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ON SIEGEL MODULAR FORMS OF GENUS TWO (II).1 

By JUN-ICHI IGUSA. 

Introduction. The main subject we shall discuss in this second paper 
is the Siegel modular forms of genus two with levels. The method we used 
in the first paper [5] did not give sufficient information even for level two. 
Therefore the problem (raised by Grothendieck) whether modular varieties 
become non-singular or not for higher levels was beyond our reach. With 
some other applications in mind, we therefore investigated "theta-constants" 
as modular forms and proved, among others, a fundamental lemma in our 
recent paper [6]. Using the results in that paper, we shall show that modular- 
varieties of high levels do not have non-singular coverings even locally around 
their singular points. Also we shall determine how r2(1)/1'2(2) = Sp(2, Z/2Z) 
acts on the ring of modular forms A (r2 (2)) and obtain the characters of its 
action on the homogeneous parts A (r2 (2) ) k for k = 0, 1, 2, . In this way, 
we shall determine A (IF2 (1)) reproducing our earlier structure theorem on 
A (r2 (1 )) (2). Furthermore, the polynomial expressions of the four basic 
Eisenstein series of level one by theta-constants and a known identity of this 
kind (between a certain Eisenstein series of level two and the eighth power 
of Riemann's theta-constant [1]) will be obtained. We note that this identity 
was previously obtained using the Siegel main theorem on quadratic forms. 

1. Normality of C[Om %]. We shall use the same notation as in TC 
except that we have g =2 in this paper (and may omit g = 2 for the sake of 
simplicity). Also we shall sometimes treat characteristics as line vectors 
instead of column vectors (as in the case g = 1). We recall that theta- 
constants Am (T) are defined bv putting z = 0 in 

Om(r,Z)= z e t(p + m/2)T(p + m'/2) 
p E Z2 

+t(p +m'/2)(z+m"/2)]. 

Also we shall denote the function --> 0. (T) defined in the Siegel upper-half 
plane e by Wm. There are ten even characteristics mod 2 and they are (0000), 
(0001), (0010), (0011), (0100), (0110), (1000), (1001), (1100), (1111). 

Received October 11, 1963. 
1 This work was partially supported by the National Science Foundation. 
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The purpose of this section is to prove the normality of the graded ring C [Orn] 

generated over C by the ten "theta-constants." 

LEMMA 1. Let K be a field (of characteristic zero) and let K[X, T] 
be a r ing of polynomials in ten letters X*j for 1 < i, j ? 3 and T with coeffi- 
cients in K. Then the following twenty-one quadratic polynomials 

2 -l j 8*1*2T2, 2 XX 12 - 8j1j2T2 
1_jC3 _ _- 

(Xij1Xi*2-2 li2j2Xit2) - Xj8j.T, 

in which the permutation (il'i2i3) > (1112j3) is even, generate a prime ideal in 
K[X, T]. .Mkoreover, if (x, t) is a generic zero over- K, the integral domain 
K[x, t] is normal. 

Proof. We observe that we have an identity of the form 

det (Xtj) - T3 X,11 ( (X22X33 - X23X32) - XliT) 

+ X21 ( (X32X13 -X33X12) -X21T) 
+ X31 ( (Xl12X2)3 -X13X292) -X31T) 

+ ((X1ll)2+ (X01)2+ (X31)2-T2)T 

Hence the first part becomes a special case of a known theorem and a proof 
can be found in Weyl [11, pp. 144-7]. We shall prove the second part. The 
main point is that every element of K[x, t] can be written uniquely as a linear 
combination of monomials 

xejl Zipjte il < <inj -**>j 

with coefficients in K in which xi, and x3j appear at most once. In order to 
make the argument clear, we consider the set of pairs of non-negative integers 
and introduce a lexicographic order in it. This set is well ordered. Then 
to each monomial Xiljl *X ..ipTe of K [X, T], we associate the following 
elemiient (p, i, + (3 -ja-)) of the well-ordered set as its "weight." Now 
we introduLce three operations in K [X, T]. The first operation is 

-Y'iliLXi2-2 
X 

Xij2Xi2j1 + Xjs.jT 

whenever both i1 <i2 and jl <j2. The second and the third operations are 

Xi11lXi,21 SiiJ2 
_ E X,JjXi2ji2 

j>1 

X3jlWe3j2 t ajlj2T2 _e mijlXij2 
i<3 

We observe that, by the first operation each monomial is replaced by a sum 
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of two mnonomials one of the same weight and another of a smaller weight. 
On the other hand, by the two other operations each monomial is replaced 
by a sum of two or three monomials of smaller weights. If a polynomial in 
Xij, T is given, we apply the first operation repeatedly (as long as it can be 
applied) and we get a new polynomial which is a linear combination of 
monomials Xijl,* X X5jjTe in which i1 ? ? -i,, j, ? > jp,. The new 
polynomial may be called "properly ordered." We then apply two other 
operations and order properly the new polynomial so obtained. Because 
weights decrease by the second and the third operations, the process necessarily 
stops after a finite number of times. In this way, we get a properly ordered 
polynomial each monomial of which contains Xi1 and X31 at most once. If 
we replace Xij by xij and T by t, the three operations reduce to modifying 
expressions of the element of K [x, t]. Thus every element of K [x, t] can be 
written in the way stated before. We shall prove its uniqueness. Suppose 
that we have a relation of the form 

Po (xij) + PP1 (xi) t + * * + Pit (xij) t" 0 

in which P, (xij) to is a linear combination of the said monomials for 0 ? e it . 
Also the relation is homogeneous in xij and t. We can assume that Po(xij) is 
different from zero. Let (x1, x2, x3) and (y', y2, y,) be two independent generic 
points over K of a quadratic cone defined by X2+ X22 + X32 0. Then 
(xej, t) -* (xiyj, 0) is a specialization over K, hence Po (xiyj) = 0. We shall 
show that this implies Po (xi) = 0. We know that Po (Xij) is a linear com- 
bination of Xjj .- Xinj with coefficients cij say. If we introduce three more 
letters Yi, YO, Y3, the condition Po (xiyj) = 0 means that 

I C2,,7ff * * Xi.Yi, Yj.l 

is contained in the ideal of K[X1, X.,, X3,PY1, Y2, Y3] generated by 

X12 + XY22 + X32 and Y12 + Y22 + y32 

On the other hand, neither X3 nor Y1 appears twice in the products 
X XiYjl .*.. Yjn Since such monomials are linearly independent over 
K modulo the ideal in question, we get cij =0 and Po (xij) = 0. But this is a 
contradiction. This completes the proof of the key point. 

