The dimension of the spaces of cusp forms on Siegel
' upper half plane of degree two (I)

By Ki-ichiro HASHIMOTO

Introduction

0-1. Let H,={ZeM,(C); Z='Z, Im Z>0} be the Siegel upper half plane
of degree n, and let I" be a lattice of Sp(n, R), the group of analytic auto-
morphisms of H,. Namely [ is a discrete subgroup of Sp(n, R) such that the
quotient I'\H, has a finite volume. Let, for each positive integer £, S,(I") be
the C-space consisting of the holomorphic functions on H, satisfying the follow-
ing conditions :

(i) fGKZ>)=det(CZ+D)*f(Z) for all r=(
(i) (det Im Z)**| £(Z)| is bounded on H,.

It is known that S,(I") is of finite dimension. Our chief interest in this paper
lies on the computation of the dimension of this space by using Selberg’s trace
formula, in the case of n=2.

. In the case n=1, it is a classical result that the dimension is' expressed in
terms of the signature of I': namely for k=2,
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where (ny, -, ns; 1) is the signature of I, i.e., the quotient I'\H, has ¢ cusps

and s inequivalent elliptic fixed points z; (1=7<s) whose stabilizer in I" mod +1
has order n;. Such expression is known also in the case of Hilbert modular
cusp forms ([26], see also [11]). So we may ask

Problem 1. Can the dimension of Si(I") be expressed in terms of “signature”
also for n=27?

There is another problem concerning the calculation of the dimension, which
seems interesting in view of the indication of A. Selberg [24], that certain inte-
grals which arise in the dimension formula are evaluated by special values of
some Dirichlet series. Let, for instance, I=Sp(n, Z). Then by Siegel [32], the
volume of the fundamental domain is expressed by the special values of Riemann



404 Ki-ichiro HasHiMoTO

zetafunction :
n (D2
0.2) vol(So(n, Z\H)=2 ] —“fﬁ
iz
Also, the contributions from the unipotent elements are expressed by T. Shintani
[30] by the special values of certain zetafunctions associated with the prehomo-

geneous vector space of quadratic forms. So we may ask

Problem 2. What kind of zetafunctions will appear in our calculation of the
dimension? Or, more generally, what kind of “arithmetic quantities” will appear
in it ?

In fact we shall see that all terms in our dimension formula are connected with
some special values of certain zetafunctions.

0-2. Let us recall the known results on our Problem 1 for n=2 at this time.
In [6], [18], U. Christian and Y. Morita calculated the dimension for I'=1" (N),
the principal congruence subgroup of Sp(2, Z) of level N=3. In that case I is
torsion free and the conjugacy classes of I” that make nonzero contributions to
the dimension formula are only unipotent ones. “Following Morita, J. Sakamoto
tried to compute the elliptic contributions and succeeded partly ([221). Also, T.
Arakawa [1] computed the dimension in the case where I'=I'(N) is the con-
gruence subgroup related to the binary hermitian forms over indefinite division
quaternion algebras over the rational number field. There remains to compute
explicitly the contributions of some kinds of elliptic conjugacy classes and those
mixed kinds of classes whose semisimple factors are elliptic.

In this paper we shall calculate the contributions of these remaining classes
and thus obtain a general formula for the dimension of S(I") (§ 5, Theorem 5-1),
which we think gives an answer to Problem 1 above. As an application we shall
derive from it the explicit formulae for I'=Sp(2, Z), and Iy(p). The latter is a
new result and it has some importance in view of its connection with the theory
of theta series. Similar formula for other arithmetic subgroups I" will be treated
in another paper [9].

Here we must note that there are two other methods to calculate the dimen-
sion of Sy(I"). Firstly J. Igusa [15] determined the structure of the graded ring
of automorphic forms for Sp(2, Z) by using his theory of moduli space of curves
of genus two, and derived the following formula:

1428 _ 1
A=t (1—=HQA—t)(1—1%)  (1—tH(1—1%) "
Secondly, T. Yamazaki [36] obtained the same result for I (N), by using the

formula of Riemann-Roch-Hirzebruch. Also R. Tsushima [34] has obtained
recently the above formula by this method. Thus we have now three different

0.3) gdim S«(Sp@, Z)tt=
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proofs of (0.3).

0-3. Although our problems 1, 2 have their own significance, our primary
motivation to them is as follows: Let Go=Sp(2, Q) and G§ a Q-form of USp(2),

-the compact real form of Sp(2, C). In [16], Y. Ihara studied the Dirichlet series

attached to automorphic forms on G, the adelized group of Gj. There he raised
several interesting problems and among others, he gave a conjectural question
that there should be a relation between automorphic forms on G4 and G%. This
is considered as a genus two version of the well known results of M. Eichler
{61, H. Shimizu [28]. Recently T. Ibukiyama has given in [13] an exact formu-
lation of this conjecture with a number of examples. Our intention has been to
prove this conjecture by comparing the traces of Hecke operators on both spaces.

