
MATH 4073 Homework 2 Due Mon, 09/12/16

Problem 1. Find the limits and the convergence rates as n→∞ of the following sequences (recall
Definition 1.18 and Example 2 on pages 37 and 38 of Sec. 1.3):

(a) lim
n→∞

(
1

n3
− sin

1

n3

)
;

(b) lim
n→∞

n3

n3 + 7
;

(c) lim
n→∞

[
(n+ 5)1/3 − n1/3

]
;

(d) lim
n→∞

[
ln
(
n3 + 5

)
− ln

(
n3
)]

.

Hints: (a) Use the Taylor expansion sinx = x− x3

3! + x5

5! −
x7

7! + · · · .
(b) You can rewrite the expression as n3

n3+7
= 1

1+ 7
n3

= 1

1−
(
− 7

n3

) , and use the formula for the sum of

a geometric series, 1
1−x = 1 + x+ x2 + x3 + · · · , valid for |x| < 1.

(c) Write (n+ 5)1/3 − n1/3 = n1/3
[(

1 + 5
n

)1/3 − 1
]
, and use that the Taylor expansion of (1 + x)α

around x = 0 when α is not equal to a positive integer is given by

(1 + x)α =
∞∑
k=0

(α
k

)
xk = 1 +

α

1!
x+

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · ,

where
(α
k

)
:=

α(α− 1) · · · (α− k + 1)

k!
.

(d) Use the basic property of logarithms to merge the two logarithms into one, and then use the

Taylor expansion ln(1 + x) = x− x2

2 + x3

3 −
x4

4 + x5

5 − · · · , for |x| < 1.

Problem 2. In the limit h→ 0, find the real numbers P , Q, and R, and the integers p, q, and r
in the following relations (recall Definition 1.19 and Example 3 on page 38 of Sec. 1.3):

(a)
eh − cosh

h
= P +O(hp) ;

(b) cos(sinh) = Q+O (hq) ;

(c) ln
√

3 + h = R+O(hr) .

Hint: See the Hints on rate of convergence of functions at the end of this homework.

Problem 3. Consider the equation

f(x) = x− cosx = 0 . (1)
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(a) Prove that the equation (1) has a solution in the interval [0, π2 ]. Please specify which theorem
you used to come to this conclusion.

(b) Prove that the solution of (1) in the interval [0, π2 ] is unique.

(c) Use the MATLAB code bisection.m (from the class web-site) and look at the instructions
how to run it, to find the root of (1) in [0, π2 ]. Use tolerance 10−12 and run the code verbosely,
so that you can see the results at each step. Please attach your printout! (To save your
MATLAB session, use the command diary as it is used in the example MATLAB session.)

(d) If En is the error in the nth step of the bisection method, then one can write En = O(βn)
for some (simple) sequence {βn}. What is βn for the bisection method? Explain briefly why
your answer is obvious.

Problem 4. In this problem we will find the value of the number

√
2

√
2
√
2

√
2

√
2
···

,

and will study how a certain sequence converges to it. Note that ab
c

means a(b
c), not (ab)c (the

latter is simply abc)!

(a) Consider the function g(x) :=
√

2
x
, defined for all x ∈ R; a part of the graph of g is plotted

below, together with the diagonal {y = x}. Use derivatives to show that g is an increasing

and concave up. (To differentiate g, note that
√

2
x

= e
ln 2
2
x.)
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Figure 1: Plots of the diagonal and the graph of g(x) =
√

2
x
.

(b) One can easily check that 2 and 4 are solutions of the equation
√

2
x

= x (you do not need to
do this). Use what you found in (a) to convince me that this equation has no other solutions
except 2 and 4.
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(c) One can define a sequence recursively, starting from some value p0 and then iterating according
to the rule pn = g(pn−1) =

√
2
pn−1

, n ≥ 1. Clearly, the numbers 2 and 4 are fixed points
of this iteration. Draw (big and clear) cobweb diagrams to illustrate graphically that one of
these two fixed points is attracting, while the other is repelling.