Now, for the proof of the normality of K [x, t], we can assume that K 
is algebraically closed or at least contains the primitive fourth root of unity i. 
Then there exists an automorphism of K[x, t] over K permuting any xi; with 
t (multiplied by a fourth root of unity). In fact, since the permutation of 
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any two lines or coluimns of the 3 X 3 matrix (xij) followed by the change 
of signs of any line or column gives rise to an automorphism of K[x, t] 
over K. we have only to show that x1r3, for instance, and - t are interchange- 
able. This we see by verifying that t X13 and 

xii X12 x13\ /ixii iX12 t 

X21 X22 X23 X32 X31 iX23 

\X31 X32 X33/ \X22 X21 iX33 / 

give rise to an automorphism of K [x, t] over K. (The meaning of this 
automorphism will become clear in the next section.) This being remarked, 
we consider (x, t) as a homogeneous generic point over K of a variety embedded 
in a projective space. Then its affine open set t e 0 is the variety of the 
special orthogonal group, and it is non-singular. Therefore, by the above 
remark, the projective variety is non-singular. The rest of the proof is 
similar to our proof of the artihmetic normality of the Grassmann variety [4]. 
We observe that the conductor of K [x, t] is irrelevant in the sense it contains 
a power of the maximal ideal of K [x, t] generated by xij and t. Consequently, 
the graded ring K [x, t] and its normalization coincide except for homogeneous 
parts of lower degrees. Suppose that they coincide at degree n but not at 
degree n - 1. Let 4 be an element of degree n - 1 in the normalization which 
is not contained in K [x, t]. Then t4 is in K [x, t] ,n hence we have 

tt =-- PO (x+;) + Pl (Xij) t + * + Pn (xij) t"7 

in which Pe (xij) te is a linear combination of the previously explained mono- 
mials (of degree n) for 0 e ? n. Since 4 is not contained in K[x. t], 
we have PO (xij) #e 0. Apply the specialization (xij, t) -> (xiyj, 0) over K as 

before. Then, since 4 is integral over K [x, t], we have t4 -> 0, hence Po (xiyj) 
0 alnd Po (xij) = 0. But this is a contradiction. q. e. d. 

LEMMA 2. Let R be a (noetherian) normal domain in wh1ich 2 is a unit 
and let a,,a.,. , a, be non-units of R such that Rai + Raj has rank two for 
i 7A j. Suppose furtther that the quotient ring R/Rai htas no ntilpotent elementt. 
Let bi. be a square r oot of ai for i = r, 2, - , n. Then R [b,, b, . b,1] is 
a normial domain. 

Proof. Put R, =- R [bl]. If we can show that R, and a,, , a, satisfy 
similar conditions as R and a1, a, . , a.,a we can apply an induction on n. 
Let K be the field of fractions of R. Then K(b,) is clearly a quadratic 
extension of K and Pi, is the normalization of R in K(b,). Moreover 2 is a 
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uilit and a, , , an are noni-units of R1 The " going-downi " theorem of 
Cohen-Seidenberg [cf. 8, pp. 31-32] asserts that R,ai + R,aj has rank 
two for i 7 j. We shall show that R,IR,at has no nilpotent elemenit for 

i , n. Otherwise there exists an element c of R1 which itself is not 
but its square is contained in RIa.2 say. WVrite c in the form p + qb1 with p, q 
in R. Then we have C2 =( p2 + q2aJ) + 2pqb, = (p' + q'b1)a, with some p', 
q' in R. This implies p2 + q2a, = p'(a, 2pq = q'a2, hence p2 + q2a, and 2pq 
are in Ra.. Since Ra2 is an intersection of prime ideals not coiitaiiiilog a, 
this implies that p and q are in Ra2, hence c is in R,a2. But this is a contra- 
diction. The lemma is thus proved. 

LEMMA 3. Let K, xij, t be as in Lemma 1 and let (xij)L, t0 be square 
roots of xjj, t for 1- ?i, j ? 3. Then K[x', t'] is a normal domain. 

Proof. We shall show that the ten principal ideals K[x,t]xij, K[x,t]t 
are prime and distinct. First of all, a part of the proof of Lemma 1 shows 
that K[x, t] t is the kernel of the homomorphism of K [x, t] associated with 
the specialization (xij, t) -- (xiyj, 0) over K. Therefore K [x, t] t is a prime 
ideal. Since we know that any xij is interchangeable with t (multiplied by a 
fourth root of unity), we see that K[x, t]xij is a prime ideal also. Since 
under the specialization (xij, t) -> (xiyj, 0) over K, no Xij is specialized to zero, 
the prime ideal K [x, t] t is different from any other prime ideal K [x, t] xj. 
Therefore, no two of the ten prime ideals are same. The rest follows from 
Lemma 2 by taking K[x, t] as R and the ten elements xij, t as a1, a., , an. 

Now the preparation is made to prove the following theorem: 

THEOREM 1. The graded rintgs C[(Om)2], C[Om] a,7d C[,OmSO] are all 
normal, hence A (F (4, 8)) = C[0.O]. 

