ∈ Sm. Then [υ1, υ2, . . . , υm,m+1, . . . , n] ∈ Sn|m with
φ([υ1, υ2, . . . , υm,m+1, . . . , n]) = [υ1, υ2, . . . , υm] = υ. Thus, φ is surjective.

Corollary 5.3. |Sn|m| = |Sm|.

Proof. This follows directly from Theorem 5.2.

Definition Let m,n ∈ N with m < n and Gn be a generating set of Sn. The
generating set on n restricted to m, denoted by Gn|m, is given by:

Gn|m = {π ∈ Gn | πi = i for m+ 1 ≤ i ≤ n}

Theorem 5.4. Let Gn be any generating set mentioned in Theorem 4.5 and let
π ∈ Gn|m. Then φ(π) ∈ Gm.

Proof. This is straightforward from the definitions of reversals and transposi-
tions.

Theorem 5.5. Let Gn be any generating set mentioned in Theorem 4.5. Then
φ : Gn|m → Gm is a bijection.

Proof. This is straightforward from Theorem 5.2 and Theorem 5.4.

Corollary 5.6. |Gn|m| = |Gm|.

Proof. This follows directly from Theorem 5.5.

Theorem 5.7. Let Gn be any generating set mentioned in Theorem 4.5. Then
S1
n = Gn.

Proof. The identity en is not in Gn for any of the generating sets in Theorem
4.5. Thus, by the remark at the end of Section 3, S1

n = Gn.

Theorem 5.8. Let G = Rn. Then |S1
n| = |S1

n−1|+ (n− 1).

Proof. Since S1
n = Gn and S1

n−1 = Gn−1 by Theorem 5.7, we must show that
|Gn| = |Gn−1|+ (n− 1). Let σ ∈ Gn. Then σ = ρ(a, b) for 1 ≤ a < b ≤ n.

Case 1: σ ∈ Gn|n−1. By Corollary 5.6, this case has cardinality |Gn−1|.

Case 2: σ 6∈ Gn|n−1. This implies σn 6= n ⇒ b = n ⇒ 1 ≤ a ≤ n − 1. By
Lemma 4.1, there are exactly n − 1 reversals that satisfy this criteria. Thus,
this case has cardinality (n− 1).

Since Gn is a disjoint union of these two cases, |Gn| = |Gn−1|+ (n− 1).

Theorem 5.9. Let G = PRn. Then |S1
n| = |S1

n−1|+ 1.
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Proof. Since S1
n = Gn and S1

n−1 = Gn−1 by Theorem 5.7, we must show that
|Gn| = |Gn−1|+ 1. Let σ ∈ Gn. Then σ = ρ(1, b) for 1 < b ≤ n.

Case 1: σ ∈ Gn|n−1. By Corollary 5.6, this case has cardinality |Gn−1|.

Case 2: σ 6∈ Gn|n−1. This implies σn 6= n ⇒ b = n. By Lemma 4.1, the
only prefix reversal that satisfies this criteria is ρ(1, n). Thus, this case has
cardinality 1.

Since Gn is a disjoint union of these two cases, |Gn| = |Gn−1|+ 1.

Theorem 5.10. Let G = Tn. Then |S1
n| = |S1

n−1|+
(
n
2

)
.

Proof. Since S1
n = Gn and S1

n−1 = Gn−1 by Theorem 5.7, we must show that
|Gn| = |Gn−1|+

(
n
2

)
. Let σ ∈ Gn. Then σ = τ(a, b, c) for 1 ≤ a < b < c ≤ n+ 1.

Case 1: σ ∈ Gn|n−1. By Corollary 5.6, this case has cardinality |Gn−1|.

Case 2: σ 6∈ Gn|n−1. This implies σn 6= n ⇒ c = n + 1 ⇒ 1 ≤ a < b ≤ n. By

Lemma 4.2, there are exactly
(
n
2

)
transpositions that satisfy this criteria. Thus,

this case has cardinality
(
n
2

)
.

Since Gn is a disjoint union of these two cases, |Gn| = |Gn−1|+
(
n
2

)
.

Theorem 5.11. Let G = PTn. Then |S1
n| = |S1

n−1|+ (n− 1).

Proof. Since S1
n = Gn and S1

n−1 = Gn−1 by Theorem 5.7, we must show that
|Gn| = |Gn−1|+ (n− 1). Let σ ∈ Gn. Then σ = τ(1, b, c) for 1 < b < c ≤ n+ 1.

Case 1: σ ∈ Gn|n−1. By Corollary 5.6, this case has cardinality |Gn−1|.

Case 2: σ 6∈ Gn|n−1. This implies σn 6= n ⇒ c = n + 1 ⇒ 2 ≤ b ≤ n. By
Lemma 4.2, there are exactly n− 1 prefix transpositions that satisfy this crite-
ria. Thus, this case has cardinality (n− 1).

Since Gn is a disjoint union of these two cases, |Gn| = |Gn−1|+ (n− 1).

Theorem 5.8, Theorem 5.9, Theorem 5.10, and Theorem 5.11 prove recursive
formulae for the 1-slice for the four rearrangement models under consideration.
These formulae give polynomial equations as shown below.

Theorem 5.12 (Polynomial Formulae for 1-Slice). If G = Rn then |S1
n| =

n2

2 −
n
2 . If G = PRn then |S1

n| = n − 1. If G = Tn then |S1
n| = n3

6 −
n
6 . If

G = PTn then |S1
n| = n2

2 −
n
2 .

Proof. We prove this theorem using induction. Note that for each genome re-
arrangement, |S1

1 | = 0.

