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Abstract

Currently, math graduate departments are ranked subjectively by de-
partment heads and directors of graduate studies, so we tried to rank math
departments objectively using the Google PageRank algorithm. This al-
gorithm ranks webpages based on the number and quality of the pages
that link to a particular webpage. We explored how the Google PageRank
algorithm can be applied to ranking math graduate departments by using
Ph.D. graduates as the linking structure. Specifically, we used two dis-
tinct data sets of Ph.D. graduates for this ranking; one data set contains
information on where Ph.D. graduates obtained positions immediately fol-
lowing graduation, and the second data set contains information on where
tenure and tenure-track professors at the Public Large Group universities
and the Private Large Group universities, as defined by the American
Mathematical Society, obtained their Ph.D. degrees. We computed differ-
ent rankings using the algorithm, but because of the differences between
webpages and math departments, we were not able to come up with a
ranking that adequately compared math programs of substantially differ-
ent sizes.

1 Background

The Google PageRank Algorithm is what sets Google’s ranking of webpages
apart from other search engines. This algorithm determines rankings by using
the hyperlink structure of the Internet. A page is given importance based on
the number and importance of pages that link to it. The rationale behind this
is that when a page links to another page, the first page is endorsing the page it
links to; however, a link from the Economist website should have more weight
than a link from a blog that has three followers, which is why it is necessary to
account for the importance of each linking page also. Furthermore, a page gives
an equal proportion of its importance to each page it links to.

Specifically, the importance of a page P; can be calculated using the following
formula [2]:
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PjeA;

where A; is the set of all pages that link to page F; and ¢; is the number of
outlinks on page P;

2 The Mathematics Behind the Algorithm

Instead of computing each page’s importance independently, we can use matri-
ces.

Define Hyperlink matrix

£

L if there is a link from P; to P;
Hij = .
0  otherwise

Define Importance vector I; = I(P;), the importance of page P;



Because we do not know the values of the importance ranking at the beginning,
we will start by making each entry in I equal to %7 where n is the total number
of pages; this gives each page equal importance at the beginning, as well as
ensuring that the importances sum to 1.

Now we can represent pages’ importances with I = HI, and we can compute
this with iterations I¥*1 = HI.

To accurately compute importance rankings, we must make a few adjust-
ments to ensure I is calculated correctly and will converge.

2.1 Adjustments

Some websites are dangling nodes, which means they do not have any outlinks.
As the iterations go on these websites will collect importance without giving any
away. We do not want this rank sink to occur, so we make our first adjustment
by acting as if a page with no outlinks actually links to every other page. From
a webpage perspective, this change can be justified because if a user browses a
page with no outlinks, then the next webpage they visit they select randomly.

Define This adjusted matrix will be called S where

1 otherwise

{H,»» if P; has at least one outlink
SZ‘]‘ =

To make sure the importance vector will converge, we need to make a few
adjustments to make the matrix S stochastic, irreducible, and aperiodic due to
Markov chain theory [6]. To accomplish this, we need to change our matrix in
the following way:

Define G =aS+ (1 — oz)%l7 where 1 is an nxn matrix where every entry is 1,
and 0 < a <1 [2].

A matrix is column stochastic if the elements in each column sum to one [4].
Note that by fixing the problem of dangling nodes, we have made S column
stochastic. %1 is also column stochastic, since each column sums to % xn=1.
Therefore, the combination of these two matrices creates a matrix G that is
column stochastic.

A square matrix is irreducible if its directed graph is strongly connected.
Because all entries of G are positive, this shows that every page is connected
to every other page, which proves G is strongly connected and thus irreducible
[2].

A matrix is aperiodic if it self-loops. Since the entries on the diagonals are
each greater than zero, this shows G self-loops, and is thus aperiodic [6].

With this change, the importance matrix is guaranteed to converge. In order
to justify this change, Brin and Page describe a situation where a user becomes
bored and decides to abandon the link structure of the web and go to a random
website [3]. Note that the closer « is to 1, the more weight is being placed on the
link structure of the web, and conversely, the closer « is to 0, the more weight is
being placed on randomness. Also, the smaller « is, the faster the importance
vector converges. In general, for ranking webpages, Brin and Page use a = .85
in order to balance the needs of converging quickly and giving more weight to
the link structure of the web [2].



