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Abstract

It is known that one can use the weight system of a Lie algebra or

superalgebra as an invariant on chords by relating the chords to elements

of the enveloping algebra of the Lie algebra or superalgebra. Recursive

formulas for these invariants have already been found for the Lie algebra

sl2 (of type A1) [3] and the Lie superalgebra gl(1|1) [5]. These formulas

were proved by finding relations between specific elements of the envelop-

ing algebra or superalgebra. In this paper we show some relations for

weight systems for the Lie algebra of type C2, as well as results on linear

independence of chord diagrams.

1 Introduction

In this paper, we investigate a kind of knot invariants called Vassiliev invariants.

First, we must define a knot and an invariant. For the following section, we rely

heavily on [2].

Definition 1 A knot is an embedding of the circle S1 into the Euclidean space

R3.

Example 1 The knot is called the trefoil knot,

and is called the unknot.

Definition 2 We say two knots K1 and K2 are equivalent if we can contin-

uously deform K1 through R3 to obtain K2 such that the deformations do not

allow the knot to pass through itself.

Example 2 is equivalent to the unknot because in R3, we

can move the top strand of the knot to below the knot in order to obtain a circle.

Definition 3 A knot invariant is a map from the set of knots to a set of

values that is equal on equivalent knots.
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Example 3 [1] The Alexander-Conway polynomial C is an invariant of

oriented knots taking values in the ring Z[t] defined by the following two prop-

erties:

(1) C ( ) = 1

(2) C ( ) −C( ) = tC ( )

where in (2), the diagrams are identical everywhere except for the crossing shown

above.

From here, we can generalize knots to singular knots.

Definition 4 A singular knot is a smooth map S1 → R3 that fails to be an

embedding. We only consider singular knots with the simplest singularities, a

finite number of points of intersection between two strands.

Example 4 has a single point of self intersection, making

it a singular knot.

As with knots, we can define invariants on singular knots as well. Any

knot invariant V can be extended to a singular knot invariant by means of the

Vassiliev skein relation:

V ( ) = V ( ) −V ( ).

Definition 5 A singular knot invariant V : K → C (where K is the space of

knots) is said to be a Vassiliev invariant (or a finite type invariant) of

order n if it vanishes on all knots with more than n singularities.

Consider what happens when we apply this relation to the Alexander-Conway

polynomial invariant above:

C ( ) = C ( ) −C( ) = tC ( ).

From here, we can see that the smallest power of t is bounded below by the

number of singularites in a knot. Now we can easily define a Vassiliev invariant

Vk from this by setting Vk(K) to be the coefficient of tk from the resulting

polynomial given by the Alexander-Conway invariant. These are exactly the

invariants given by the Vassiliev invariant arising from gl(1|1) [5].

By work done in [7], the value of a Vassiliev invariant does not depend at

all on the nonsingular crossings of the knot, so we can redraw a singular knot

in a much simpler way: as a chord diagram.

Definition 6 A chord diagram of order n (or degree n) is an oriented circle

with 2n distinct points paired with lines.

We obtain a chord diagram from an oriented singular knot (say, with n

singularities) by marking on the parameterizing circle of the chord diagram the

n pairs of points whose images are the n singularities of the knot.
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Example 5 becomes the chord diagram:

Hopefully, the results achieved below will lead to the calculation of a chord

invariant similar to those found in [3] and [5].

2 Background

To understand the connection between invariants and Lie algebras, we must

first define a Lie algebra.

Definition 7 [4] Let F be a field. A Lie algebra over F is an F-vector space

L with a bilinear map L × L → L denoted [x, y] where x, y ∈ L. This bilinear

map is called the Lie bracket of L and it satisfies the following properties:

[x, x] = 0 ∀x ∈ L
[x, y] = −[y, x]

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ L

The bracket is often called the commutator of x and y.

Example 6 The Lie algebra of type A1 is sl2 := {A ∈M2(C) |Tr(A) = 0} with

the bracket [A,B] = AB − BA where M2(C) is the set of 2 × 2 matrices with

complex entries and AB denotes matrix multiplication.