Case 1: G = Rn. We first show that |S1
k| = k2

2 −
k
2 holds for k = 1. |S1

1 | =

0 = 12

2 −
1
2 as needed. Now, for k ≥ 2, we assume that |S1

k−1| =
(k−1)2

2 − (k−1)
2

holds. Then by Theorem 5.8, |S1
k| = |S1

k−1|+(k−1) = (k−1)2
2 − (k−1)

2 +(k−1) =

9



(k2−2k+1)
2 − (k−1)

2 +(k−1) = k2

2 −
k
2 . By induction, |S1

n| = n2

2 −
n
2 holds for n ≥ 1.

Case 2: G = PRn. We first show that |S1
k| = k − 1 holds for k = 1.

|S1
1 | = 0 = 1−1 as needed. Now, for k ≥ 2, we assume that |S1

k−1| = (k−1)−1
holds. Then by Theorem 5.9, |S1

k| = |S1
k−1| + 1 = (k − 1) − 1 + 1 = k − 1. By

induction, |S1
n| = n− 1 holds for n ≥ 1.

Case 3: G = Tn. We first show that |S1
k| = k3

6 −
k
6 holds for k = 1. |S1

1 | =

0 = 13

6 −
1
6 as needed. Now, for k ≥ 2, we assume that |S1

k−1| =
(k−1)3

6 − (k−1)
6

holds. Then by Theorem 5.10, |S1
k| = |S1

k−1|+
(
k
2

)
= (k−1)3

6 − (k−1)
6 + k2

2 −
k
2 =

(k3−3k2+3k−1)
6 − (k−1)

6 + k2

2 −
k
2 = k3

6 −
k
6 . By induction, |S1

n| = n3

6 −
n
6 holds

for n ≥ 1.

Case 4: G = PTn. See Case 1 above.

Lemma 5.13. If σ ∈ Skn and g ∈ Gn, then k − 1 ≤ dG(σg) ≤ k + 1.

Proof. σ ∈ Skn implies that σ = g1g2 · · · gk is minimal for some g1, g2, . . . , gk ∈
Gn. Thus, σg = g1g2 · · · gkg which implies that dG(σg) ≤ k + 1. For the other
half, assume to the contrary that dG(σg) < k − 1. This implies that σg =
h1h2 · · ·hl for some h1, h2, . . . , hl ∈ Gn and l < k− 1. Thus, σ = h1h2 · · ·hlg−1
which implies that dG(σ) ≤ l+ 1 < k−1 + 1 = k. This contradicts the fact that
σ ∈ Skn.

Definition Let f(n) ≤ O(g(n)) denote that there is a positive constant C and
an integer n0 such that for all n ≥ n0, f(n) ≤ Cg(n).

Theorem 5.14. Let G be any generating set mentioned in Theorem 4.5. Then,
for all k ≥ 0, |Skn| is bounded above by a polynomial in n. Specifically, if G = Rn
then |Skn| ≤ O(n2k), if G = PRn then |Skn| ≤ O(nk), if G = Tn then |Skn| ≤
O(n3k), and if G = PTn then |Skn| ≤ O(n2k).

Proof. Let SG = {σg | σ ∈ Skn, g ∈ Gn}. If π ∈ Sk+1
n then π = g1g2 · · · gkgk+1

is minimal for some g1, g2, . . . , gk, gk+1 ∈ Gn. This implies that π ∈ SG since
g1g2 · · · gk ∈ Skn and gk+1 ∈ Gn. Thus, Sk+1

n ⊆ SG.

Case 1: G = Rn. |S1
n| = n2

2 −
n
2 by Theorem 5.12. Using induction, we first

show that |Skn| ≤ O(n2k) holds for k = 1. |S1
n| = n2

2 −
n
2 ≤ O(n2) = O(n2(1)) as

needed. Now, for k ≥ 2, we assume that |Skn| ≤ O(n2k). Then |Sk+1
n | ≤ |SG| ≤

|Skn| · |Gn| = |Skn| · |S1
n| ≤ O(n2k)O(n2) = O(n2k+2) = O(n2(k+1)).

Case 2: G = PRn. |S1
n| = n − 1 by Theorem 5.12. Using induction, we

first show that |Skn| ≤ O(nk) holds for k = 1. |S1
n| = n− 1 ≤ O(n) = O(n1) as

needed. Now, for k ≥ 2, we assume that |Skn| ≤ O(nk). Then |Sk+1
n | ≤ |SG| ≤

|Skn| · |Gn| = |Skn| · |S1
n| ≤ O(nk)O(n1) = O(nk+1).

Case 3: G = Tn. |S1
n| = n3

6 −
n
6 by Theorem 5.12. Using induction, we first

show that |Skn| ≤ O(n3k) holds for k = 1. |S1
n| = n3

6 −
n
6 ≤ O(n3) = O(n3(1)) as

needed. Now, for k ≥ 2, we assume that |Skn| ≤ O(n3k). Then |Sk+1
n | ≤ |SG| ≤

|Skn| · |Gn| = |Skn| · |S1
n| ≤ O(n3k)O(n3) = O(n3k+3) = O(n3(k+1)).
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Case 4: G = PTn. |S1
n| = n2

2 −
n
2 by Theorem 5.12. Using induction, we first

show that |Skn| ≤ O(n2k) holds for k = 1. |S1
n| = n2

2 −
n
2 ≤ O(n2) = O(n2(1)) as

needed. Now, for k ≥ 2, we assume that |Skn| ≤ O(n2k). Then |Sk+1
n | ≤ |SG| ≤

|Skn| · |Gn| = |Skn| · |S1
n| ≤ O(n2k)O(n2) = O(n2k+2) = O(n2(k+1)).

Conjecture 5.15. Let G be any generating set mentioned in Theorem 4.5.
Then, for all k ≥ 0, |Skn| is given by a polynomial in n for n sufficiently large.
Specifically, if G = Rn then |Skn| is given by polynomial in n of degree 2k for n
sufficiently large, if G = PRn then |Skn| is given by polynomial in n of degree k
for n sufficiently large, if G = Tn then |Skn| is given by polynomial in n of degree
3k for n sufficiently large, and if G = PTn then |Skn| is given by polynomial in
n of degree 2k for n sufficiently large.

