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Abstract

This paper provides an introduction to the concept of crystal graphs,
with particular emphasis on the tensor products between the crystal graphs
of modules over the special linear algebra. Covered are the fundamental
topics needed to introduce the reader to crystal graphs, including an in-
troduction to Lie algebras and quantum algebras over the special linear
algebra.

1 Lie Algebras

Definition 1. A Lie algebra over a field F is an F -vector space L, together
with a bilinear map [−,−] from L× L→ L such that

1. [x, x] = 0 ∀x ∈ L

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ L

Now, given this general definition of Lie algebras, we examine two particular
examples that will form the core of our future study. We call them the general
linear algebra and the special linear algebra, respectively.

Example 1. The general linear algebra is the vector space of all n × n
matrices over F, written gln, with [−,−] defined by

[x, y] ≡ xy − yx

Example 2. The special linear algebra is the subspace of gln of all elements
that have trace 0. It’s denoted sln. For n = 2 and F = C, it has the following
basis elements:
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e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
And for n > 2, it has basis elements ei, fi, hi, 0 ≤ i < n, where each ei is

the matrix with all 0 entries except for the entries about the i-th term along the
diagonal, which have values given by e above (similarly for fi, hi). For example,
the Lie algebra sl3(C) has bases generated by

e0 =

0 1 0
0 0 0
0 0 0

 e1 =

0 0 0
0 0 1
0 0 0

 (1)

f0 =

0 0 0
1 0 0
0 0 0

 f1 =

0 0 0
0 0 0
0 1 0

 (2)

h0 =

1 0 0
0 −1 0
0 0 0

h1 =

0 0 0
0 1 0
0 0 −1

 (3)

We call the set of all iI.

To examine the relationship and structure of these two Lie algebras, we first
need to define several concepts familiar to familiar algebraic structures, as they
pertain to Lie algebras

Definition 2. Let L be a Lie algebra, and let K be a vector subspace of L. We
say K is a Lie subalgebra ofL if ∀x, y ∈ K,

[x, y] ∈ K

Definition 3. Let L1, L2 be Lie algebras, with a linear map ϕ : L1 → L2. We
say ϕ is a homomorphism of Lie algebras if for all x, y ∈ L1,

ϕ([x, y]) = [ϕ(x), ϕ(y)]

Definition 4. An ideal of Lie algebra L is a subspace I ⊆ L such that ∀x ∈
L, y ∈ I,

[x, y] ∈ I
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Now, we note that for all ideals I, J of Lie algebra L,

I + J = {x+ y|x ∈ I, y ∈ J}

and

[I, J ] = span{[x, y]|x ∈ I, y ∈ J}

are ideals as well. Next since our definition of ideals of Lie algebras is
similar to those of ideals on other algebraic structures, it makes sense to examine
quotient algebras as well:

Definition 5. If I is an ideal of Lie algebra L, then the quotient algebra is
the set

L/I = {z + I|z ∈ L}

With the Lie bracket

[w + I, z + I] = [w, z] + I

As in other algebraic structures with ideals and quotient groups, the three
Isomorphism Theorems apply, the first of which tells us

Lemma 1. Let ϕ : L1 → L2 be a Lie algebra homomorphism. Then ker(ϕ) is
an ideal of L1, im(ϕ) is a subalgebra of L2, and

L1/ker(ϕ) ∼= im(ϕ)

An immediate result of this theorem tells us that

gln/sln
∼= F

under the map ϕ(x) = trace(x). Thus we also have that sln is an ideal of
gln.

Now we move on to introduce the related concepts of representations and
modules of Lie algebras, on which we will build the rest of our study.

Definition 6. Let L be a Lie algebra over F . A representation of L is a Lie
algebra homomorphism

ϕ : L→ gl(V )

where V is a finite-dimensional vector space over F .

Definition 7. Let L be a Lie algebra over F. A Lie module for L is a finite-
dimensional F -vector space V together with a map L× V → V such that

1. (λx+ µy).v = λ(x.v) + µ(y.v)

2. x.(λv + µw) = λ(x.v) + µ(x.w)
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3. [x, y].v = x(y.v)− y(x.v)

These two concepts are related since given a representation ϕ : L → gl(V ),
we may make V into an L-module by defining

x.v ≡ ϕ(x)(v)

From here we wish to examine the structure of modules directly, particularly
their behavior under the action of our Lie algebra. To do so, we need to define
the concept of submodules:

Definition 8. Suppose V is a module for Lie algebra L. A submodule of V
is a subspace W of V which is invariant under the action of L. That is to say,
for all x ∈ L,w ∈W

x.w ∈W

Similarly, W induces a subrepresentation.