A general arithmetic formula for traces of Hecke operators on the space of
forms on G/ has been given in [8], and the explicit formula for the dimension
of this space in [10]. Thus the present paper may be regarded as a second
step toward the above conjecture.

0-4. Now let us explain briefly an outline of this paper. The starting point
of our calculation is the Selberg-Godement’s dimension formula: for 225,

o k)
0.4) dim S D) =570 SMZ T H@Z,
where a(k)=2"%z"%2k—2)2k—3)2k—4), Z(I')=": center of I,
H/(Z)=(det Im Z) kdet(#)“ *det(CZ+D)*,

for 7’:(? g)el'} and dZ=(detY)*dXdY (Z=X+:iY) is a Sp(2, R)-invariant

measure of Hj.

Roughly speaking, there are two main difficulties in our calculation of (0.4);
one is the problem of analysis concerning the evaluation of the integrals appearing
in it, and the other is the problem of arithmetic nature coming from the compli-
cated structure of I". If the quotient I \f, is compact, then we can interchange
the integral and the infinite sum so that (0.4) is easily reformulated as

a(k) ) . .
B2 o VolCT s NG s Ga)- 1),

(0.5) dim S ()=

10)={ H(Z)dZ,

CiGp\Hg

where C(r; I'), C(y ; Gzr) denote the centralizor of y in I', in Gr=Sp(2, R) respec-
tively, and the sum is extended over the complete set of conjugacy classes {7},
of I. Inthis case, the integral I(y) has been evaluated by Langlands [17], in a
more general context. If, on the other hand, the quotient is not compact, (0.5)
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breaks in two points; firstly, Cr; I') is not necessarily a lattice in C{r; Gg) and
it may happen that vol(C(y ; I''\C(r ; Gg))=oo. Secondly, the sum of the integrals
does not necessarily converge. In order to repair these points, we introduce the

closed connected subgroup Coy; Ggz) of C(r; Ggr) which is characterized by the
following properties :

(i) Cor; Gg) has no compact semi-direct factor,
(i) Gr; IN=Cyr; G is a lattice of Colr; Gr),
(i) [CG; I): Colr; MI<co. . -

We then define an equivalence relation in_ I', by saying that two elements 71 T2
of I belong to the same family if Co(ry; Ga)=Cilry; Gg) and they have the same
semi-simple factor. As for the termwise integrability, we can justify it by multi-

plying certain dumping factors to the integrands. After these remarks, (0.5) is
modified in the following form:

0.6) dim S,(7)= #“Z((’jl) Z vol(Culr s PAGHT; G
. ICHD)
X lim 66[7231#»1; [C@;D): C5; 17
1,05 s):jm; s 2@ dumping factor in s)dZ,

where the first sum is extended over a complete set of Iconjugacy classes of
the families [77],, and the second ‘sum is extended over the set of non-conjugate
elements in each family rdr.

There are some advantages in this reformulation. First of all the two diffi-
culties mensioned above are separated completely; I does not appear in the last
integrals so that we can evaluate them after normalizing the elements § of [Ar
simultaneously by Gg-conjugation. Secondly, it can be shown (Theorem 1-7) that
there are only a finite number of conjugacy classes of families of nonhyperbolic
types so that the first sum is actually a finite sum. The third point is closely
connected with Problem 2. Namely it gives an answer to the following question :
Wwe must combine certain kinds of infinite number of conjugacy classes in I in
order to make the contribution a rational number, ‘or at any rate, to give it a
reasonable or computable expression, which is always the case for non-elliptic

classes. We shall observe, after the computation of the integrals I,(8; s), that
the sum

14(0; 8)
0.7 JEU;IW/F [C6;T): Co6; I

can always be expressed by using some kinds of zetafunctions. Also for elliptic
classes, the sum
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vol(Coy ; TNCol7 5 Gr))
dir [CG; D): Colr ;]
where {y}r=[7Jr runs over the Iiconjugacy classes contained in a GQ-conJuggcy
class, can be given a more simplified expression (a kind of MaB formula), which
is again expressed by some special values of zetafunctions. ' .

In §1 we shall discuss some preliminary results on the conjugacy classes in
Gr=5p(2, R), in Gg or a Q-form of Sp2, R), and in I". The abc‘)v? reformula-
tion (0.6) will be discussed in §2, by quoting some results of Chr1st1.an [41, [?],
and Morita [18]. In §3, §4, and §5, the computations of I,(y; s) will be carrle.d
out case by case. At the end of §5, we shall resume these results and. state it
as a general formula for dim S,(I"), which is the main theorem of this paper
(Theorem 5-1). In §6, we quote from Miinchhausen [19], [20], Sakamoto [22]
some results on conjugacy classes of Sp(2, Z), and applying therr.l to ‘ouf formula,
we shall obtain an explicit formula for dim S:(Sp(2, Z2)), from which it is easy to
derive Igusa’s formula (0.3). Finally in §7, we shall obtain in the s.ame way as
in §6, an explicit formula for dim S,(I4(p)), where p is any odd prime. ' .