Since |S0
n| = 1, the conjecture holds for k = 0. By Theorem 5.12, the conjecture

holds for k = 1. According to Konstantinova [9], the conjecture holds for k = 2
and k = 3 for prefix reversals. Further work needs to be done to prove that
Conjecture 5.15 holds for all k -slices.

6 Numerical Computations

In this section, we supply computer calculations supporting Conjecture 5.15.
We have calculated polynomials for the k -slices under the rearrangement models
based on the data provided by Galvão and Dias [4]. Note that the degrees of
the polynomials support Conjecture 5.15.

6.1 Prefix Reversal Computations

0 -slice: 1
(
n
0

)
1 -slice: −1

(
n
0

)
+ 1
(
n
1

)
2 -slice: 2

(
n
0

)
− 2
(
n
1

)
+ 2
(
n
2

)
3 -slice (for n ≥ 3): −5

(
n
0

)
+ 4
(
n
1

)
− 4
(
n
2

)
+ 6
(
n
3

)
4 -slice (for n ≥ 4): −17

(
n
0

)
+ 11

(
n
1

)
− 2
(
n
2

)
− 9
(
n
3

)
+ 24

(
n
4

)
5 -slice (for n ≥ 5): 265

(
n
0

)
− 219

(
n
1

)
+ 150

(
n
2

)
− 67

(
n
3

)
− 20

(
n
4

)
+ 120

(
n
5

)
6 -slice (for n ≥ 6): −967

(
n
0

)
+ 1546

(
n
1

)
− 1616

(
n
2

)
+ 1294

(
n
3

)
− 716

(
n
4

)
+ 34

(
n
5

)
+

720
(
n
6

)
7 -slice (for n ≥ 6): 5037

(
n
0

)
− 9854

(
n
1

)
+ 13080

(
n
2

)
− 13701

(
n
3

)
+ 11509

(
n
4

)
−

7002
(
n
5

)
+ 1286

(
n
6

)
+ 5037

(
n
7

)
6.2 Reversal Computations

0 -slice: 1
(
n
0

)
1 -slice: 1

(
n
2

)
2 -slice (for n ≥ 3): 7

(
n
0

)
− 3
(
n
1

)
+ 4
(
n
3

)
+ 4
(
n
4

)
3 -slice (for n ≥ 4): 310

(
n
0

)
− 211

(
n
1

)
+ 130

(
n
2

)
− 65

(
n
3

)
+ 16

(
n
4

)
+ 70

(
n
5

)
+ 35

(
n
6

)
4 -slice (for n ≥ 5): −40924

(
n
0

)
+ 26450

(
n
1

)
− 15956

(
n
2

)
+ 8700

(
n
3

)
− 4022

(
n
4

)
+

1346
(
n
5

)
+ 2
(
n
6

)
+ 1379

(
n
7

)
+ 413

(
n
8

)
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6.3 Prefix Transposition Computations

0 -slice: 1
(
n
0

)
1 -slice: 1

(
n
2

)
2 -slice: 2

(
n
3

)
+ 6
(
n
4

)
3 -slice: 3

(
n
4

)
+ 40

(
n
5

)
+ 90

(
n
6

)
4 -slice: 4

(
n
5

)
+ 170

(
n
6

)
+ 1324

(
n
7

)
+ 2520

(
n
8

)
5 -slice: 5

(
n
6

)
+ 527

(
n
7

)
+ 11176

(
n
8

)
+ 68410

(
n
9

)
+ 113400

(
n
10

)
6 -slice: 3

(
n
7

)
+ 1137

(
n
8

)
+ 63842

(
n
9

)
+ 989244

(
n
10

)
+ 513953

(
n
11

)
+ 7484400

(
n
12

)
6.4 Transposition Computations

0 -slice: 1
(
n
0

)
1 -slice: 1

(
n
2

)
+ 1
(
n
3

)
2 -slice: 1

(
n
3

)
+ 8
(
n
4

)
+ 18

(
n
5

)
+ 11

(
n
6

)
3 -slice: 1

(
n
4

)
+ 26

(
n
5

)
+ 209

(
n
6

)
+ 656

(
n
7

)
+ 841

(
n
8

)
+ 369

(
n
9

)
4 -slice: 45

(
n
6

)
+1198

(
n
7

)
+11156

(
n
8

)
+44324

(
n
9

)
+84987

(
n
10

)
+76917

(
n
11

)
+26251

(
n
12

)
7 Coxeter Matrix for Prefix Reversals

Definition Let S be a set and i, j ∈ S. A matrix m : S × S → {1, 2, . . . ,∞} is
called a Coxeter matrix if it satisfies m(i, j) = m(j, i) and m(i, j) = 1⇔ i = j.

For our purposes, let a, b ∈ N and assume without loss of generality that a ≤ b.
Let n ≥ b and S = PRn. Let ρa = ρ(1, a) and ρb = ρ(1, b) be prefix reversals in
PRn.

Theorem 7.1. Let m(ρa, ρb) denote the order of ρaρb. Then m : PRn×PRn →
{1, 2, . . . ,∞} is a Coxeter matrix.

Proof. For simplicity, let m(ρa, ρb) be denoted by m(a, b). We first need to show
that m(a, b) = m(b, a). First note that (ρaρb)

−1 = ρbρa since (ρaρb)(ρbρa) =
ρaρ

2
bρa = ρaρa = ρ2a = en and (ρbρa)(ρaρb) = ρbρ

2
aρb = ρbρb = ρ2b = en. Now

let k = m(a, b). Then (ρbρa)k = ((ρaρb)
−1)k = ((ρaρb)

k)−1 = e−1n = en. Now
we have to show that there does not exist an l < k such that (ρbρa)l = en.
Assume to the contrary. Then ((ρaρb)

−1)l = en which implies ((ρaρb)
l)−1 = en.