3 Relation to Ranking Math Departments

Currently, math departments are ranked based on ratings assigned by math
department heads and directors of graduate studies; these people rate programs
based on how good they think each program is. However, we want to see if there
is a more objective way to rank math departments by looking at where Ph.D.
graduates obtained positions.

To apply this algorithm to ranking math departments, we will use Ph.D.
graduates as the links between math graduate departments. This means math
departments will gain importance based on where their graduates are hired
for postdoctoral work or professorships, which is similar to webpages gaining
importance based on which webpages have outlinks pointing to them.

Our previous adjustments to the PageRank Algorithm also make sense for
ranking math departments; if a math department hires no one, then we act
like they are voting evenly for everyone to take care of the problem of dangling
nodes. Furthermore, the randomness factor can still be added because people
decide to accept a position for various reasons, not necessarily solely on the
ranking of the university, so there is some randomness involved in the hiring of
math graduates.

4 Process of Ranking

Before we begin ranking, we need to make a few remarks. First, we are only
looking at Ph.D. granting math graduate departments in the United States, ex-
cluding applied mathematics programs. Secondly, we are ranking math depart-
ments based on how they link back into math departments, so we are excluding
graduates who go into industry. This means the ranking will show which math
departments give the best preparation for a position in academia, not necessarily
which math departments are the best overall.

We are looking at two distinct data sets for these rankings. We used php
and mysql to organize the data into a matrix representing the linking struc-
ture between the math departments for each data set. After this, we modified
Jeremy Kun’s open source Mathematica code and used it to run the PageRank
Algorithm on these matrices [5].

4.1 American Mathematical Society Data Set

The first data set was provided by the American Mathematical Society (AMS),
and it contains job placement directly following graduation, as it was reported
to the AMS. This data set contains 2419 data points from 185 universities from
years 2001 to 2011. In this data set, a link counts as obtaining any position,
whether a postdoctoral fellowship, lectureship, or professorship, at a math de-
partment in the original set.

Define AMS Linking Matrix L;; = {number of graduates school j hired that
graduated from school i

Our results from the first time we ran the PageRank Algorithm on the data
from the AMS are shown in Table 1.



Table 1: Initial Results for AMS Data with o = 0.9

Ranking Name of University
1 Washington State University
2 UC Berkeley
3 Missouri University of Science and Technology
4 MIT
5 University of Michigan, Ann Arbor
6 UCLA
7 Harvard University
8 University of Chicago
9 Princeton University
10 University of Texas, Austin
11 University of Maryland, College Park
12 Columbia University
13 Cornell University
14 University of Colorado, Boulder
15 New York University, Courant Institute
122 University of Oklahoma

Looking closely at this initial ranking, we realized Washington State Univer-
sity, the university that is ranked number one, only has six votes, four of which
are from itself. Therefore, using this ranking system, that university was able to
inflate its own ranking. Hopefully every university believes that their graduates
are well-prepared and would thus hire their own graduates, so we decided to
take out all self-votes from the matrix so that a university cannot affect its own
ranking in that way. Below are the new results for & = 0.90 and o = 0.85.

Table 2: AMS No-Self-Voting Results o = 0.9
Ranking Name of University
1 UC Berkeley
MIT
University of Michigan, Ann Arbor
University of Chicago
UCLA
Harvard University
Princeton University
Columbia University
University of Texas, Austin
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10 University of Illinois, Urbana-Champaign
11 Cornell University

12 University of Wisconsin, Madison

13 University of Maryland, College Park
14 Purdue University

15 New York University, Courant Institute
95 University of Oklahoma




Table 3: AMS No-Self-Voting Results a = 0.85

Ranking Name of University
1 UC Berkeley
2 MIT
3 University of Michigan, Ann Arbor
4 University of Chicago
5 UCLA
6 Harvard University
7 Princeton University
8 University of Texas, Austin
9 Columbia University
10 University of Illinois, Urbana-Champaign
11 University of Wisconsin, Madison
12 Cornell University
13 Purdue University
14 University of Maryland, College Park
15 New York University, Courant Institute
92 University of Oklahoma

Comparing Table 2 with Table 3, there are few differences in the ranking,
even though Table 2 uses o = 0.9 and Table 3 uses a = 0.85. In fact, none
of the top 15 universities moved more than one place in ranking. For the rest
of this paper we will use a = 0.9 because the ranking does not change much
from these two values of o and because @ = 0.9 places more weight on the link
structure between math departments than o = 0.85.