The definition of the Lie algebra of type Cn is sp2n(C), the set of 2n × 2n

symplectic matrices, or, more explicitly, sp2n =
{
A ∈M2n(C)

∣∣ΩA+AT Ω = 0
}

where AT denotes the transpose of the matrix A, and Ω =

[
0 In

−In 0

]
. [4]

The formulas we have in Section 3 are for chord diagrams with respect to

the weight system of the Lie algebra of type C2. The universal weight system

for a Lie algebra is a function from chord diagrams with n vertices to U(L),

the universal enveloping algebra of L. We define L⊗n to be the tensor product

of the Lie algebra L with itself n times. To define this function, we define the

process to create a linear map f : C → L⊗n. From there, by vector space

properties, we only need to understand the value of f(1), which will give us

a vector in L⊗n. To obtain the universal weight system, we then embed L⊗n

in
⊕

n≥0 L
⊗n, which is an algebra via concatenation of tensors, and then mod

out by the ideal generated by {x⊗ y − y ⊗ x− [x, y] | x, y ∈ L} which gives us

the universal enveloping algebra of L. To create the function f , we need to

understand the connection of these with Feynman diagrams.

Definition 8 A Feynman diagram Fn,m is a graph with n upper vertices, m

lower vertices, k inner vertices. 0 ≤ m,n, k < ∞ The upper and lower vertices

have one edge attached to them, and the inner vertices have three edges.
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We can consider a Feynman Diagram Fn,m as a function from L⊗n to L⊗m

where L is our Lie algebra. In our case this is C2, but this holds for any Lie

algebra. As a note, zero vertices, L⊗0, corresponds to the field of complex

numbers, so a diagram F0,m is a function from C to L⊗m. Likewise, a diagram

Fn,0 is a function from L⊗n to C.

Now, suppose we have two diagrams Fa,b and Fc,d. If we want to create the

graph of Fa+c,b+d, we place the graphs side by side: Fa,b first, then Fc,d. To

create the corresponding function, we take the function Fa+c.b+d to be Fa,b⊗Fc,d

where ⊗ denotes the tensor product. If we have the function and graph for Fa,b

and Fb,c, we can create the graph for Fa,c by putting Fa,b on top of Fb,c matching

up the b vertices in order. The function we get is Fa,c = Fb,c ◦ Fa,b where ◦ is

the composition of the functions.

Example 7 If we have the composition of the tensor product of (which

is a function from L⊗L) with (a function from L to L), and the tensor

product of with (a function from L⊗L to L), we get the diagram

which is a function from L⊗3 to L⊗2.

Theorem 1 [6] Any Feynman Diagram can be written as a combination (ten-

sor product or composition) of a finite number of the six elementary Feynman

Diagrams:

Example 8 If we consider the diagram from above, we see that it can

be broken down into the four diagrams we used to create it.

Because it is simple to tell the difference between an inner vertex and a

crossing, from this point on, we no longer include the dots to indicate vertices.

Now we have a way to combine graphs and a finite number of elementary dia-

grams from which we can build any diagram we like. As said earlier, Feynman

diagrams can be thought of as functions, and we also know how to combine

these functions in the same way as building a diagram. Thus, if we define the

functions for the six basic diagrams, we can create explicit formulas for any

diagram.

Because the Lie algebras we consider are algebras of matrices, we define the

elementary diagrams with their functions as follows:
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is the identity map, L→ L.

is a function L⊗ L→ L⊗ L which takes the element v ⊗ w 7→ w ⊗ v.

is a function from L ⊗ L to our field, C which is called the Killing

form, κ. To understand this function, first we must define the adjoint function,

ad : L→Md(C), where Md(C) denotes the d× d square matrices over the com-

plex field (d is the dimension of L). For x ∈ L, ad(x) is a function from L to L

given by ad(x)(y) = [x, y]. This allows us to define κ(x, y) := Tr(ad(x)ad(y)),

where Tr denotes the trace of the matrix.

is a function κ∗ : C to L ⊗ L. Because C and L ⊗ L are vector spaces

and C is one dimensional, we only need to know what this function does to the

complex number, 1. In order to do this, L needs to be semisimple so that the

killing form is nondegenerate. To do this, we define a basis for L, which we call

{ei}di=1 (where d is the dimension of L). For each ei, we then define e∗i to be

the element in L such that κ(e∗i , ej) = δij , where κ is as above, and δij is the

Kronecker delta function. Because the killing form is nondegenerate, this means

that e∗i is defined. From here, we define κ∗(1) =
∑d

i=1 ei ⊗ e∗i .

is the bracket operation from the Lie algebra, A ⊗ B 7→ [A,B] :=

AB −BA.