This implies (ρaρb)
l = en which implies that k is not the order of ρaρb, a

contradiction. Thus, k is the order of ρbρa which implies that m(a, b) = m(b, a).
We now need to show that m(a, b) = 1 ⇔ ρa = ρb. m(a, b) = 1 ⇔ (ρaρb)

1 =
en ⇔ ρa = ρ−1b ⇔ ρa = ρb.

Note that for all (ρa, ρb) ∈ PR2
n, m(a, b) 6= ∞. Thus, according to [1], the

Coxter matrix m determines a group W with the presentation:{
Generators: PRn

Relations: (ρaρb)
m(a,b) = en, for all (ρa, ρb) ∈ PR2

n

In particular, this implies there is an onto homomorphism from W to Sn which
sends the generators of W to the prefix reversals in Sn. Since Coxeter groups
are well understood, the group W and this homomorphism may be helpful in
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studing prefix reversals in Sn. In the rest of this section, we will prove a formula
for the entries of the Coxeter matrix. Let d = b − a. If d = 0, then ρaρb =
ρ2a = e by Theorem 4.3. Thus, m(a, b) = 1. If d ≥ 1, divide b by d and write
b = qd + r according to the Euclidean division algorithm with 0 ≤ r < d. Let
l̄d denote the residue of the integer l modulo d. For 1 ≤ l ≤ b, the equivalence
class of l, denoted by El, is given by:

El = {i ∈ {1, 2, . . . , b} | i ∈ l̄d}

Let α =
⌊
r+1
2

⌋
and β =

⌊
d+(r+1)

2

⌋
. Let Lα be the set {1, 2, . . . , α}, Lβ be the

set {r+1, r+2, . . . , β}, and L = Lα∪Lβ . For l ∈ L, the cycle class of l, denoted
by Zl, is given by:

Zl =

{
El ∪ E(r+1)−l if l ∈ Lα
El ∪ E(d+1)−l+r if l ∈ Lβ

Lemma 7.2. r − α ≤ α.

Proof. Note that r
2 ≤ b

r+1
2 c. This implies −b r+1

2 c ≤ −
r
2 . Thus, r − α =

r − b r+1
2 c ≤ r −

r
2 = r

2 ≤ b
r+1
2 c = α.

Lemma 7.3. d+ r − β ≤ β.

Proof. Note that d+r
2 ≤ bd+(r+1)

2 c. This implies −bd+(r+1)
2 c ≤ −d+r2 . Thus,

d+ r − β = d+ r − bd+(r+1)
2 c ≤ d+ r − d+r

2 = d+r
2 ≤ b

d+(r+1)
2 c = β.

Lemma 7.4. If l = α and r is odd, then (r + 1)− l = α.

Proof. If r is odd then α = r+1
2 which implies l = r+1

2 . Thus, (r + 1) − l =
(r + 1)− r+1

2 = r+1
2 = α.

Lemma 7.5. If l = α and r is even, then (r + 1)− l = α+ 1.

Proof. If r is even then α = r
2 which implies l = r

2 . Thus, (r + 1) − l =
(r + 1)− r

2 = r
2 + 1 = α+ 1.

Lemma 7.6. If l = β and d− r is odd, then (d+ 1)− l + r = β.

Proof. If d− r is odd then d− r + (2r + 1) = d+ (r + 1) is even. This implies

β = d+(r+1)
2 which implies l = d+(r+1)

2 . Thus, (d + 1) − l + r = (d + 1) −
d+(r+1)

2 + r = d+ (r + 1)− d+(r+1)
2 = d+(r+1)

2 = β.

Lemma 7.7. If l = β and d− r is even, then (d+ 1)− l + r = β + 1.

Proof. If d− r is even then d− r + (2r + 1) = d+ (r + 1) is odd. This implies
β = d+r

2 which implies l = d+r
2 . Thus, (d + 1) − l + r = (d + 1) − d+r

2 + r =

(d+ r)− d+r
2 + 1 = d+r

2 + 1 = β + 1.

Theorem 7.8. If i ∈ {1, 2, . . . , b}, then i ∈ Zl for some l ∈ L. Furthermore,
this l is unique.
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Proof. Let j be the unique integer in Ei with 1 ≤ j ≤ d. Then i ∈ Ej .

Case 1: 1 ≤ j ≤ α. Let l = j. This implies 1 ≤ l ≤ α which implies l ∈ Lα.
Thus, Zl = Ej ∪ E(r+1)−j ⊇ Ej which implies i ∈ Zl.

Case 2: α+1 ≤ j ≤ r. Let l = (r+1)−j. This implies 1 ≤ l ≤ r−α which implies
1 ≤ l ≤ α by Lemma 7.2. Thus, l ∈ Lα and Zl = E(r+1)−j ∪E(r+1)−((r+1)−j) =
E(r+1)−j ∪ Ej ⊇ Ej which implies i ∈ Zl.

Case 3: r + 1 ≤ j ≤ β. Let l = j. This implies r + 1 ≤ l ≤ β which im-
plies l ∈ Lβ . Thus, Zl = Ej ∪ E(d+1)−j+r ⊇ Ej which implies i ∈ Zl.

Case 4: β + 1 ≤ j ≤ d. Let l = (d + 1) − j + r. This implies r + 1 ≤ l ≤
d + r − β which implies r + 1 ≤ l ≤ β by Lemma 7.3. Thus, l ∈ Lβ and
Zl = E(d+1)−j+r ∪E(d+1)−((d+1)−j+r)+r = E(d+1)−j+r ∪Ej ⊇ Ej which implies
i ∈ Zl.

Now, we must show that this l is unique.