Proof. If we use Riemann's theta-formula, which we explained in T(C, 
Section 4, we can verify that 

t -(00110)2 

(X11 XI2 X13\ ( 01001) 2 
- (01000)2 (00100)- 

X21 X22 X23 ) i(00001)2 (O0000 )2 i(0110)2 

X31 X32 X33/ (00010)2 i (00011)2 (01111 )2 

define a zero of the ideal introduced in Lemma 1. Since the field C(0) has 
dimension four over C, we actually have a generic zero over C and the notation 
is justified. Therefore C [ (Om) 2] = C [x, t] is normal by Lemma 1. Hence 
C [Om] = C [xl, tO] is normal by Lemma 3. Since we have C [0O 1m(2) 
therefore C[O,m,O] is also normal. Then, TC, Theorem 5 implies that C [O.mO] 
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coinicides with the ring of modular forms A (r (4, 8)) belonging to the con- 

gruence group r (4, 8). This completes the proof. 

2. Going-down process. Since we know the ring A (F(4, 8)), by taking 
invariant s-ubrings successively, we can determine A(F(4)), A(F(2,4)), 
A (r (2)) and finally A (r (1)). This procedure is explained in TC, Section 
6. The ring A (r (4)) is generated over C by the ten (Om) 2, fifteen products 

Omlm2 0m30m4 of distinct Omn's satisfying 

, rnOg,' , ma,t" O mod 2, 
1?0?4 1?Ca?4 

fifteen "complementary" products 0m10m2 Om3Om, Om5fm6 and by 

0 H Om 
m even, mod 2 

The ring A(r(2,4)) is generated over C by (OmOln)2 and 0, i.e. A(r(2,4)) 
C [x, t] (2) [0]. In particular, the modular variety proj. A (r (2, 4) ) is non- 

singular. The ring A (r(2)) is generated over C by the ten (Om)4, the fifteen pro- 
ducts (O0mIM2 0m30nt4 ) 2, the fifteen complemlentary products (Om1Om2 0rn30m1 OM5,OM)2 

and by 0. If we cross out from these products (except 0) those which are not 

of the form xj1l.- xipjpto where i1 < ?ip, j, ? ? jp and in which 

xii and x3j appear at most once, we get t2, (x12)2, (xl3)2, (x22)2, (x23)2, x13x22x31t 

and 0. Since we have 

2X13X22X31t (t2 (X12)2 (x13)2 (Xos)2 (X )2)t2 

+ (X12X23) 2_ (X13X22) 
2 

actually the element x13x22x31t is redundant. Thus A (r (2) ) is generated over 

C by 0 and by 

Yo t2 t, Y (X13), Y2= (X22)2 

Y3 (X12 ) 2 t2 Y4 = (X23 ) 2t2. 

Furthermore these elements are related as follows 

(YOY + YOY2 + YlY2 -Y3Y4) 2-4yoy1Y2 (YO + yl + Y2 + Y3 + Y4) 0 

02 _ 4* (yoy1 + YOY2 + YlY2 Y3Y4) 

* (2Y0Y1Y2 + Y0Y1Y3 + Yoy1Y4 + YOy2Y3 + yoy2Y4 

+ 2YOY3Y4 + YIY2Y3 + Y1Y2Y4 + 2Y1Y3Y4 + 2y2Y3y4 

+ Y3 2Y4 + Y3Y4 ) 

In particular the modular variety proj.A(r(2)) is a quartic hypersurface 
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(defined by the above equation) in the four dimensional projective space.2 
The going-down process from A(r(2)) to A(r(1)) is more involved. We 
have to know how r(1)/rp(2) acts on A (P(2)) and, in particular, how the 
characters of its action on the homogeneous parts A(]P(2))k decompose into 
simple characters for k- = 0, 1, 2, * . . 

We first observe that r (1)/P (2) = Sp (2, Z/2Z) is isomorphic to the 
symmetric group qr6 of permutations on six letters. The isomorphism can be 
given as follows. Suppose that il is an element of r (1) composed of a, b, c, 
d and m an arbitrary characteristic. Then M um was defined as 

-mnt (Jb a) m+ (tb ) 

If we consider characteristies mod 2, the group r (1) /r (2) operates on the 
set of odd (as well as even) characteristics. There are six odd characteristics 
mod2 and they are (0101), (0111), (1010), (1011), (1101), (1110). Since 
the only element of Sp (2, Z/2Z) keeping these characteristics fixed mod 2 is 
the identity, we have a monomorphism of Sp (2, Z/2Z) to 1. Since the orders 
of the two groups are same, we have an isomorphism. 

This being remarked, we shall determine the character of the represeni- 
tation of Sp (2, Z/2Z) on A (r (2) ) 7c. We observe that we have 

dimc A (r (2) ) k (k/2 +4) (k/2 

1/12 (k3l+37c2+14k1+12) 

for D= O, 2, 4, . . and 

dimcA (r(2) )7 = dimcA (r(2) )k-5 

for k= 1, 3, 5, -. In particular the dimensions are 1, 0, 5, 0, 15, 1,* 
for k= 0, 1, 2, 3, 4, 5, . We shall determine how Sp (2, Z/2Z) operates 
on A (r(2) )2. This can be done using TC, Theorem 6. We do it as follows. 
We call the six odd characteristics mod 2 simply 1, 2, , 6. We know in 
general that the symmetric group 7i-g on g letters is generated by (12) and 
(12 g). The element Mi of r(1) which gives rise to (12) satisfies 

/1 O 1 O\ 

M (? 
1 0 0 

?nod 2. 

0 0 1/ 

2 If S is a graded integral domain (of finite type over C), we lhave proj. S =proj. '(d) 

for every positive integer d. We are using this fact for d = 2 in the above two cases. 
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Also the element M of r(1) which gives rise to (123456) satisfies 

0 1 0 1\ 

M 1 0 1 0 ) mod 2. 10 1 1 
I 1 0 1 

We shall denote the elements of r (1) standing on the right sides by M12 and 
M,..., respectively. We have seen in TC, Section 2 that the transformation 
law of theta-functions implies 

Om -. (M T ) =x(M) e(Om (M) ) det (cr + d) 0m (T) 

for all MI in r(1) in which 

Om (M) = - * (tm,'tbdm' + tm"tacm"- 2tm'tb cm" 
-2t (atb) o (dm,'- cm")). 