Finally, it is a great pleasure for the author to express here heartily his
gratitude to Professor Y. Thara, who suggested the author the problem by (;raw-
ing attention to the theory of automorphic forms for groups.of type Sp(2), to
Professor H. Shimizu, who gave the author many valuable advices, to Professor
Y. Morita, who showed deep interests in this problem and gave the autho.r con-
tinuous encouragement during the preparation of this paper. The author is also
grateful to Professor T. Ibukiyama, who helped him with many valuable com-
ments and discussions. The author also thanks very much to the referee, ?;vho
checked so carefully the original manuscript and corrected the errors contained
in it.

0.8)

Notations

We denote by Z, Q, R, and C, the ring of rational integers, the fields of
rational, real, and complex numbers, respectively. For a ring B, Mn.(B), GL.(B),
SL,(B) denote the full matrix ring of degree n, the group of' invertible elements
of M.(B), the group of matrices with determinant one, respectively. Also, SM.(B)
denotes the module of all symmetric matrices in M,(B). We write 7 the complex

number +/—1, and Z the complex conjugate of z&C. The element of 5.0(2), the
cos § sin &') It

—sin & cos &

H is a subgroup of a group G, we denote by + the equivalence relation defined
by H-conjugation, and by {g}» the equivalence class represented by geG. If G
is an algebraic group defined over Q, we denote by Gz, Gq, Gr t@e group of
Z-valued, Q-valued, and R-valued points of G respectively. We write also G,

special orthogonal group of degree two, is denoted as k(ﬁ)z(
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G4 the p-adic completion, the adelization of G, respectively. For a subgroup C

of GL,(R), we put C={x1}.-c/ {=1}. Some more standard notations will be
used frequently.

§1. Preliminaries

1-1. Classification of conjugacy classes in Sp(2, R)
Let Gr=Sp(2, R) be the real symplectic group of degree two, i.e.,
_ . 0 1y, /0 1,
Ge={g=CLim; o 5 1) e=(_1, o
The group Gy operates on H,, the Siegel upper half plane of degree two,

H={ZeSMC); Im Z>0}, ‘
by Z—7<Z>=(AZ+B)\CZ+D) r=(§ g)eGR. This action of Gg is transi-
tive and the stabilizor X of the point 71, which is equal to SOM)NGg=

A B . . . ;
{(_ B A); A—}-zBeU(Z)}, s a maximal compact subgroup of Gz. In his paper

[18], Morita classified the conjugacy classes-that have nonempty intersections
with 7{N), the principal congruence subgroup of Sp(2, Z) of level N=3. We
begin our study by supplementing his results, listing up a complete set of rep-
resentatives of conjugacy classes in Ggr. To each representative 7 of the class

i 6p We attach its centralizor Clr; Gg) in Gp, making emphasis on its structure
as a Lie group.

THEOREM 1-1. Each element of Gg is conjugate in Gg to one and only one
of the following 21 representatives.

(@) central r==1; C7; Gp)=Ga.
(b) elliptic (i.e., r+central, and has a fixed point in H,)

cospg 0 sing 0
0 cosy 0 siny

b—l = =
oD r=aly, ») —sing 0 cosp 0

(B, RO, R(DEW)#1, p#v)

0 —siny 0 cosy
cos & 0 siné 0
0 ,
Chs Go= cos 0 siny

—siné 0 cos& o0 | £, 7ER;=S02)xS0(2).
0 —siny 0 cosy '
cospg 0 sing 0
0 cospg 0 sing
—sing 0 cosy 0
0 —sing 0 cosp

b-2) r=aly, w= (R(u)?#1,)

Cusp forms on Siegel upper half plané

Cr; GR=K=S04)NGr=U(2).
cos ¢ sin p 0 0

—sinp  cos p 0 0 .
®-3) r=re=|" " T o s (k(p)* 1)
0 0 —sin p cosp
g 00\/a0 b O
a5 0 0\ 0 a0 61 (o ad—bo=1}=00, 1.
Crs Ga=4| ¢ o p gl e 0 do ; (0" +¢")a )
0 0—gp/\0 c 0 d
cospg 0 sinpg O
0 1 0 0 ee]
b-4) r=aly, O== —sing 0 cosp 0 (B(u)3+1,)
0 0 0 1
cosd 0 singd O '
9 a 0 b S O
; = ; —be=11=SO@)XSLAR).
CriGR=1 _ging 0 cosg o] 2470¢ :
0 ¢ 0 d
1000
0-10 0
(b-5) r=a(0, x)= 0010
0 0 0-1
a; 0 b1 0
0 2, 0 b e - .
Crs o= 0 4, o |3 @dembici=1 (i=1, 2)r=SL(R)XSLy(R)
0 ¢, 0 d,