Definition 9. A Lie-module V is said to be irreducible or simple if it is
nontrivial and it has no submodules other than {0} and V .

Next, we describe all modules of sl2(C), building upon two lemmas:

Lemma 2. Let C[X,Y ] be the vector space of polynomials in X,Y with complex
coefficients. Then, let

Vd = {p ∈ C[X,Y ]|p has degree d}

Then Vd is spanned by

Xd, Xd−1Y, ..., Y d

So Vd has dimension d+ 1. Then Vd is a Lie module of sl2(C), given by the
map

ϕ(e) ≡ X ∂

∂Y

ϕ(f) ≡ Y ∂

∂X

ϕ(h) ≡ X ∂

∂X
− Y ∂

∂Y

Further, Vd is irreducible as a sl2(C)-module, and for any finite-dimensional,
irreducible sl2(C)-module V , V is isomorphic to one of the Vd.

We build upon this with our much stronger theorem, known as Weyl’s the-
orem:
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Lemma 3. Let L be a complex Lie algebra such that

L =
⊕

Ln

Where each Ln is simple (we call L semisimple in this case). Then, every
finite-dimensional representation of L is completely reducible (can be written as
the direct sum of irreducible submodules).

This gives us our important classification of the modules over sl2(C): Every
finite-dimensional module over sl2(C) is isomorphic to the direct sum of some
Vd.

2 Quantum Algebras

Next we want to introduce the concept of quantum algebras, structures that
further build upon Lie algebras and the subject of our future study. First, a few
combinatorial results:

Definition 10. We define the operator [−] for a variable v over Q as

[a] =
va − v−a

v − v−1

Then, we may define the Gaussian binomial coefficients by(
a

n

)
q

=
[a][a− 1]...[a− n+ 1]

[1][2]...[n]

For the sake of simplicity, we write(
a

n

)
q

=
[a]!

[n]![a− n]!

These combinatorial definitions allow us to examine in depth the quantum
algebra of sl2:

Definition 11. Let k be a field, with q ∈ k where q 6= 0 and q2 6= 1. Then we
define the quantum algebra of sl2, denoted Uq(sl2) as the associateive algebra
over k with generators E,F,K,K−1 such that

1. KK−1 = K−1K

2. KEK−1 = q2E

3. KFK−1 = q−2F

4. EF − FE = K−K−1

q−q−1

The significance of this quantum algebra lies in the fact that it has well-
defined bases elements and no zero divisors.
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Lemma 4. Uq(sl2) has PBW-type bases and no zero divisors. PBW-type bases
are monomials of the form

F sKnEr

Where r, s, n ∈ Z, r, s ≥ 0, that form a basis for Uq(sl2) as a vector space.

Now we want to examine the behavior of Uq(sl2)-Modules, which can be
broken into the direct sum of what we call weight spaces, which are as follows:

Definition 12. If M is a Uq(sl2)-Module, set for all λ ∈ k, λ 6= 0

Mλ = {m ∈M |Km = qλm}

That is to say, Mλ is the eigenspace of K acting on M for the eigenvalue of
λ. We call Mλ a weight space of M . All λ where Mλ 6= 0 are the weights of
M , and the set of all λ which define unique Mλ is the weight lattice P of M .

And this definition gives us our crucial characterization of these modules:

Lemma 5. Suppose q is not a root of unity and that char(k) 6= 2. Let M be
a finite-dimensional Uq(sl2)-Module. Then M is the direct sum of its weight
spaces, and all weights of M have the form ±qa, with a ∈ Z. Further, M is
semi-simple as a Uq(sl2)-Module.

3 Crystal Graphs

Now, having introduced Lie algebras and quantum algebras over them, we may
finally introduce the core subject of our study: crystal graphs. To do so, we are
going to consider Uq(sl2)-Modules Mq that satisfy the following criteria:

1. Mq =
⊕

λ∈kM
q
λ, where each Mq

λ represents the weight space of M , with

dimF (q)M
q
λ <∞

∀λ ∈ P .