We can determine (11112) and x (M...6) as in TC, Section 3. In particular 
we have 

2(M12 1, x(M1 )2 -e() 

Now, in order to obtain a concrete matricial representation of Sp(2,Z/2Z) 
acting on the five dimensional complex vector space A(r(2)) 2, we arrange 
yo, yli, . .y4 in a column vector tj Applying the formula we just copied 
from TC, we then get 

M'-1 tp(M)t 
with 

/ O 1 0 0 0 1 O O 1 0 
1 0 0 0 0 O O 1 1 0 

P (M12) = 11 1) P (Ml 6)(0 0 10 
1 0 0- 01 1 

3 

\ 1 O O -0 \O O O 1 0/ 

We also have 

M12-1. * = - Ml ... 6-1 * 0 ==-0. 

We shall combine these results with the known theory of representations of 
symmetric groups [3, 11]. 

We know in general that conjugacy classes, of 7rg correspond to partitions 
of g. In fact every element of 7r, has a cycle expression and it determines a 
partition of g. Two elements of 7r9 are conjugate if and only if they correspond 
to the same partition of g. On the other hand, simple characters of r, 
also correspond to partitions of g. In fact eaclh partition of g determines a 
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primitive idempotent of the group ring of 7rg over Q and it gives a simple 
character of 7rg and conversely. Now the number 6 has the following eleven 
partitions 

6 5+1 =4+2 4+1+1 3+3 =3+2+1 

3+1+1+1 2+2+2 2+2+1+1 

2+1+1+1+1=1+1+1+1+1+1. 

We arrange eleven conjugacy classes and simple characters of 7r6 in this order 
(one from top to bottom another from left to right) and write them as 
follows: 

1 -1 0 1 0 0 -1 0 0 1 -1 120 
1 0 -1 0 0 1 0 0 -1 0 1 144 
1 -1 1 0 -1 0 0 -1 1 -1 1 90 
1 1 -1 0 -1 0 0 1 1 -1 -1 90 
1 -1 0 1 2 -2 1 2 0 -1 1 40 
1 0 0 -1 1 0 1 -1 0 0 -1 120 
1 2 0 1 -1 -2 1 -1 0 2 1 40 
1 -1 3 -2 -3 0 2 3 -3 1 -1 15 
1 1 1 -2 1 0 -2 1 1 1 1 45 
1 3 3 2 1 0 -2 -1 -3 -3 -1 15 
1 5 9 10 5 16 10 5 9 5 1 1. 

The last column which is separated from the main part indicates the numbers 
of elements in the conjugacy classes. 

The table shows that the representation p is irreducible and its character 
is the character X222 corresponding to the partition 6 = 2 + 2 + 2. Using 
the representation p, we operate Sp (2, Z/2Z) on the graded ring C [Y] of 
polynomials in five letters Yo, Yl, * , Y4 each of degree two with coefficients 
in C. If we denote by *k the character of the representation on C[Y]k, for 
every Il in Sp(2,Zl2Z), we have the following identity 

2! *2k (MI)tk= 1/det(15 p (M) t) 
OSk< co 

of formal power-series in t. We then observe that A (r(2) ) (2) is the quotient 
ring of C[Y] by a principal ideal generated by 

(YoY1 + YOY2 + Y1Y2-Y3Y4)2-4YoY1y2(Yo-+Y1+ * +y4)- 

This polynomial (in fact both 

Y0y [ + Y0Y2 + Y1Y2 Y3Y4 and Y0Y,Y2(Yo + Yi[ + *+ Y) 
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are iinvariant by the operations of Sp (2, Z/2Z). Therefore, if Xk is the 
character of the action of Sp(2,Z/2Z) on A(r(2))k, we have 

E 2tk == (I1-t4) E Itk. 
O_k<oo _X2k co 

Moreover, if kc is odd, we have A(rJ(2))7==A(F (2)) k5-% and the element 0 
has the property MU 0 = E(M)0, in which E(M) = - 1 according as M corres- 
ponds to even or odd permutation of 7r6. We note that c is the simple character 
corresponding to the partition 6 = 1 + 1 + 1 + 1 + 1 + 1. In this way, we 

get the following definitive result: 

THEOREM 2. The characters Xk of the representations of Sp (2, Z/2Z) 
on A(r(2))k are given by 

tkX =')t= (1 + E (MI)t5)( )/e(sp )t) 
O_k< oo 

A complete table of det(15-p(M)t) can be obtained very easily and 
it is as follows: 

(1 _ t)2(1 + t) (1 + t + t2) (123456) 
1 t5 (12345) 

(1 _ ) (1 + t) 2(l + t2) (1234) (56) 
(1-t)2(1 + t) (1 + t2) (1234) 
(1-t)3(1 + t + t2) (123) (456) 
(1 + t) (1-t + t2) (1 + t + t2) (123) (45) 
(1-t)(1+ t +t2)2 (123) 
(1-t)4(1 + t) (12) (34) (56) 
(1 -_t)3(1 + t)2 (12)(34) 
(- _ t)2(+)3 (12) 
(1-t)5 (1). 

The symbols standing on the right are representatives of conjugacy classes 
and the ordering is the same as before. We note that this table can be 
obtained knowing only that we have trace(p) = X222 and knowing the values 
of X222. 