() elliptic/hyperbolic

cosg 0 sinpg O
0 2 0 - 0
0

7= . (R(p)*+#1,, 22#1)
—sing 0 cosp
0 0 0 A7t
cosd O sind 0
0 e 0 0 R*l=SO@)xR*
Cri o=l _gng 0 cosg o |} OB as (
0 0 0 at
(d) elliptic/parabolic
cospg 0 sinpg O
0 1 0 2 .
= R()*#1, A==1)
T=% —sing 0 cosp O (R L
0 0 0 1

409
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cosd 0 singd 0 - (l) (l) ? (t) (c) 0_1 8 8
0 L0 Clr; Go)= ¢ ; teR, ceR*\=RXR"
. =<+ . o~ 75 Gr - ’ 4
Cly; Gpy={+ —sind 0 cosd 0 GER, teR = {1} XSOQ)XR 001 0f0O0c0
0 0 0 1 000 1/0000 ¢
(e) hyperbolic : (h) d-unipotent
a 0 0 O 1 0\V/ 1
B _ 10 b0 0 s 1s
(e-1) 7=h(a, b)= 0 0at 0 (a? 0%, ab#l, a+b) _— 0 0 a (a, b+0)
000 b 0 00
0 1 /70

; s=athe =~ {+1} XR?

¢c 000
Clr; Gp)= 8 g 00 ;¢ deER I =R*X R
0 ¢l t=(a"tbc®—bc)/2

C OO ~—m

OO = O
O = oo
}—AQ’OO
DO O S~

0 b
10
01
00
Clr; GR)—{:E(

O OO

0
0 ¢, s, t, ucRR
1

OO O
OO

a 00 0
€2 r=ha, a)= 8 g 91 0 ISCHRN (i)  hyperelliptic
0 00 0 2 00 0\/cosg simg 0 0
a-: .
vV 0 = 8 g 0‘1 g —S(;nﬂ CO;/J cogy Si(I)l,u (a*#1, k(1)
' a
C(T’G’*)_{(O ‘V—l)’ VEGLZ(R)}chZ(R} 00 0 a 0 0 —sing cosp
a 0 0 O ¢c 0 0 0\/cosé sinf 0 0
~ _ _. 0100 . 0 ¢ 0 0 Y—sinfcosd 0 0 1. ¢>0 | pn
(e-3) r=hia, )=+ 0 0a0 (a=#1) C(r; Gg)é 00 ¢ 0 0 0 cosf sind |’ OSR =RIXSO(2)
0001 0 0 0 ¢ 0 0 —sind sind;
¢ 3 00 (j) &-parabolic
Cr; Gpy= 8 ol co_l ‘éz ; c€RY, didi—dodi=1{=R*XSL,(R) 10 s 0
0 ds 0 d, (1) r=ds, so=| O Y % (5, s9=(1, =1))
()  hyperbolic/parabolic 0 0 0—1
pen o n
== 0a10 (a*#1, 2==+1) Cly; Gp={= 8 i;)l (1) 62 Pl BER= {1 X {21} X R?
0001 00 0=l
0
(C) . 8 ? 10s 0
C . =+ . x ~ X ——
(r; Gri={= 0 0 ctg | ¢SRS 1R ={+1} XR*XR (-2 7=8(s, O)= 0-100 (s=+1)
00 0 0 010
1 00 0—1
(g) hyperparabolic
100 s\/a 0 00 10120
01 s 0 0 a* 00 . _ 0 dy 0 ds | teR ~
7= 0 0 10 0 0 a0 (02¢1, 5750) C(T,GR)— =+ 00101 d1d4'—d2d3=l _{il} XRXSLg(R)
0001/\0 0 0 ¢ 0 ds 0 d,
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(k) parabolic

k-1) ==

Cor: G,g:{(’g g)((l) ‘j) A€0(@), SSMyR)}=0@)x B*

1001
_Jo11o0
&2 7=% 4 61 0
000 1
AL J(A 0L Sy 5
cr; 6a={(y o) 1) A=00, b, SESMR)} =0, Dx B!
1000
o101
k3 7= 5 9 1 0
000 1
* 0 % x
* 01 % ok
C<T,GR)—{+<* 0« » |ECR={E1XSLR)X (RXRY)
000 1
(1) paraelliptic
1 0 s 0\/cospg sinpg O 0
{010 s |—sing cospg 0 0 _
o010} 0 0 cosp simp (s=£1, k(w1
0001 0 0 —sing cosy
1 0 ¢ 0\/cosf siné 0 0
01 0 t |—sind cosé
s Cr)= o 010] o 0 cogﬁ six?ﬁ P b OSR=RXS0).
0 0 1 0 0 —siné cos @

We omit the proof of this theorem, since it follows by an easy but careful
chase of the proof of Theorem 1 in Morita [17].