Case 1: l ∈ Lα. If l = 1, then Zl = E1∪Er. If l = 2, then Zl = E2∪Er−1. This
pattern continues until l = α at which point Zl = Eα ∪Eα = Eα if r is odd, or
Zl = Eα ∪Eα+1 if r is even by Lemma 7.4 and Lemma 7.5. Each Zl is a union
of equivalence classes. Since no equivalence class is a part of more than one Zl,
each Zl is mutually distinct from the others. Also note that this case accounts
for the equivalence classes from E1 to Er.

Case 2: l ∈ Lβ . If l = r + 1, then Zl = Er+1 ∪ Ed. If l = r + 2, then
Zl = Er+2 ∪ Ed−1. This pattern continues until l = β at which point Zl =
Eβ ∪Eβ = Eβ if d− r is odd, or Zl = Eβ ∪Eβ+1 if d− r is even by Lemma 7.6
and Lemma 7.7. Each Zl is a union of equivalence classes. Since no equivalence
class is a part of more than one Zl, each Zl is mutually distinct from the others.
Also note that this case accounts for the equivalence classes from Er+1 to Ed.

Since the two cases do not deal with any overlapping equivalence classes, no
Zl from one case overlaps with any Zl from the other.

7.1 Boundaries For Alpha

Lemma 7.9. If 1 ≤ l ≤ α and q ≥ k ≥ 1, then kd + (r + 1) − l ≤ b and
a+ 1− ((k − 1)d+ (r + 1)− l) ≤ a.

Proof. Note that d > 0, k ≤ q, b = qd+r, and −l ≤ −1. Thus, kd+(r+1)− l ≤
qd + (r + 1) − l = b + 1 − l ≤ b + 1 − 1 = b. Furthermore note that d > 0,
−k ≤ −1, and l ≤ r since l ≤ α and α ≤ r. Thus, a+1−((k−1)d+(r+1)−l) =
a+1−kd+d−r−1+ l ≤ a+1−d+d−r−1+ l = a−r+ l ≤ a−r+r = a.

Lemma 7.10. If 1 ≤ l ≤ α, then (r + 1)− l ≤ b and qd+ l > a.

Proof. Note that −l ≤ −1 and 0 ≤ qd since 0 ≤ d and 0 ≤ q. Thus, (r+1)− l ≤
(r+ 1)−1 = r = 0 + r ≤ qd+ r = b. Furthermore note that l > 0 and −r > −d.
Thus, qd+ l > qd+ 0 = qd+ r − r > qd+ r − d = b− d = a.
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Lemma 7.11. If 1 ≤ l ≤ α and q ≥ k ≥ 1, then kd + l ≤ b and a + 1 − ((k −
1)d+ l) ≤ a.

Proof. Note that d > 0, k ≤ q, and l ≤ r. Thus, kd + l ≤ qd + l ≤ qd + r = b.
Furthermore note that d > 0, −k ≤ −1, and −l ≤ −1. Thus, a+ 1− ((k−1)d+
l) = a+ 1− kd+ d− l ≤ a+ 1− d+ d− l = a+ 1− l ≤ a+ 1− 1 = a.

Lemma 7.12. If 1 ≤ l ≤ α, then l ≤ b and qd+ (r + 1)− l > a.

Proof. Note that l ≤ r and r ≤ b since r ≤ d and d ≤ b. Thus, l ≤ r ≤
b. Furthermore note that −l > −r − 1 since l ≤ r and −r > −d. Thus,
qd+(r+1)−l > qd+(r+1)−r−1 = qd = qd+r−r > qd+r−d = b−d = a.

7.2 Boundaries for Beta

Lemma 7.13. If r+ 1 ≤ l ≤ β and q− 1 ≥ k ≥ 1, then kd+ (d+ 1)− l+ r ≤ b
and a+ 1− ((k − 1)d+ (d+ 1)− l + r) ≤ a.

Proof. Note that d > 0, k ≤ q − 1, and −l ≤ −1. Thus, kd+ (d+ 1)− l + r ≤
(q−1)d+(d+1)−l+r = qd−d+d+1−l+r = qd+r+1−l = b+1−l ≤ b+1−1 = b.
Furthermore note that d > 0, −k ≤ −1, l ≤ d since l ≤ β and β ≤ d, and−r ≤ 0.
Thus, a + 1 − ((k − 1)d + (d + 1) − l + r) = a + 1 − kd + d − d − 1 + l − r ≤
a+1−d+d−d−1+ l−r = a−d+ l−r ≤ a−d+d−r = a−r ≤ a+0 = a.

Lemma 7.14. If r + 1 ≤ l ≤ β, then (d+ 1)− l + r ≤ b and (q − 1)d+ l > a.

Proof. Note that −l ≤ −r − 1 and 0 ≤ a. Thus, (d + 1) − l + r ≤ d + 1 −
r − 1 + r = d = d + 0 ≤ d + a = b. Furthermore note that l > r. Thus,
(q − 1)d+ l > (q − 1)d+ r = qd+ r − d = b− d = a.

Lemma 7.15. If r + 1 ≤ l ≤ β and q − 1 ≥ k ≥ 1, then kd + l ≤ b and
a+ 1− ((k − 1)d+ l) ≤ a.

Proof. Note that d > 0, k ≤ (q − 1), l ≤ d, and 0 ≤ r. Thus, kd + l ≤
(q − 1)d+ l ≤ (q − 1)d+ d = qd = qd+ 0 ≤ qd+ r = b. Furthermore note that
d > 0, −k ≤ −1, −l ≤ −1. Thus, a+ 1− ((k − 1)d+ l) = a+ 1− kd+ d− l ≤
a+ 1− d+ d− l = a+ 1− l ≤ a+ 1− 1 = a.

Lemma 7.16. If r + 1 ≤ l ≤ β, then l ≤ b and (q − 1)d+ (d+ 1)− l + r > a.