3. Going-down process (continued). We recall that, if G is an arbi- 
trary finite group and X a character of G, the multiplicity mx of a simple 
character X in X cain be determined as 

Mnx - 1/ord(G) X (s)X(s-1)- 
sEG 
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Also, if G is a symmetric group, we have X(s-1) = X(s) for every s. Using 
the results in the previous section, therefore, we can decompose the character 
Xk into simple characters. In particular dimc A (r (1)) k can be calculated as 
the multiplicity of the principal character in Xk and we get 

2;! dimcA (r(i) )k tk 
O:~k<oo 

-(I+t35)/( I_tl) (I_t6) (I_t1?) (I t12) 

I + t4 + t6 + t8 + 2tVO + 3t12 + . . . 

The calculation (which we are not writing down here) shows also that, if we 
denote by r(1), the subgroup of r (i) of index two defined by E(ii)-1, 
we get 

E dimc A (r '(1)e) k tk 
O_k< oo 

-=(I +t30)/ (I tl) (I t5) (I t6) (I t12. 

At any rate, since we know 

E dimc A (I, (1I) ) k tk = /I 
_ t4) (I _-t6) 

O?k<oo 

1+ ;4 +t6 +t8l+tl?+ 2tl2+ ... 

the ring A (7 (1) ) is generated over C by two modular forms of weights four, 
six and three cusp forms of weights ten, twelve, thirty-five and all are unique 
up to constant factors. We also remarked previously [5, Appendix] that the 
definition and elementary properties of Eisenstein series plus this information 
imply that, if we denote by fk the Eisenstein series of weights 7c for k =4, 
6, , the modular forms of weights four, six are constant multiples of q4, 
6 and the cusp forms of weights ten and twelve are constant miultiples of 

14f6-/1o and 3272(f4)3+2 53(f6)2 -691f12. We shall construct these 
modular forms explicitly using theta-constants. 

We shall denote (0m)4 corresponding to ten even characteristics mod92 in 
the order of Section 1 by (1), (2), , (10). Then a general observation 
in TC, Appen-dix showTs that 

y (j) 
2 E e e(i, j) (i) (j) 

1?1--O i<j 

is an element of A(17(1))4 which is mapped to 1 by the square of the Siegel 
operator. Hence this is V4* In order to obtain the element of degree six, 
we apply a similar method, i.e. the symmetrization of products of theta- 
constants. We observe that the symnmetrization of (1) 3 and (1)2 ( 2) are both 
zero. Therefore we shall consider the symrmetrization of (1) (2) (3). We 
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observe that r (1) does not operate transitively on the set of all triples of 
even characteristics (mod2). In fact 

e(i,j,lk) = e(i,j)e(j,k)e(eik,) 

is invariant under the operations of I' (1), and it is 1 for (1, 2, 3) and is - 1 
for (1, 2, 5). They are known as " syzygous " and " azygous " triples. At any 
rate, we can verify that I(1)e, hence a fortiori I' (1), operates transitively on 
the sets of syzygous and azygous triples of even characteristics. We there- 
fore apply symmetrizations with respect to r (1)e to ((1) (2) (3) )rn and to 
((1)(2)(5)) , in general, and put 

(syzy)nZ = 4 - E (+ (i) (i) (I))"' 
syzygous 

(azy)=j Y (+ (i) (j) (k)) 
azygous 

for m = , 2, 3, . The summation in (syzy)1, for instance, is extended 
over sixty syzygous triples of which thirty have plus-sign and the remaining 
thirty have minus-sign. The summation in (azy)1 is similar. We observe that 
(syzy)m for every m and (azy),, for even m are elements of A (r' (1) ) ,m while 
(azy)m for odd m belongs to A(F (1)e)gm and not to A(I7(1)) unless it is zero. 
Furthermore the square of the Siegel operator maps (syzy)m to 1, hence 
(syzy)1 is just a different expression for +,. As for the cusp form of weight 
ten, we have one such form, i.e. 02. Moreover the Fourier expansion of 0 
itself starts as follows 

0 (w1 2) -27'i e(W12 ) e(W 12 ) (TE) + 

There is no ready-miade cusp formll of weight twelve. We therefore symmetrize 
(1) 6 and try to determine a linear combination of the symmetrized element 
and (v4) ', (6) 2 to get a cusp form. In the calculation, it is understood that 
we use the expressions of +4, 't6 by theta-constants. This simple consideration 
works and we get a cusp form together with the following Fourier expansion 

(32 (i) 6 _2211(+4 )3 +23 (t6)2)(8 

= 215341le (wv1) e,(W2) +. 

Finally we shall obtain the cusp form of weight thirty-five. The formula for 
dimcA(Jk(1)e shows that it is a product of 0 and an element of A(F (1)e),o 
not in A (F (1)). We just have one such element, i.e. (azy)5 provided it is 
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differernt from zero. We can verify easily that (azy)m are different from zero 
except for m = 1, 3. Furthermore (azy)5 has the following Fourier expansion 

(azy)(t ) =-22953e (3w1/2) e (3w2/2) (e (w)-e (W2)) + 

We shall summarize our results in the following way: 

THEOREM 3. The grcaded rinig A (17(1)) is generated by f4, V' and three 
cusp forms Xio, X12, X35 Of weights ten, tvelve, thirty-five with Fourier expan- 

sions of the fo rm 

W,O e w (Wl)e (IV,) (7r',) 2 + 

x12(E W2) 

X12 (i e W (Wl)e (IV,) +- 

X35 ( W) =e(2wl) e (2W2) (e (w1) -e (W2))E) +* 

They are all expressed by theta-conistants. .1ioreover the ideal of cusp formits 
is generated in A (r(1)) by X10, X12, X35* 