1-2. Discrete subgroups of Sp(2, R)
Recall that Ge=Sp(2, R) is regarded as the group of all unitary transforma-
tions of a hermitian space of rank two over the quaternion algebra M,(R),

equipped with the canonical involution (j 5)=(_<_ic Zb). Moreover, it is known

that all Q-forms of G are obtained in this way from the Q-forms of My(R), or,‘
the indefinite quaternion algebras B over (. Since any non-degenerate hermitian
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form of rank two over B is isomorphic to F(x, y)=x,7,+x.7;, We may write,
without loss of generality, G4 in the following form:

(L.1) Go=U(@, B) ,
={gEMyB); F(x-g, y-g)=F(x, ¥) for all x, y&B%.
If B=M,(Q), an isomorphism ¢ from U(2, B) to Sp(2, Q) is given explicitly by

a; a; by —b

1.2 o= @ 4 B TR (8 D)eve )
—c1 —Cy —dy d; '
where A:(a1 az), B:(bl bz), C:(c1 cz), D=(d1 dz). The Q-rank of G is
ag a; by b/ Cs C4 ds d, :

one or two, according as B is a division algebra or not. Since the R-rank of
Gr is two, the theorem of Margulis says that any lattice of Gg is arithmetic.
In particular, if the quotient I'\H, is not compact, we can find a Q-form of Gz
such that I' is commensurable with G,. In the expression (1.1) of G, G is
given by

L3 G.=U@, B),=1{ge€U, B); L-g=L},

where L is a lattice in B% It is not difficult to see that they are all commen-
surable, with commensurator Gg itself (B is fixed). Of special interests for us
are those for L=0% where O is a maximal order of B. Then we have G,=
U@, 0); if B=M,(Q) and O=My(Z), then U2, O)=Sp(2, Z).

1-3. A reduction of /-conjugacy te G ,conjugacy

The first step to the computation problem in Selberg’s trace formula is the
classification of conjugacy classes in the lattice I”, for which S,(I") is defined.
This is by no means an easy task, even if we restrict ourselves to the simplest
case I'=U(2, 0). However, if we consider the conjugacy classes in Gg, or iIn
GQ, the group of all positive similitudes of the hermitian space (B? F) which is
defined by

(1.4 Go=GU*2, B)

:{gEMz(B); Flx-g, y-g)=n(@)F(x, y), n(g)=Q} }
for all x, ye B? ’

then the problem will become much easier. For we can localize the problem,

reducing it to the conjugacy problem in G,, 5p for each prime p, by virtue of

the following

THEOREM 1-2. The Hasse prmczple holds for conjugacy classes in Gy and
GQ, namely two elements of Go (resp. GQ) are conjugate in Gq (resp. GQ) if and
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only if they are conjugate in G, (resp. vép) for all p.

’I;he proof of this theorem is found in T. Asai [2] in the case Go=Sp(n, Q).
For Go=GU(n, B), it is proved in our previous paper [10] under the assumption
that the hermitian form F is definite. However, the proof in the general case
goes quite similarly as in [2], [10], and we shall omit it here. We prefer éq
to G4 for some reasons, one of which is that it fits to our program to treat
later the trace formula also for Hecke operators (cf. §0-3).

Now let us assume that I satisfies the following conditions :

(i) There exists a Z-order R of M,(B) such that
(1.5) I'=R*N\G,

) n(R3NGp=Z5 for all ».
If I'=U@, 0), these conditions are satisfied by taking R=M,(0). It follows then
by the strong approximation theorem, that
(1.6) C=I(R3NE DX G- .
We put

=11 (R3NGp)x 6R=1PI UpXU.,

Up=R;NG,, U.=Cp.

We say, as in [8], [10], that an element geéQ or a conjugacy class {g} gy is
“locally integral ”, if the Gp-conjugacy class of g has a representative in R,,mé,,,
for all p. We have

THEOREM 1-3. A4 conjugacy class in 59 is locally integral if and only if it
is integral (i.e., it has a representative in RN\Gy).

PRrOOF. BX definition, {g}¢ o being locally integral means that A gh'leR a) G 4
for some h=(G, By (1.6), we can write h=uy with uell, yeGy. Then we
have

rgr‘leu“(RAméA)uméeszéQ o g.e.d.