After looking at these new rankings, we noticed that many of the bigger
universities were ranked in the top 15. Looking closer, we discovered that all 13
universities with more than fifty graduates linking into the matrix were ranked
in the top 15 schools. This makes sense because schools are given a vote for each
graduate of theirs that is hired by another university in the matrix, the weight of
the vote depends on the importance of the hiring university, but more graduates
will still generally add up to gathering more importance overall. This is another
way in which this situation is different from webpages because a webpage has the
potential for any number of links pointing toward it, but universities graduate
different numbers of students depending on size and funding. Therefore, if we
left the ranking this way, there is no way to compare universities of different
sizes.

To account for this, we decided to try taking size completely out of the
equation, by allowing every university to receive exactly one vote, which was
weighted according to the different universities that hired these graduates. To
do this, we made L row stochastic; each row shows the votes for a particular
school, so we divided each row in the matrix by the number of graduates. The
results from running the PageRank algorithm are in Table 4.

However, now these results do not give universities any advantage for having
a bigger graduating class. Having a bigger graduating class can be a reflection
of a successful university that is attracting and retaining more students, so this
should not be completely disregarded. At this point, though, there is no way to
objectively find this balance. However, we could look solely at the Public Large



Table 4: AMS Weighted by Size av = 0.90

Ranking Name of University
1 University of Florida
2 Stony Brook University
3 Northwestern University
4 University of South Carolina
5 Texas A & M University
6 UC San Diego
7 UC Irvine
8 University of North Carolina, Chapel Hill
9 University of Nebraska, Lincoln
10 Arizona State University
11 University of Southern California
12 Purdue University
13 University of Iowa
14 Tulane University
15 Tufts University
71 University of Oklahoma
84 Harvard University
85 MIT

Group and the Private Large Group universities, since these universities are
more comparable in size. These are the 26 public university math departments
and 24 private university math departments which had the highest average
number of Ph.D.’s awarded between 2000 and 2010 [1]. The results from running
the PageRank algorithm on this data set containing 1250 data points are in
Table 5.

Table 5: AMS Public and Private Large Groups Results o = 0.9
Ranking Name of University
UC Berkeley
MIT
Harvard University
University of Michigan
UCLA
Princeton University
University of Chicago
University of Texas, Austin
Columbia University
New York University, Courant Institute
University of Maryland, College Park
Brown University
Cornell University
University of Wisconsin, Madison
University of Illinois, Urbana-Champaign
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4.2 Tenure-track Professor Data Set

I obtained the second data set by gathering data online in Fall 2012, and it
contains the alma mater of tenured and tenure-track faculty at the Public Large
Group and the Private Large Group universities. This data set contains 1398
data points from 50 universities, with professors earning their doctoral degrees
anytime between 1948 and 2011.

For the second data set, after taking out self-voting and only keeping the data
points which link back into the matrix, which are those tenure-track professors
who graduated from Public or Private Large Group universities, the ranking
results are shown in Table 6.

Table 6: Professor No-Self-Voting Results o = 0.90

Ranking Name of University
1 Princeton University
2 Harvard University
3 UC Berkeley
4 MIT
5 Stanford University
6 New York University
7 University of Chicago
8 UCLA
9 Columbia University
10 California Institute of Technology
11 Yale University
12 Brandeis University
13 University of Washington
14 Rutgers University, New Brunswick
15 Cornell University

For this data set, we are only looking at the Public Large Group and the
Private Large Group universities. Since these two groups are made of the largest
universities, size differences do not skew the data. However, this data set has
the unique characteristic that the tenure and tenure-track professors graduated
between 1948 and 2011; when a professor earned his or her degree should be
taken into account because professors who recently earned their degrees should
more accurately reflect the quality of current graduate programs than professors
who earned their degrees earlier. To account for this, we weighted the votes by
decade, as described in the chart below, and Table 7 shows the ranking after
this modification.