Only the last statement needs a proof and it is as follows. Let J be the 
ideal of A (r(1)) generated by Xio, X12, X356 Silnce a cusp form of odd weight 
is in A (r(1) )X35, it is in J. Therefore we have only to show that cusp 
forms of even weights can be written in the form klO - t'X12 with f, q" in 
A (r (1) ) (2). Since A (r (1) ) (2) is just a ring of polynomials in the four 
independent variables V4, t6, xio, Xl2 over C, we have bX10o - A'X12 = 0 if and 

only if t = "X12, ltAXio with i"' in A(1(1)) (2)* Therefore, for everv 

even positive integer 7k, the dimension of (A(r(1))IJ)kc is given by 

coeff tk ( (I _ tl? t12 + t22 ) / (I _ t4 ) (I _ t6 ) (I _ t1? ) J _ t12 )) 

coeff tk (1/ (1- t4) (1- t6) ), 

and this is the dimension of (A (rP (1) ) k IHence Jk is precisely the kernel of 

the Siegel operator A (Pr (1) ) k- A (r1 (1) ) k, and the theorem is proved. 
We note that (X35)2 is in A(P(1))(2), hence it is a polynomial in f4, t6, X1o, 

X12 with coefficients in C. This modular form is connected with the "skew- 
ilivariant" of binary sextics [cf. 5]. Also we make the following statement: 

COROLLARY. The graded ring A (r(1)e) is generated by 4f, IP6 and the 
three cusp forms 0, X12, (azy) of weights five, twelve, thirty. 

Finally, we shall consider the ring of modular forms A (r (1, 2)). Since 
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r1(1, 2) is the stabilizer of (1) = (9O,)4, it is a subgroup of rI(1) of index 
ten. Moreover the image of r (1,2) in 7rT can be determined. It is the sub- 
group of 7r, generated by permutations of 1, 4, 6 (among themselves ), permu- 
tations of 2, 3, 5 and by (12) (34) (56). In particular, the numbers of 
elements in the image corresponding to various partitions of 6 in the previous 
section are in that order 12, 0, 18, 0, 4, 12, 4, 6, 9, 6, 1. Using this fact and 
the results of the previous section, we get 

dimc A (r (1, 2) )k1, tk 
0O?k< oo 

P (t /1 _t 2 (1 _t4 (1t6) (1-_t 12 

1+2t4 +2t6 +4t8 + tl + 9t12. . 

in which P(t) = (1 t2 + t4+ t8) + tl9(? + t4_t6+ t8). In particular 
the dlimension of A(r(1,2))4 is two. We know two linearly independent 
elemelnts of A (r (1, 2) )4 already, and they are (1)2= (Ooooo)8 and i4. On 
the other hand, if we denote the Eisenstein series of weight four belonging to 
r (1, 2) simply by fr', this is also an element of A (r1(1, 2) )4. Hence we get a 
relation of the form 

4 / p (Ooooo ) 8 + qi4 

with somiie p. q in C. If we svmmetrize this relation with respect to r(1), 
we get 4p + lOq = 4. On the other hanid, if we applv the square of the Siegel 
operator to the above relation, we get p + q =1. The two equations have a 
unique solution (p, q) = (1, 0). Going back to the definitions of 0,' and 

wooon we therefore get the Braun identity 

> det(cT + d)4 ( e(l tpTp))8 
ctdeven p E Z2 

We can give a more systematic treatment using Fourier expansions of Eisen- 
stein series and also we can discuss relations of Eisenstein series of higher 
weights. 

4. Singularities of modular varieties. We recall that, if r is a sub- 
group of Sp (2, R) containing r (2, 4) as a subgroup of finite index, the 
corresponding modular variety proj. A (r) has proj. A (r (2, 4) ) as a (global) 
non-sinigular covering. Therefore, the singularities of proj. A (r), in par- 
ticular those of proj. A (r(1) ) and of proj. A (r(2) ), are not too bad. We 
shall show, however, that the singularities of proj. A (r(it)) are quite bad for 
t ? 3. Let oo be the 0-dimiiensional bouindary comiiponent of ? defined by 

so-lim iyl 2- 
77--* o 
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The values of am at oo, which are the images of OAn by the square of the Siegel 
operator, are simply 1 for n'== (00) and zero otherwise. At any rate, the 
point oo has a unique image point in every modular variety. 

THEOREM 4. There is no regular local ring which is integral over1 the 
analytic local ring of the modular variety proj. A (r (4)) at the image point 
of oo. 

Before we start proving this theorem, we recall the footnote 2 saying in 
particular that, in the consideration of modular varieties we can restrict 
modular forms to those of even weights. Therefore we shall talk about rings 
of modular forms without adding the superscript (2). We need some lenimiiias. 

LEMMA 4. If we put 

1,== ('00100/00000 ) 2p tt 1000/60000 )2 

t3 ) (01100/00000)2 

these three functions for,m a set of local parameters of proj. A (r (2, 4)) at the 
image point of oo. 

Proof. We shall use the well-known Jacobian criterion. If we put 
Yoo =t/x22 and yij -= XijX22 for (ij) different from (12), (13), (22), (23), 
the nine functionIs u,, u,, U3, ytj satisfy the following six identities 

(Y21) 2 + 1 _ (U3) 2_ (yoo) 2 0 

Y11Y21- iu2 + iu1u3 = 0 

(yll)) 
2 (y21)22 + (y31)2 (yoo)2 0 

-(U,)2?+ 1 + (y2)2 (yOO)2 0 

-iu1u2 + iU3 + y32y33 0 

iU_y33 -UlY32 + y00Y21 0. 

If we evaluate the Jacobian of this system with respect to the six yij at the 
image point of oc, we get 

? 23 (y21 ) 3y31(y32 )2() - 23i, 

and this is different from zero. Therefore u1, u2, U3 form a set of local 
parameters of proj. A (r (2, 4)) at the image point of cc. 

Actually the same proof shows that the three functions in the lemmia 
form a set of local co-ordinates of proj. A (1r(2, 4)) at the image poinit of 

wim (w 0) 
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for every w in the upper-half plane. In fact, the Jacobian in question will 
just becomre + 2 3i ( O,, (w) /600 (w) ) 6. 

LEMMA 5. Let R be a (noetheriani) normal domnain and a1,a,y ,a. 

be elements of R such that Rai+ Raj has rank two for i =?j. Let b be a 
square root of the product ala2, . 