Combining Theorems 1-2 and 1-3, we can determine the éq-conjugacy classes

that have nonempty intersections with I, completely by local computations. In:

fact, the problem of conjugacy classes in G,, and U, for R=M,0), has been
settled in [10]. It should be noted that, in G, or 59' a conjugacy class is not
uniquely determined by its characteristic polynomial. On the contrary, in most
cases there are infinite number of classes for each characteristic polynomial. As
an illustration, we sketch the most interesting case without proof. Namely we
have .
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THEOREM 1-4. Let Fx)y=(x*+sx+n)*=Z[x] be such that s2—4n<0, and
let Sf) be the set of elements of Gq for which n='g is elliptic and f(g)=0.
(i) We have a canonical correspondence

isomorphic classes of quaternion algebras
Sdn/ aQ‘“’{D over Q such that BQK=DRK }

where K=Q(+/s*¥—4n). The correspondence is given explicitly by
Clg; Co=QLel*-Di, g&S.f) (Di=1{aeD*; aa>0)),

and it is one-to-one or two-to-one according as D is indefinite or definste. _
(ii) Let g=SA{f) and D=D(g) be as in (i), and assume that I'=U@, 0) for
a maximal order O of B. Then we have

leteonI'+ @ & d(D(g)}d(B)-d(k),
where d(D(g)), d(B), d(K) are the discriminant of D(g), B, K, respectively. (cf.
[107 (1), Proposition 3, 4).
Now let us consider the gap between /-conjugacy and 5A—conjugacy. We
take and fix an element g of RNGy and put
Z(g)={z&My(B); zg=gz}
(1.7) Clg)={xgx; xEéq}
Mg, T)={xeCq; x 'gxcT},

where T is a subset of Rmég such that I'TI'=T. Z(g) is an algebra over Q.
We say that two Z-orders A, A, of Z (g) belong to the same Gy-type, and write
A~y if Ady=aAd,a ! for some asZ(g)*NGq. Put, for each Z-order A of Z(g),

Clg, MH={x"gx; xeéQ, Z(g)N\xRx "~ A}
Mg, T, A= {xeéq; xgxeT, Z(g)NxRx~A}.
Then we have a disjoint decomposition of C(g), Mg, T) '
Cle=T1 g, A)

Mg, T):/];_I[M(g, T, 4.

(1.8)

(1.9)

LemmA 1-1.  The map x'gx—x induces the following bijections

(1) CONT =, (Z(g)*NG\Mlg, T)
(i) Clg, HDAT =, (Z(e) NG\ M(g, T, A)
WD) Clg, HNT /3 = (Z(@*NC\Mig, T, H/T" (cf. [8), [21], [27].

Assume that T is expressed as T:TAr\@Q for a subset T, of RAméA such that
UTAu=TA. Put
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(1.10)- Mg, T, A)={xEéA; xlgxeT, Z(@NxRx*~4},

' LEMMA 1-2. (i) The inclusion map Mg, T, D& Mg, T4 A) induces the
Jollowing surjection

$: (Z(@*NGC\M(g, T, A)/I'—> (Z@*NGY\M*g, T, M1,
where

M*(& T4, /1)=A U 'M(g, Ty A

TELED
(For the definition of La(A), see (2.18).).
i) @ is ho(d; G)-to-one, where

1.11) ho(d; G~)=#((Z(g)xﬂ5@)\(2@)’([\502'I(A)/(AZHGNA))
=1 the two-sided G-class number of 4,
D)= {ze(Z(@)*NC)s; z4z71= 1) (ef. [8D.

By Lemmas 1-1, 1-2, the gap between I'conjugacy classes and & 4-conjugacy
cIasses‘ can be filled by considering those Z-orders A in Z(g) such that
Mg, T4 Hy+@.

1-4. Structure of the centralizors

The second step to the application of Selberg’s ‘trace formula is the study of
the centralizors Cr; I') of elements 7 of I". It is easily seen that Cr; I is
always a discrete subgroup of Cr; Gg). The following fact plays an important

role in our computation. Note that it is an obvious analogue of Theorem 7 in
Shimizu [267.

THEOREM 1-5. Lot Ibe a lattice of Gr=Sp(2, R) and let 7 be an element
of I'. Then Cr: I is g lattice of C(r; Gg) except for the following case: 7 is

conjugate in Ge=Sp(2, Q) to an element of the form <(1) ‘?), SeSM,(Q), with
—det S=(Q*) '

PROOF. If the quotient I” \H. is compact, the assertion is well known and
€asy to prove, for more general topological groups. Let us assume, therefore,
that the quotient is not compact so that I"is commensurable with Gz=U_2, 0).
Then it is known that I" is contained in Go, modulo the center of Gp. Therefore
C(r; Gg) has a natural Q-form, and it suffices to prove that C(r; Gz)=C{r; G)y
is a lattice, with one exception. It is easy to see, by Theorem 1-1 and the
following Lemma 1-3, that C(r: G); is a lattice unless Cr; Gpr) contains, as
semi-direct factor, a group isomorphic to (a) R* (r is of type “hyper ), (b)
GLy(R) (7 is of type (e-2), or (c) O, 1) (r is of type (k-2)). First consider (a):
then by Lemma 1-3, it suffices to prove the case where the algebra K=Q[y] is
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a totally real fleld of degree 4, and K,=Q[7-+7"!] is a real quadratic subfield of
K. We have then

Cr; G=KP={xeK*; Ng/x,(x)=1},
Cr; Glz=0%={x05}; Niix(2)=1}.