Proof. Note that l ≤ β and β ≤ b since β ≤ d and d ≤ b. Thus, l ≤ β ≤ b.
Furthermore note that −l > −d−1 since l ≤ d. Thus, (q−1)d+(d+1)− l+r =
qd− d+ d+ 1− l+ r > qd− d+ d+ 1− d− 1 + r = qd+ r− d = b− d = a.

7.3 Cycles for Alpha

Lemma 7.17. If 1 ≤ l ≤ α and q ≥ k ≥ 1, then (ρaρb)kd+(r+1)−l = (k − 1)d+
(r + 1)− l.

Proof. Keeping in mind Lemma 7.9, (ρaρb)kd+(r+1)−l = (ρa)b+1−(kd+(r+1)−l) =
(ρa)a+d+1−(kd+(r+1)−l) = (ρa)a+1−((k−1)d+(r+1)−l) = (k − 1)d+ (r + 1)− l.

Lemma 7.18. If 1 ≤ l ≤ α, then (ρaρb)(r+1)−l = qd+ l.
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Proof. Keeping in mind Lemma 7.10, (ρaρb)(r+1)−l = (ρa)b+1−((r+1)−l) =
(ρa)qd+r+1−r−1+l = (ρa)qd+l = qd+ l.

Lemma 7.19. If 1 ≤ l ≤ α and q ≥ k ≥ 1, then (ρaρb)kd+l = (k − 1)d+ l.

Proof. Keeping in mind Lemma 7.11, (ρaρb)kd+l = (ρa)b+1−(kd+l) =
(ρa)a+d+1−(kd+l) = (ρa)a+1−((k−1)d+l)) = (k − 1)d+ l.

Lemma 7.20. If 1 ≤ l ≤ α, then (ρaρb)l = qd+ (r + 1)− l.

Proof. Keeping in mind Lemma 7.12, (ρaρb)l = (ρa)b+1−l = (ρa)qd+(r+1)−l =
qd+ (r + 1)− l.

7.4 Cycles for Beta

Lemma 7.21. If r + 1 ≤ l ≤ β and q − 1 ≥ k ≥ 1, then (ρaρb)kd+(d+1)−l+r =
(k − 1)d+ (d+ 1)− l + r.

Proof. Keeping in mind Lemma 7.13,
(ρaρb)kd+(d+1)−l+r = (ρa)b+1−(kd+(d+1)−l+r) = (ρa)a+d+1−(kd+(d+1)−l+r) =
(ρa)a+1−((k−1)d+(d+1)−l+r) = (k − 1)d+ (d+ 1)− l + r.

Lemma 7.22. If r + 1 ≤ l ≤ β, then (ρaρb)(d+1)−l+r = (q − 1)d+ l.

Proof. Keeping in mind Lemma 7.14, (ρaρb)(d+1)−l+r = (ρa)b+1−((d+1)−l+r) =
(ρa)qd+r+1−d−1+l−r = (ρa)(q−1)d+l = (q − 1)d+ l.

Lemma 7.23. If r+1 ≤ l ≤ β and q−1 ≥ k ≥ 1, then (ρaρb)kd+l = (k−1)d+l.

Proof. Keeping in mind Lemma 7.15, (ρaρb)kd+l = (ρa)b+1−(kd+l) =
(ρa)a+d+1−(kd+l) = (ρa)a+1−((k−1)d+l) = (k − 1)d+ l.

Lemma 7.24. If r + 1 ≤ l ≤ β, then (ρaρb)l = (q − 1)d+ (d+ 1)− l + r.

Proof. Keeping in mind Lemma 7.16, (ρaρb)l = (ρa)b+1−l = (ρa)qd+r+1−l =
(ρa)(q−1)d+(d+1)−l+r = (q − 1)d+ (d+ 1)− l + r.

7.5 Prefix Reversal Cycles

Theorem 7.25. Let i ∈ {1, 2, . . . , b}. Let j be the unique integer in Ei with
1 ≤ j ≤ d. If 1 ≤ j ≤ r, then |Ei| = q + 1. If r + 1 ≤ j ≤ d, then |Ei| = q.

Proof. Writing {1, 2, . . . , b} as {1, . . . , r, r + 1, . . . , d, d + 1, . . . , d + r, d + (r +
1), . . . , 2d, . . . , (q−1)d+1, . . . , (q−1)d+r, (q−1)d+(r+1), . . . , qd, qd+1, . . . , qd+

r} =

(
q−1⋃
k=0

{kd+ 1, . . . , kd+ r, kd+ (r + 1), . . . , kd+ d}
)
∪ {qd+ 1, . . . , qd+ r}

makes the theorem clear.

Theorem 7.26. ρaρb : Zl → Zl is a bijection for all l ∈ L.
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Proof. It is enough to show that if i ∈ Zl, (ρaρb)i ∈ Zl.

Case 1: l ∈ Lα. Then 1 ≤ l ≤ α. If i ∈ Zl, then i = kd + l for some
0 ≤ k ≤ q, or i = kd + (r + 1) − l for some 0 ≤ k ≤ q by Theorem 7.25. By
Lemmas 7.9, 7.10, 7.11, and 7.12, (ρaρb)i = kd + l for some 0 ≤ k ≤ q, or
(ρaρb)i = kd+ (r + 1)− l for some 0 ≤ k ≤ q. Thus, (ρaρb)i ∈ Zl.

Case 2: l ∈ Lβ . Then r + 1 ≤ l ≤ β. If i ∈ Zl, then i = kd + l for some
0 ≤ k ≤ q − 1, or i = kd + (d + 1) − l + r for some 0 ≤ k ≤ q − 1 by The-
orem 7.25. By Lemmas 7.13, 7.14, 7.15, and 7.16, (ρaρb)i = kd + l for some
0 ≤ k ≤ q − 1, or (ρaρb)i = kd+ (d+ 1)− l + r for some 0 ≤ k ≤ q − 1. Thus,
(ρaρb)i ∈ Zl.