.an and let S be a unique factorization 
domain which is integral over B[b] and in which every unit has a square 
root. Then S contains the square roots of al, a,, , * an. 

Proof. Suppose that a square root bi of a,, say, is not contained in S. 
Then in the decomposition of a1 into irreducible elements in S, at least one 
of them, say P, appears odd times. Since the product a1a, * an is a square 
in S, another element, say a2, also contains P odd times. Now the intersection 
p of PS with R is a prime ideal of R, and it contains both a, and a,. There- 
fore p contains a minimal prime ideal q of a1, and q is strictly smaller than 
p by assumption. Hence the going-down theorem of Cohen-Seidenberg asserts 
that PS contains a prime ideal having q as its intersection with R. But PS 
has rank one, and this is a contradiction. 

Now, we shall start proving the theorem. We note that proj. A (r (4)) 
is an abelian covering of proj. A (r (2, 4)) with the Galois group isomorphic 
to r (2, 4)/r (4) (+ 14). Since this is a vector space over Z/2Z of dimension 
five, we need five independent radicals, and the following elements of A (r (4)) 

00000000010001000011n 000000OO100010000110 

00000000010100001001n 00000000110110001111 

00000001000100001100 

divided by (000 )4 are such radicals (as we see by TC, Theorem 3). We 
call them in this order x,, X . , x,. Then, up to units in the local ring 
of proj.A(r(2,4)) at the image poilnt of co, we have 

(1)2 
_ 

( Xj) I tl ( U2Uf3-U 

(X3) u2 (u,3u1- u), (X4) - u, (Ulu2 - U3) 

( -)-2 U1U2U3. 

Suppose therefore that a regular local ring S is integral over the analytic 
local ring of proj.A(r(4)) at the image point of oo. Then S is isomorphic 
to a ring of convergent power-series in three variables over C. In particular, 
it is a unique factorization domain in which every unit has a square root. 
MIoreover Lemma 4 shows that the analytic local ring of proj. A (r (2, 4)) 
at the image point of so is the ring of conv-ergent power-series in ul, u2, U3 

11 
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with coefficients in C. Therefore we can apply Lemma 5 taking this regular 
local ring as R. We see, in this way, that S contains the square roots of u1, 
U2, U3, U 2u3 -Ul, U3u1 u2, U1lu - U3. Namely, if we denote the square 
roots of U1l U2, U3 by v1, V2, V3, the ring S contains not only v1, v.2, V3 but also 
the square roots of (v1)2 (v9v3)2, (V9)2- (V3V1 (V3)2 (v1v2)2. We 
apply Lemma 5 again to the same S and to the ring of convergent power-series 
in V1, V2, V3 with coefficients in C, and we see that 

(v1 + V2v3) 7 (V2 + V3V1 ) V ( -3 ? VIV)) 

are all contained in S. We shall show that, if we put 

u1' (vj + V9V3)/ (+ Ul + U2 + U3) 

U 2 (V2 + V3V1)/( + U1 + U2 + U3) 

U3 2 (V3 + V1v2)/( + U + U9 + U3) 

and define v1', V2', V3', U1l/" U2",7 U3", Vl", V2"t, V3," * similarly, these two 
sequences are both contained in S. 

We recall that, in TC, Section 4, we proved the following identity 

Om (T/2)2 = (-1) t1n,"n,0(fl +n') (_r)0(tO) (-r). 
n'mod 2 

In fact this was obtained by putting z = 0 in the "second principal trans- 
formation " of degree two. At any rate, written explicitly, we have the 
following ten identities: 

Ooooo (T/2 ) 
2 

oooo ( T 4) + 00100 (T) 24+ 01000 (T)2 + 01100 (rT 
2 

00001 (T /2) 2 0 () T 2- 00100 (T) 2 + 01000 (T 2) 01100 (T ) 2 

00010 (T/ )2 O (r) 2+ 00 (T)2 01000 (T) 2 '01100 (T) 
2 

6oli ( T/2) 
2 

oooo (T 2 - 00100 (T) 2 
01000 (T 2 + 01100 (T ) 2 

00100 (T/2) 2 2 (0000000100 + 0100001100) (T) 

0010 ( T/2)2 2 ( aooooaolO 0100001100) (T) 

01ooo ( T/2 ) 
2 2 ( 0000()01000 +0010001100 ) (T ) 

0100 ( T/2)2 2 ( -j---01U( 0010001100) (T) 

01,oo (T/2) 2 2 (0000001100 + 0010001000) (T) 

01111 (T/2 ) 2 (2 0000001100 _(0010001000 ) (T) 

Therefore, if we recall that we have 

V= 00100/00000 v2 01000/00000, V3 =01100/00000 
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the ten functions T -- Oa m(T/2)/00o00(r) are all contained in S. Since 
r - 00000 (r/2)/0oooo (r) is one of the four units amaionig them, the modified 
functions r -T (0Om/0oooo) (T/2) are also contained in S. We now observe that 
our u1I,u2/, 113" and u1, u2, U3 are related simply as 

u'(Qr) = =ut (r/2) 

for i =l, 2, 3. It is thus clear that the enitire argument can be repeated 
starting from I't,, uj, U3' instead of ul, u2, Ut3. In fact, we have only to replace 
Tr by T/2. Therefore, by an induction on n we see that the two sequences ut(n), 
vi(") defined in an obvious way for n = 1, 2, are contained in S. However, 
since we have the following relation 

-i (u.(n)) 2n/2(2n-1) + 

for n = 1, 2, * we see that u1, u2, u3 are contained in the initersection of 
powers of the ideal of non-units of S. Hence we get ul' u2 = i3 = 0, but 
this is a contradiction. Theorem 4 is thus proved. 

It is not without some interest to see how the iteration process looks like 
in the elliptic case. Clearly we have to take u (0,o/0oo) 2, v = O/dOo. As 
for u' defined by u'(w) = it (w/2), the formula we copied from TC tells 
that we have 

u'-2v/(1 + u). 