Years 2000 & later | 1990-1999 | 1980-1989 | 1970-1979 | 1969 & earlier

Weight of Vote 1 .8 .6 A4




Table 7: Professor Weighted by Decade Results oo = 0.90

Ranking Name of University
1 Princeton University
2 Harvard University
3 UC Berkeley
4 MIT
5 Stanford University
6 University of Chicago
7 Columbia University
8 California Institute of Technology
9 New York University
10 UCLA
11 Yale University
12 University of Washington
13 University of Pennsylvania
14 Rutgers University, New Brunswick
15 Cornell University

5 Interpretation of Results

Now we need to compare the differences between the weighted and no-self-voting
versions of each data set.

For the data about positions directly following graduation, the no-self-voting
results in Table 2 have only one university, Purdue University, in common with
the weighted-by-size results in Table 4. One possible supposition from these
results is that larger schools do not prepare their students as well as smaller
universities for jobs after graduation. The graduates from smaller universities
may connect to more highly ranked universities because students may receive
more personal attention at a smaller school and thus be better prepared for
academia afterward.

However, the data we are looking at only contains information for gradu-
ates from Ph.D. granting American universities who are employed at another
Ph.D. granting American university. This means that this data does not con-
tain employment information for all graduates; in fact, 10 out of the top 15
universities from the weighted-by-size results had fewer than 20 percent of their
graduates obtain positions at linking universities, while all of the top 15 univer-
sities from the no-self-voting results had at least 20 percent of their graduates
obtain positions at linking universities.

Therefore, it is possible that the graduates who linked back into the matrix
and affected the ranking were the top students for the top universities in the
weighted-by-size results, while the graduates who linked back into the matrix
and affected the ranking were more of an average graduate for the top univer-
sities in the no-self-voting results. In the weighted-by-size ranking when every
university only received one total vote rather than one vote per graduate, the
comparison may really be between the top students at one university and the
average graduate at another university. Therefore, this comparison may not be
an accurate reflection of the relative standing of universities either.

It seems that a more accurate ranking using the AMS data would take size



into consideration, but would not allow sheer size to overwhelm the ranking.
We could not think of an objective way to do this for all universities, but we did
look at the subset of the AMS data which only includes graduates from Public
and Private Large Group universities that link back into Public and Private
Large Group universities. The only universities that are different between the
no-self-voting top 15 ranking and the large-group-only top 15 ranking are Brown
University and Purdue University; the rest of the universities are in both top
15 rankings, though they may have moved up or down in ranking. Even though
Brown University did not appear in the top 15 ranking for the no-self-voting re-
sults, Brown University was ranked number 16 in those results, so going from 16
to 12 is not a huge change. However, Purdue University went from being number
14 in the no-self-voting ranking to number 23 in the large-group-only ranking.
Looking closer, out of the 58 Purdue graduates in the AMS data set, only 26
graduates linked to a Private or Public Large Group university. Therefore, this
drop in Purdue University’s ranking can be explained by the fact that over half
of their graduates in the AMS data set linked to universities that did not af-
fect the large-group-only ranking. This is a reminder that the large-group-only
ranking represents which universities in the Private Large Group and Public
Large Group best prepare their students for positions at other Private Large
Group and Public Large Group universities, not necessarily which universities
best prepare their students for academia in general.

However, we were unable to come up with a robust ranking for the complete
AMS data set because we were unable to adequately compare math departments
of substantially different sizes.

For the second data set, assigning values for different decades was subjective,
so it is important to note that the ranking weighted by decade is not completely
objective either. However, the top five universities for both rankings of the
second data set are the same, and the only universities that are different in
the top 15 are the University of Pennsylvania and Brandeis University. The
University of Pennsylvania went from being number 18 to number 13 in the
weighted ranking, and out of the 20 graduates from this university, 9 graduated
in the 2000s, so this is why the weighting increased the University of Pennsyl-
vania’s ranking. Also, Brandeis University went from being ranked 12 to being
ranked 19; the most recent graduate from Brandeis University included in the
rankings was from 1996, so this helps explain why this university decreased in
ranking after accounting for when people earned their doctoral degrees. Be-
cause the two major differences between the rankings logically make sense, the
weighted-by-decade ranking seems to be a good ranking of the universities.