Looking at topologically, we can deform it to be . Clearly, from

here we can see that this is the tensor product of and composed

with the tensor product of and . This is how we define this func-

tion. This also demonstrates an important fact about these diagrams: isotopic

diagrams yield equal functions. [6]

We can create a injection between chord diagrams and Feynman Diagrams with

zero upper vertices and 2n lower vertices by choosing a non vertex point of the

circle containing the vertices, and the points on either side of this non vertex

point become the first and last of the 2n lower vertices of our diagram. We

create edges in the diagram such that two points are connected in the Feynman

diagram if and only if they are connected in the chord diagram. Because we

have no vertices on the top, we do not draw the top line for convenience sake.

Note that this is not well defined until we consider this in U(L), the universal

enveloping algebra. We work in L⊗n instead of U(L) because the relations we
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find in the tensor algebra hold in general, ie if we find a diagram relation, we

can use this relation for subdiagrams as well without disturbing the rest of the

diagram.

Example 9 Intuitively we can find a point that is not a vertex and “cut” the

diagram there, and “roll it flat.”

becomes when we choose the point at the top of the

circle.

Thus, we have a Feynman Diagram as a function from our field to the Lie

algebra. As noted in the definition of the functions above, we only need to

know what this does on the complex number, 1. We apply our function to 1 to

give us an element in L⊗n. This gives us an element of L⊗n associated with the

chord diagram. If we find sets of linearly dependent vectors, then these relations

between the vectors of L⊗n give us relations between the weight system on the

chords. These relations can be used to prove recursive formulas for the weight

system of a chord diagram giving us the universal Vassiliev invariant on the

space of chords, as done in [3] for sl2 and in [5] for gl(1|1). The universal Vas-

siliev invariant is a function from the space of chord diagrams to the particular

universal enveloping Lie algebra.

3 Results

Using the MAGMA Computer Algebra System, we defined the six elementary

diagrams in the general setting. Using those, we programmed several Lie al-

gebras which would specify the space the diagrams would act on. We then

programmed in corresponding Feynman diagrams built up from the elementary

diagrams for the chords. Using MAGMA, we first verified the relations in [3,

Theorem 6].

Theorem 2 For L of type A1, = 2 −2

As we see in [3], this is all that is needed to inductively prove the Vassiliev

invariant formula of [3, Theorem 1]. This is an example that our technique

works.

Next we showed linear independence of certain diagrams.

Proposition 1 Diagrams , , , , , and

are linearly independent in L⊗4 where L is the type C2 Lie algebra.
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Proposition 2 Diagrams , , , , , , ,

are linearly independent in L⊗5 in type C2.

If a particular set was not linearly dependent, we found (mainly by trial

and error) which diagrams were linearly dependent on others. Once we had a

set of maximal linearly independent vectors, we created a subspace (using the

subspace command in MAGMA) with this set of elements as a basis. Then we

found the coordinates of the linearly dependent vector with respect to this basis,

giving us relations between the chord diagrams.

Proposition 3 We have the following relations where L is the type C2 Lie

algebra:

In L, = 0.

In L⊗ L, =

In L⊗3, = 2 .

In L⊗4, = −

and = = − = −

4 Future Work

The relations we have do not seem sufficient to find a recursive formula for the

Vassiliev invariant for the Lie algebra of type C2. Future work includes finding

more relations of weight systems, particularly by inputting more Feynman dia-

grams into MAGMA to find more linear dependences among the diagrams. Once

we believe we have the sufficient relations, then we hope to find the recursive

formula for the Vassiliev invariant.
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