Since OkNK®P=09, KL /0% is isomorphic to a subgroup of K1/07% the asser-
tion follows by Dirichlet’s unit theorem. Next consider the case (b): 7 is then

al .
conjugate in Go=U(2, B) to an element of the form ;’0=<0 a)’ where @ is an

element of a real quadratic fleld K in B, such that Nr(e)=ag=1. Then we
have

Clro; Go)=UQ2, K)=K'-SU(@2, K),

Clro; G)z=U(2, 0x)=0%-SU(2, Op).

It is easy to see that SU(2, K) is the norm one group of an indefinite quaternion
algebra over Q, and SU(2, Og) is a group of units of an order of it so that
SU@2, Ox) is a lattice of SUQ2, K.)=SLiR). Since K3/0* is compact, this
proves the assertion in case (b). Finally consider (c): 7 is then conjugate in G,

to an element of the form ro=((1) i)EU(Z, B), with tr(s)=0, Nr(s)<0. C(re: Gg)

is a semi-direct product of

V:{((l) lt) teB., tr(t)zO}zSMz(R),
and

WZ{((C)Z d(zi); as@=s, aeB"}EO(l, .

It is clear that VAU(Z, O) is a lattice of V. On the other hand, WAU@2, 0) is
a lattice of W if and only if Q[s] is a real quadratic fleld; in fact wnu@, 0)
contains as index finite subgroup, the group of norm one units of the ring of
integers of Q[s]. We see that this is not the case if and only if Go=Sp(, Q)
(.e. B=MyQ)) and Q[s]=0Q&0, so that —Nr(s)e(Q*)? This completes the
proof. g.e.d.

To state the Lemma 1-3, we consider, instead of Go=U(2, B), an isomorphic
group

(1.12) GE=UQ@, Bf*={gesMy(B); g'g=1,}.

There is an isomorphism % Go3G¥ such that ¢*U(Q2, ON=U(2, Oy (cf. [107,
Lemma 11). Let f(x)2Q[x] be the characteristic polynomial of geGj, and
suppose that it splits over @ into a product F(x)=f1(x)f(x) such that 2 fi(x7Y)
=fix) (=1, 2).
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LEMMA 1-3. Notations being as above, assume that f(x)#f.(x). Then g is
conjugate in G¥ to an element of the form

(g g)eG’Q", a, beB?,
with fl(a)zfz(b)=0. (Cf. [10], Lemma 2.)

The following theorem is an easy consequence of Theorem 1-5 and the proof
of it.

THEOREM 1-6. Let I be a lattice of Gg and 7 be an element of I'.  Then
there exists a connected closed subgroup Co(y; Ggr) of C(y; Gg) which is character-
ized by the following conditions:

(i) Coy; Ggr) has no compact semi-direct factor.
(i) Cor; GanI'=Cy(r; I') is a lattice of Coy; Gp).
(i) [CG; IN): Colr; INI< oo,

It contains 7., the unipotent factor. of 7.

In fact we have only to drop the compact semi-direct factors of C(y; Gr) to
obtain Cy(7; Gg), if C(y; I') is a lattice of C(y; Gg). In the exceptional case, it
is given by

L.13) ars ea={(; 1) Tesmm), i r=(; 7).

REMARK 1-1. It should be noted that the definition of C,(y; Gg) is not com-
patible with Gp-conjugacy: we can not conclude Co(y1; Gr)=g 'Co(y2; Grlg, from
7:=g7'r.g. However, this is true if g is an element of G,. Note also that the
Lie group C(r; Gg) is unimodular, and it has a natural Q-form Ci(y; Gg)=
Cor; GrINGo.

1-5. Finally the third step to our problem on conjugacy classes concerning
the application of Selberg’s trace formula is as follows: For certain types of
elements, there are infinite number of classes in I” that have nonzero contribu-
tions, so that we must combine them suitably to get a rational number, or at
any rate, to give it a computable expression. For parabolic conjugacy classes,
this problem is settled by [5], [18], [1], and generalized by T. Shintani [30] to
arbitrary degree n. In the light of their results, we make the following

DEFINITION 1-1. Two elements 7, 7. of I" are said to belong to the same
family, if (i) their semi-simple factors coincide, and (ii) Cy(y1; Gr)=C:(72; Gr).

We denote by [y]r the family (the equivalence class) represented by 7. Note
that this definition of [y is compatible with Ge-conjugacy, and Iconjugacy.
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If 71, 7. belong to the same family, then Cy(yy; I V=Cs(7s; ).