Theorem 7.27. m(a, b) = LCM
l∈L
|Zl|.

Proof. It is well known that the order of any permutation of a finite set written
as the product of disjoint cycles is the lowest common multiple of the lengths
of the cycles. Note that for b < i ≤ n, the cycle of ρaρb containing i is simply
the identity cycle (i). Since these have length 1, they do not contribute to the
lowest common multiple. By Theorem 7.8 and Theorem 7.26, the elements of
each Zl correspond to the elements in each (non-identity) cycle of ρaρb. Since
these cycles are disjoint by Theorem 7.8, m(a, b) = LCM

l∈L
|Zl|.

Theorem 7.28. If l ∈ {1, 2, . . . , α − 1} or l = α and r is even, then the cycle
for ρaρb in Zl is given by: (qd+ (r+ 1)− l, (q − 1)d+ (r+ 1)− l, . . . , (r+ 1)−
l, qd+ l, (q − 1)d+ l, . . . , l) and |Zl| = 2(q + 1). If l = α and r is odd, then the
cycle for ρaρb in Zl is given by: (qd+ l, (q − 1)d+ l, . . . , l) and |Zl| = q + 1.

Proof. Case 1: l ∈ {1, 2, . . . , α−1} or l = α and r is even. If l ∈ {1, 2, . . . , α−1},
then l < α. Thus, r + 1 − l > r + 1 − α = r + 1 − b r+1

2 c ≥ r + 1 − r+1
2 =

r+1
2 ≥ b r+1

2 c = α > l. This implies r + 1 − l 6= l. If l = α and r is even, then
(r + 1) − l = α + 1 = l + 1 6= l by Lemma 7.5. Either way, El ∩ Er+1−l = ∅.
Thus, |Zl| = |El ∪ Er+1−l| = |El| + |Er+1−l| = (q + 1) + (q + 1) = 2(q + 1) by
Theorem 7.25. By Lemmas 7.17, 7.18, 7.19, and 7.20, we verify that the cycle
above is correct.

Case 2: l = α and r is odd. Then r + 1 − l = α = l by Lemma 7.4. Thus,
|Zl| = |El ∪ Er+1−l| = |El ∪ El| = |El| = q + 1 by Theorem 7.25. By Lemmas
7.19 and 7.20, we verify that the cycle above is correct.

Theorem 7.29. If l ∈ {r+ 1, r+ 2, . . . , β− 1} or l = β and d− r is even, then
the cycle for ρaρb in Zl is given by: ((q−1)d+(d+1)−l+r, (q−2)d+(d+1)−l+
r, . . . , (d+1)−l+r, (q−1)d+l, (q−2)d+l, . . . , l) and |Zl| = 2q. If l = β and d−r
is odd, then the cycle for ρaρb in Zl is given by: ((q− 1)d+ l, (q− 2)d+ l, . . . , l)
and |Zl| = q.

Proof. Case 1: l ∈ {r + 1, r + 2, . . . , β − 1} or l = β and d − r is even. If
l ∈ {r+ 1, r+ 2, . . . , β − 1}, then l < β. Thus, (d+ 1)− l+ r > d+ 1− β + r =

d + 1 − bd+(r+1)
2 c + r ≥ d + 1 − d+(r+1)

2 + r = d+(r+1)
2 ≥ bd+(r+1)

2 c = β > l.
This implies (d+ 1)− l+ r 6= l. If l = β and d− r is even, then (d+ 1)− l+ r =
β + 1 = l + 1 6= l by Lemma 7.7. Either way, El ∩ E(d+1)−l+r = ∅. Thus,
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|Zl| = |El ∪ E(d+1)−l+r| = |El| + |E(d+1)−l+r| = q + q = 2q by Theorem 7.25.
By Lemmas 7.21, 7.22, 7.23, and 7.24, we verify that the cycle above is correct.

Case 2: l = β and d − r is odd. Then (d + 1) − l + r = β = l by Lemma
7.6. Thus, |Zl| = |El ∪E(d+1)−l+r| = |El ∪El| = |El| = q by Theorem 7.25. By
Lemmas 7.23 and 7.24, we verify that the cycle above is correct.

Remark Note that Theorem 7.28 and Theorem 7.29 account for all possible
lengths of cycles for ρaρb. Thus, if no l satisfies the conditions of the theorems,
then there is no Zl with the length given by the theorems.

Lemma 7.30. If r = 0, then there are no cycles of length 2(q+1) and no cycles
of length q + 1. If r = 1, then there are no cycles of length 2(q + 1) and exactly
one cycle of length q + 1. If r = 2, then there is exactly one cycle of length
2(q + 1) and no cycles of length q + 1. If r ≥ 3 and r is even, then are are at
least two cycles of length 2(q + 1) and no cycles of length q + 1. If r ≥ 3 and r
is odd, then there is at least one cycle of length 2(q + 1) and exactly one cycle
of length q + 1.

Proof. Case 1: r = 0. Then α = 0 < 1 ≤ l. So {1, 2, . . . , α − 1} is empty and
l 6= α. By Theorem 7.28 and the above remark, there are no cycles of length
2(q + 1) and no cycles of length q + 1.

Case 2: r = 1. Then α = 1. So {1, 2, . . . , α − 1} is empty and l = α when
l = 1. Since r is odd, there are no cycles of length 2(q+1) and exactly one cycle
of length q + 1 by Theorem 7.28 and the above remark.

Case 3: r = 2. Then α = 1. So {1, 2, . . . , α − 1} is empty and l = α when
l = 1. Since r is even, there is exactly one cycle of length 2(q+ 1) and no cycles
of length q + 1 by Theorem 7.28 and the above remark.

Case 4: r ≥ 3 and r is even. Then α ≥ 2 which implies that α − 1 ≥ 1.
So {1, 2, . . . , α − 1} is nonempty and l = α when l = b r+1

2 c. Since r is even,
there are at least two cycles of length 2(q + 1) and no cycles of length q + 1 by
Theorem 7.28 and the above remark.