(d) Let p0 := 1, pn :=
√

2
pn−1

for n ≥ 1. Download the MATLAB code fixedpoint.m from
the class web-site and compute the iterates pn starting from p0 = 3, and iterating until the
difference |pn − pn−1| becomes smaller than 10−13. To do that, open MATLAB, type

format long

and press return (only to make MATLAB display more digits of the numbers), then type

fixedpoint( inline(’2^(x/2)’), 3.0, 1e-13, 1000, 1)

and press return again. Does the sequence {pn}∞n=0 seem to converge? To what value? Just
tell me what you observe, there is no need to attach a printout for this problem.

(e) Let p∗ be the limit of the sequence {pn}∞n=0 computed in part (d). The general theory predicts
that, if the sequence {pn}∞n=0 converges and |g′(p∗)| < 1, then the sequence {pn − p∗}∞n=0

satisfies

lim
n→∞

pn+1 − p∗
pn − p∗

= g′(p∗) .

From your numerical results in part (c), take the values p16 and p15 and compute the ratio
p16 − p∗
p15 − p∗

(I want to see the specific values of p16 and p15). Compare it with the exact value

of g′(p∗). Discuss briefly what you observe. (Of course, if you take larger values of n in the

calculation of
pn+1 − p∗
pn − p∗

, your result will be closer to g′(p∗).)

Hints on rate of convergence of functions. In Problem 3 of this homework you are supposed
to find several limits of functions and the rates of convergence. The whole point of finding the
order of convergence of a function to its limit is to get a rough idea how the function approaches
its limiting value as the argument of the function approaches zero. Here are some examples that
will hopefully make things clearer. The main tool in this kind of problems is the Taylor expansion.

Example 1. We know that the Taylor expansion of the function cosx around 0 is

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · · .

Clearly, when x→ 0, all terms except the first tend to zero, so that

lim
x→0

cosx = lim
x→0

(
1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

)
= 1

As x becomes very close to zero, the term x4

4! is much smaller than x2

2! – indeed,

x4/4!

x2/2!
= const · x2 , so that lim

x→0

x4/4!

x2/2!
= lim

x→0

(
const · x2

)
= 0 .
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This means that, as x → 0, the term x4

4! becomes negligible in comparison with x2

2! . Note that I
did not even compute the constant (just wrote “const”), because the only thing that is important
for me here are the powers of x. Similarly, the terms proportional to x6, x8, etc., are negligible in
comparison with x2

2! . Therefore we obtain

cosx = 1− x
2

2!
+
x4

4!
− x

6

6!
+
x8

8!
− · · · = 1− x

2

2!
+ (terms that go to 0 faster than the term with x2) ,

which allows us to write
cosx = 1 +O(x2) .

Note that we do not care about the constant that multiplies x2 (which in this particular case is
equal to − 1

2! but, again, that is not important).

Example 2. To find the limit and the rate of convergence of ex+cosx−2−x
x3

as x → 0, we use the
Taylor expansion of cosx around 0 (see above) and the Taylor expansion of ex around 0:

ex = 1 + x1

1! + x2

2! + x3

3! + x4

4! + x5

5! + · · · ,

so that

ex + cosx− 2− x
x3

= 1
x3

(
1 + x1

1! + x2

2! + x3

3! + x4

4! + x5

5! + · · ·+ 1− x2

2! + x4

4! −
x6

6! + · · · − 2− x
)

= 1
x3

(
x3

3! + x4

4! + x5

5! + · · ·+ x4

4! −
x6

6! + · · ·
)

= 1
3! + 2 x4! + x2

5! + (terms with even higher powers of x)

= 1
6 +O(x) .

Using the above calculations, we see right away that ex + cosx− 2− x = O(x3) (why?).

Example 3. Using the Taylor expansion

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · ,

we obtain

ln(1 + x3) = x3 − x6

2
+
x9

3
− x12

4
+ · · · ,

and, therefore,
ln(1 + x3)

x3
= 1− x3

2
+
x6

3
− x9

4
+ · · · = 1 +O(x3) .
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