Since we have compared the results within each data set, now it is time to
compare the results between the two data sets. The AMS large-group-only re-
sults and the tenure-track professor weighted-by-decade results are ranking the
same 50 universities and thus should be comparable. However, only nine of the
universities between the two top 15 lists are the same, and some of the ranking
differences are much different, such as Stanford University being ranked fifth in
the professor results and twenty-fifth in the AMS results. I believe a big factor
in the discrepancy between the two rankings is the nature of first placements
after graduation versus tenure-track positions. The AMS data on the Public
and Private Large Groups contains 1250 data points from a span of 11 years,
while the Tenure-track Professor data on these universities contains 1398 data
points from a span of 64 years. This shows that there is a limited number of



tenure-track positions available; not every graduate who attains a postdoctoral
fellowship, professorship, or lectureship right after graduation will end up be-
coming a tenured professor at a Public or Private Large Group university. It
is possible that the professor ranking more accurately represents the quality of
graduate programs because the limited number of tenure-track positions might
make quality outweigh quantity of graduates. For example, Stanford University
only had 21 graduates link into the large-group-only AMS data set, but they
had 69 tenure-track professors at linking universities in the professor data set;
although the number of graduates in the last decade is relatively small compared
to schools in the top 15 AMS results, the university has a remarkable number
of graduates in tenure-track positions which implies that a high percentage of
their graduates go on to attain tenure-track positions.

On the other hand, it can be argued the AMS large-group-only results may
more accurately portray the current quality of a graduate math department
since the data is from 2001 to 2011, while the data for the tenure-track profes-
sor results are from 1948 to 2011. This is especially true for math departments
that are drastically changing in quality. If a graduate math department starts
to drastically improve or worsen, then the AMS data would capture this change
much more quickly than the tenure-track professor data, since it takes time for
Ph.D. graduates to attain tenure-track positions, but graduates can immedi-
ately attain professorship, fellowships, and lectureships. This means another
explanation for the discrepancies between the two top 15 rankings is that the
universities in the AMS top 15 that are not in the tenure-track top 15 may be
up-and-coming universities, while universities that appear in the tenure-track
top 15 and not in the AMS top 15 may be declining in quality in recent years.

These two theories offer very different interpretations of the rankings from
the different data sets. However, the answer may not simply be just one or the
other, but may be a case-by-case look at the universities that appear highly in
only one of the rankings.

6 Conclusion

Both of these data sets differ in fundamental ways from webpages, which is why
the PageRank algorithm has not been able to give us a perfect ranking of the
math graduate departments. First of all, a webpage can have an outlink to a
second webpage without the second webpage doing anything, and because of this
a webpage can always vote for whichever webpages that it thinks are the best.
However, a math department can only hire, and thus vote, for a graduate who
first decides to apply for and accept a position. People decide to accept positions
for multiple reasons, such as geographical location and family, which do not
relate to the prestige of a university, so ranking is not as simple as with webpages.

Furthermore, a Ph.D. program is not the only thing that shapes a person;
undergraduate work and experience also affect employability, and there is not
a good way to account for these other factors in the ranking. While there are
also additional factors to consider in ranking webpages for search results, such
as the font size of the search words, these factors are incorporated by Google,
but not by the PageRank algorithm itself [3]. Also, font size is much more
easily measured objectively than each individual’s undergraduate experiences.

Also, as we have already mentioned, different universities have different sizes
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of programs and are thus limited in the number of students they can graduate
in a given year; this affects how many votes a university can receive. However,
there is not a limit on the number of webpages that can link to a specific
webpage, which is why this difference is also hard to account for when using
the PageRank Algorithm. Therefore, because of these complicated differences
between the linking structure between math departments and webpages, we
have not been able to give a robust ranking of math departments, especially
math departments of different sizes.
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