Case 5: r ≥ 3 and r is odd. Then α ≥ 2 which implies that α − 1 ≥ 1.
So {1, 2, . . . , α − 1} is nonempty and l = α when l = b r+1

2 c. Since r is odd,
there is at least one cycle of length 2(q+1) and exactly one cycle of length q+1
by Theorem 7.28 and the above remark.

Lemma 7.31. If d − r = 1, then there are no cycles of length 2q and exactly
one cycle of length q. If d − r = 2, then there is exactly one cycle of length 2q
and no cycles of length q. If d − r ≥ 3 and d − r is even, then are are at least
two cycles of length 2q and no cycles of length q. If d− r ≥ 3 and d− r is odd,
then there is at least one cycle of length 2q and exactly one cycle of length q.

Proof. Case 1: d− r = 1. Then β = r+ 1. So {r+ 1, r+ 2, . . . , β − 1} is empty
and l = β when l = r + 1. Since d − r is odd, there are no cycles of length 2q
and exactly one cycle of length q by Theorem 7.29 and the above remark.
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Case 2: d − r = 2. Then β = r + 1. So {r + 1, r + 2, . . . , β − 1} is empty

and l = β when l = bd+(r+1)
2 c. Since d− r is even, there is exactly one cycle of

length 2q and no cycles of length q by Theorem 7.29 and the above remark.

Case 3: d − r ≥ 3 and d − r is even. Then β ≥ r + 2 which implies that
β − 1 ≥ r + 1. So {r + 1, r + 2, . . . , β − 1} is nonempty and l = β when

l = bd+(r+1)
2 c. Since d− r is even, there are at least two cycles of length 2q and

no cycles of length q by Theorem 7.29 and the above remark.

Case 4: d − r ≥ 3 and d − r is odd. Then β ≥ r + 2 which implies that
β − 1 ≥ r + 1. So {r + 1, r + 2, . . . , β − 1} is nonempty and l = β when

l = bd+(r+1)
2 c. Since d − r is odd, there is at least one cycle of length 2q and

exactly one cycle of length q by Theorem 7.29 and the above remark.

Theorem 7.32 (Coxeter Matrix for Prefix Reversals). If d = 0, then m(a, b) =
1. If r = 0 and d − r = 1, then m(a, b) = q. If r = 0 and d − r ≥ 2, then
m(a, b) = 2q. If r = 1 and d − r = 1, then m(a, b) = q(q + 1). If r = 1 and
d − r ≥ 2 and q is odd, then m(a, b) = q(q + 1). If r = 1 and d − r ≥ 2 and
q is even, then m(a, b) = 2q(q + 1). If r ≥ 2 and d − r = 1 and q is odd, then
m(a, b) = 2q(q+1). If r ≥ 2 and d−r = 1 and q is even, then m(a, b) = q(q+1).
If r ≥ 2 and d− r ≥ 2, then m(a, b) = 2q(q + 1).

Proof. First note that the cases in this theorem are exhaustive. If d = 0, then
m(a, b) = 1 as shown at the beginning of this section. If d ≥ 1, then 0 ≤ r < d
by the Euclidean division algorithm. This implies 0 ≤ r and 1 ≤ d − r. The
cases fully account for these ranges.

Case 1: r = 0 and d − r = 1. By Lemma 7.30 and Lemma 7.31, there are
no cycles of length 2(q+ 1), no cycles of length q+ 1, no cycles of length 2q and
exactly one cycle of length q. Thus, m(a, b) = LCM

l∈L
|Zl| = q.

Case 2: r = 0 and d − r ≥ 2. By Lemma 7.30, there are no cycles of length
2(q+ 1) and no cycles of length q+ 1. We are also in one of the last three cases
of Lemma 7.31. In any case, the lowest common multiple for these cycle lengths
is 2q. Thus, m(a, b) = LCM

l∈L
|Zl| = 2q.

Case 3: r = 1 and d − r = 1. By Lemma 7.30 and Lemma 7.31, there are
no cycles of length 2(q+1), exactly one cycle of length q+1, no cycles of length
2q and exactly one cycle of length q. Thus, m(a, b) = LCM

l∈L
|Zl| = q(q + 1).

Case 4: r = 1 and d − r ≥ 2. By Lemma 7.30, there are no cycles of length
2(q + 1) and exactly one cycle of length q + 1. We are also in one of the
last three cases of Lemma 7.31. In any case, the lowest common multiple for
these cycle lengths is 2q. Thus, m(a, b) = LCM

l∈L
|Zl| = LCM{(q + 1), 2q}. If

q is odd, then m(a, b) = LCM{(q + 1), 2q} = q(q + 1). If q is even, then
m(a, b) = LCM{(q + 1), 2q} = 2q(q + 1).

Case 5: r ≥ 2 and d − r = 1. We are in one of the last three cases of
Lemma 7.30. In any case, the lowest common multiple for these cycle lengths
is 2(q + 1). By Lemma 7.31, there are no cycles of length 2q and exactly

19



one cycle of length q. Thus, m(a, b) = LCM
l∈L
|Zl| = LCM{2(q + 1), q}. If

q is odd, then m(a, b) = LCM{2(q + 1), q} = 2q(q + 1). If q is even, then
m(a, b) = LCM{2(q + 1), q} = q(q + 1).

Case 6: r ≥ 2 and d − r ≥ 2. We are in one of the last three cases of
Lemma 7.30. In any case, the lowest common multiple for these cycle lengths
is 2(q + 1). We are also in one of the last three cases of Lemma 7.31. In
any case, the lowest common multiple for these cycle lengths is 2q. Thus,
m(a, b) = LCM

l∈L
|Zl| = LCM{2(q + 1), 2q} = 2q(q + 1).
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