2. There exists finitely many λ1, ..., λs ∈ P such that

wt(Mq) ⊆ D(λ1) ∪ ... ∪D(λs)

where D(λ) = {µ ∈ P |µ ≤ λ}

3. The operators ei and fi are nilpotent on Mq for all i ∈ I

We now define the modified root operators ẽi and f̃i, known as the Kashiwara
Operators. First, a lemma:
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Lemma 6. Let M =
⊕

λ∈P Mλ be a U -Module. Then for all i ∈ I, each weight
vector u ∈Mλ may be written as

u = u0 + fiu1 + ...+ f
(N)
i uN

Where N ∈ Z≥0 and uk ∈Mλ+kαi ∩ ker(ei).

This lemma tells us that the following definitions are well-defined:

Definition 13. The Kashiwara Operators ẽi and f̃i on M are defined by:

ẽi.u =

N∑
k=1

f
(k−1)
i uk

f̃i.u =

N∑
k=0

f
(k+1)
i uk

Now, we note that this implies that for all i ∈ I and λ ∈ P

ẽiMλ = ei.Mλ ⊆Mλ+αi

f̃iMλ = fi.Mλ ⊆Mλ−αi

And further ẽi, f̃i commute with U -Module homomorphisms.

Definition 14. We now define A0 to be

A0 = {f(q) ∈ F (q)|f is regular at q = 0}
= {g/h|g, h ∈ F [q], h(0) 6= 0}

This allows us to define the concept of a crystal lattice of M , as follows:

Definition 15. Let M be a U -Module. A free A0-submodule L of M is called
a crystal lattice if

1. L generates M as a vector space over F (q)

2. L =
⊕

λ∈P Lλ, where L = L ∩Mλ, ∀λ ∈ P

3. ∀i ∈ I, ẽi.L ⊆ L , f̃i.L ⊆ L .

Further, we call

L /qL ∼= F
⊗
A0

L

the crystal limit.
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Note that since ẽi, f̃i preserve L , they act as operators on L /qL .
Finally, we may introduce the subject of our study: the crystal basis of a

U -Module and the related concept of the crystal graph.

Definition 16. A crystal basis of a U -Module M is a pair (L ,B) such that

1. L is a crystal lattice of M

2. B is a f-basis of L /qL

3. B =
⊔
λ Bλ where Bλ = B ∩ (Lλ/qLλ)

4. ∀i ∈ I,

ẽi.B ⊆ B ∪ {0}
f̃i.B ⊆ B ∪ {0}

5. ∀b, b′ ∈ B and i ∈ I, f̃i.b = b′ if and only if b = ẽi.b
′

From which, we build the crystal graph:

Definition 17. Let (L ,B) be a crystal basis. We define the crystal graph of
M by representing B as a set of vertices, connected by I-colored arrows on B
according to the rule that b→ b′ if and only if b = f̃ib

′.

Now, let’s draw the crystal graph over a Uq(sl2)-Module:

Example 3. For m ∈ Z≥0, let V (m) be the (m + 1)-dimensional irreducible
Uq(sl2)-Module with basis {u, f.u, ...f (m).u}, where

E.u = 0

K.u = qmu

f (k).u =
1

[k]!
fku

Now define

L (m) =

m⊕
k=0

A0f
(k).u

B(m) = {u, fu, ..., f (m)u}

Where f (k)u denotes the image of f (k) under the crystal limit. By the defi-
nition of Kashiwara operators, we have

ẽ.f (k).u = f (k−1).u

f̃ .f (k).u = f (k+1).u
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So, (L (m),B(m)) is a crystal basis of V (m), with the crystal graph:

u→ f.u→ ...→ f (m).u

Now, we finally introduce the tensor product of crystal graphs:

Definition 18. Let Mj be a Uq(sl2)-Module with (Lj ,Bj) a crystal basis of Mj

(j = 1, 2). Set L = L1

⊗
A0

L2 and B = B1 ×B2. Then (L ,B) is a crystal
basis of M1

⊗
F (q)M2, where

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2)

b̃1 ⊗ ẽib2 else

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2)

b̃1 ⊗ f̃ib2 else
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