Review Problems for the Final

math 2423-001

1. Find the limit
a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$;
b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}}$;
c) $\lim _{x \rightarrow \pi} \frac{e^{\sin x}-1}{x-\pi}$;
d) $\lim _{x \rightarrow 0} \frac{x+\tan x}{x-\tan x}$;
e) $\lim _{x \rightarrow 0}(\sin x)^{\tan x}$.
2. Find the area of the region bounded by the curves
a) $y=\cos x, y=\sin 2 x, x=0, x=\pi / 2$;
b) $y^{2}=x, x-2 y=3$;
c) $y=5 \ln x, y=x \ln x$.
3. Find the number b such that the line $y=b$ divides the region bounded by the curves $y=x^{2}$ and $y=4$ into two regions with equal area.
4. Find the volume of a solid obtained by rotating the region bounded by the given curves about the specified axis.
a) $x=y-y^{2}, x=0$ about y-axis;
b) $y=x, y=\sqrt{x}$ about $x=2$;
c) $y=\tan ^{2} x, y=0, x=0, x=\pi / 4$ about x-axis;
d) $y=e^{x}, y=e^{-x}, x=1$ about y-axis.
5. Find the volume of the solid S, whose base is a circular disc with radius r and cross-sections perpendicular to the base are squares.
6. A uniform cable hanging over the edge of a tall building is 40 ft long and weights 60 lbs . How much work is required to pull 10 ft of the cable to the top?
7. Find the absolute minimum value of $g(x)=\frac{e^{x}}{x}$.
8. What is the area of the largest rectangle in the first quadrant with two sides on the axes and one vertex on the curve $y=e^{-x}$?
9. Use the properties of integrals to prove
a) $\int_{0}^{1} \sqrt{1+e^{2 x}} d x \geq e-1$;
b) $\int_{0}^{1} e^{x} \cos x d x \leq e-1$.
10. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.
a) $\int_{-\infty}^{\infty} x^{2} e^{-x^{3}} d x$;
b) $\int_{0}^{\infty} \frac{1}{(x+2)(x+3)} d x$;
c) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$;
d) $\int_{0}^{\pi / 4} \frac{\cos x}{\sqrt{\sin x}} d x$.
11. Find the length of the curve
a) $y=\ln (\sin x), \pi / 6 \leq x \leq \pi / 3$;
b) $y^{2}=4 x, 0 \leq y \leq 2$.
12. a) Find the Midpoint and Trapezoid approximations M_{4}, T_{4} for $\int_{0}^{1} e^{x^{2}} d x$.
b) How large should n be to guarantee that the Midpoint approximation M_{n} is accurate within 0.001 .