This is the quotient of the geometric mean of 1, u by their arithmetic mean. 
In other words, the process is the one which is familiar in the Gauss theory 
of " arithmetic-geometric means." 

Also it is of some interest to extract a puLrely algebraic statemenit from 
the above proof: 

COROLLARY I. Let K be an algebraically closed field of characteristic 
different frnom 2 and let R be a local ring which is integral over the ring of 
formal power-series in three vairiables u1, u9, u3 over K and which contains a 
square root of the product UlU2U,3 (Ul -Uu23) (U_ - U3u1) (U3 -u1uju). Th en 
there is no regular local ring S wihich. is integral over R. 

In fact S is isomorphic to a ring of formal power-series in three variables 
over K and, by Lemma 5, it will contain the square roots v1, v2, V3 of u1, u2, U3 

and (v1 ?V2V3)1, (V2 ? V3V1)-, (v3 ?4- vl.,)'-. WVe define u1', u2', U3' as before. 
If we can show that S contains the square root of the product 
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the same induction as before can be applied. Clearly S contains the square 
rGots of U1', U2', U3'. By the obvious symmetry, we have only to show that S 
contains the square roots of u1' u2'u3'. This is a consequence of the 
following relation 

U1' U2 U3 2(Vl -V2V3) (1 + U1-2 -U3) 

* 
(1?u1+U + U2 + U3)-2, 

which can be verified easily. Incidentally, in the complex case (hence in 
general by the universality) this reflects the following relation of theta- 
constants 

(0010000110) (T/2) = 2 (0001000110) (T). 

We note also that, in case K has a valuatioll like C, we can talk about rings 
of convergent power-series instead of the rings of formal power-series, and 
get a similar result. This result can be used as a lemma (rather than a 
corollary) to prove Theorem 4 and, in this way, we can simplify the previous 
proof. 

We shall now derive a more general statemenit from Theorem 4. The 
group P is assumed, as always, to be commensurable with r(1): 

COROLLARY 2. If F has no element of finite order- (other than ? the 
identity), there is no regular local ring which is integral over the analytic 
local ring of proj.A( r) at the image point of oo. 

We know that the intersection F' of F and r (4) has finite iiidices ill r 
and Fr(4). Therefore proj. A (F') is a (finite) covering of both proj. A (r) 
and proj. A (r (4)). Suppose that there exists a regular local ring S which 
is integral over the analytic local ring R of proj. A (r) at the image point 
of oo. Let R' be the analytic local ring of proj. A (r') at the image oint 
of 0o. -We shall denote by U, V, V' the (irreducible) local analytic varieties 
associated with S, R, R'. Then U and V, V' can be considered as "sheets" 
of C3 at the origin and of proj.A(F), proj.A(v') at the image points of 00. 

Also we have covering niorphisms f: U -> V and f': V' V. We shall show 
that there exists a covering morphism h: U --> V' satisfying f = f'h. Let 
Y, Y' be the complements in V, V' of the quotient varieties Fg, i7'\2, and 
let X be the inverse image in U. Then X, Y, Y' are analytic subsets of 
U, V, V' of co-dimension two and f' is "unramified" over V- Y. We take 
a point p of U not in X and pick a point q' of V' lying over f(p). Then q' 
is not in Y' and since U - X is simply connected, if we make an analytic 
continuation throughout U - X, the correspondence p -- q' defines a unique 
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(analytic) morphism of U - X to V'- Y'. This morphism can be com- 
pleted to a morphism h of U to V'. Clearly h satisfies f f'h and it is a 
covering morphism. On the other hand, since proj. A (') is a covering of 
proj. A (I5'(4)), we see that S is integral over the an-alytic local ring of 
proj. A (1 (4)) at the image point of oo. This contradicts Theorem 4. 

We note that the above proof can be made more formal using the " purity 
of branch loci" due to Zariski and Nagata [cf. 8, pp. 158-68]. At any rate, 
since we know in general that ug (n) has no element of finite order for n > 3, 
Corollary 2 can be appliecl to the analytic local rings of proj. A (1(n) ) at the 
image points of oo for n ? 3. In this way, Theorem 4 becomes a special 
case of the more general Corollary 2. 

5. Concluding remark. As before, let F be commensurable with I7(1). 
We shall denote by v (r) the volume of the quotient variety P\2 with respect 
to the invariant measure of the homogeneous space ( - Sp(2,R)/U(2). 

We knowv that v (F) is finite [10]. -Moreover, if F contains another r' as a 
subgroup of finite index, the quotient v (F') v (F) is equal to the index of 
17'(+ 14) in F(+ 14) and also to the degree of the covering proj.A(r') 

proj. A (F). We normalize the constant factor in v (F) so that we get 

v (r (F1) ) = 1/26325. 

Actually, this " intrinsic volume " can be defined in general and in the elliptic 
case we have v (r (F1) ) = 1/223. 

THEOREMI 5. According as r may or does not contain elemients of finite 
orders, we have 

dimc A(U) k= -v(r) - (k - ) (7c-2) (-1- - +) +0(k2), 0(k). 

In the second case, it may be necessary that k tends to infinity as mnultiples 
of a certain integer. 

We shall not give a proof of this theorem but leave it as an exercise to 
the reader. The proof we have in mind depends on Leray's spectral sequence, 
coherency of direct images of coherent sheaves and on the comparison of 
characteristic functions of coherent sheaves on a normal projective variety 
which coincide on some Zariski open set and finally on the following formula: 

S 2113-113 _2103k2 +4- 283-1671 c-92731 
dimc A (F(4, 8) )k l , 55, 695, 3969 

in which the first line is used for kc ? 4 and the second line is used for 
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k = 0, 1, 2, 3. This result itself can be derived easily from Theorem 1 using 
some part of the proof of Lemma 1. 

TIIE JOHNS HOPKINS UNIVERSITY. 
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