THEOREM 1-7. Let I be a lattice of Gg. Then there are only a finite num-
ber of Iconjugacy classes of families that belong to one of the types: (a) central,
(b) elliptic, () elliptic/parabolic, (1) é-parabolic, (k) parabolic, and (1) paraelliptic.

In fact, the assertion for parabolic types is an easy consequence of the
arithmeticity of I" and the finiteness of the number of cusps. For elliptic and

other types, it can be proved by using Theorems 1-2, 1-3, and local computations
given in [10].

REMARK 1-2. If I'is a congruence subgroup of Sp(2, Z), Theorem 1-7 is a
direct consequence of I Miinchhausen [19] (cf. §6, Theorem 6-1).

§2. Cusp forms and Selberg’s trace formula

In this section, we recall briefly the Selberg-Godement’s dimension formula
for Si(I") (cf. [25]), and a reformulation of it due to Christian [5], Morita [18],
and Arakawa [1], which will be the starting point of our calculation.

2-1. Let I’ be a lattice of Gr=Sp(2, R), and let (y, V) be a finite dimen-
sional representation of I” such that [ Ker y1<oo. We assume that  is unitary.
For a positive integer £, we denote by Si(I; y) the complex vector space of cusp
forms of type (&, % 1. Namely Sy(I] 1) consists of the holomorphic V-valued
functions f(Z) on H, which satisfy the following conditions:

(D) f<Z0)=det(CZ+D)*3(1) f(Z) for all 7= élg)ef,
(ii) (det Im Z)**| f(Z)| is bounded on H,.

Note that, if I'\H, is compact, (ii) follows from (i). If y=trivial, V=C, we
denote S(; y) simply by S (I"). In any case, it is known that Sl ) is a
finite dimensional Hilbert space with respect to the Petersson metric. In [25], R.
Godement studied the kernel function of it and expressed the dimension as an
integral of an infinite series:

THEOREM 2-1. (R. Godement [25]) Suppose k=5. Put

(Z(k) ZI_T<ZQ> - _ )
22y ST ) e CZu Dy Ry ),

(2-1) KI"(Zl, Zz):
where
a(k)=27%z"%2k —2)2k—3)(2k—4),
Z(IM=": the center of r.

(i) The series Kp(Z,, Z) converges absolutely and uniformly on any compact set
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in HyX H,, and (det Im Z)**(det Im Z,)**X K(Zy, Z,) is bounded on HyX H,.
(1) Kp(Z,, Z,)=Kp(Z,, Z)*, where K* denotes the adjoint operator of K.

{4il) For any Z,€H, and veV, the function Z,—Kp(Zy, Z,)v belongs to ST y).
(iv) For any f(Z)eSu(I, y), we have

f(Z)=S J(det Im ZVKp(Z, Z)[(Z)dZ!,

where dZ=(det Y)3dXdY (Z=X-+iY) is a Gpinvariant measure on H,.
(v) We have

2.2) dim S,(I] X)ZS (det Im Z)*r Kr(Z, Z)dZ .
I'\Hy ,
2-2. Following Morita [18], we put for each y&Gz and Z€H,,
(2.3) H/{(Z)=(det Im Z)kdec(uﬁ) det(CZ+D) *r 4.

A direct computation shows that one has, for any g€Ge,
2.4) HA{glZ)=Hy1,,Z), and Hft}(z):
Then (2.2) is written as

- _alk)
@.5) dim .7, D=3 575 Sm 3 HA2)Z .

If the quotient I'\H, is compact, the infinite series in the integrand con-
verges absolutely and uniformly on I'\H, so that we can interchange the
integral and the infinite sum; namely the right hand side of (2.5) is equal to

ak)

2.6) 2055 SF\HZH,(Z)dZ .

By (2.4) and

2.7 Cly; P\H,= 6.1_71} &I\H,) (disjoint),
=t il

we can first sum up the integrals, over each conjugacy classes {y} r, so that we
have, as is well known,

a(k)

@8) dim Su(I; 0= 2Z() (r%)—.gcq; I‘)\HzHr(Z)dZ
__ath) s
=S50y ZYONCTs NG G, D)2,

where dZ is a quotient measure on C(y; Ge)\H, induced from dZ. Here we
should note that, under the above condition on I, every element 7 of I'is semi-
simple and C(y; I') is a lattice of C(r; Gg), i.e., vol(C(r; I\C(r; Gg))<co. We
should note also that, under the same assumption, the evaluation of the integrals
in (2.8) has been established by Langlands [17], in a more general context.
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2-3. Now let us assume that ['\H, is not compact. In this case (2.8) does
not hold. In fact, it is known that the infinite sum of integrals extended over
certain kinds of unipotent conjugacy classes do not converge ([1], [5], [18]).
We shall see in §4 similar results for elliptic/parabolic, paraelliptic, and §-para-
bolic classes. We shall sketch briefly how one can overcome this difficulty,
fbllowing [13, [5], [18]. Thus we assume that Gy has Q-rank one or two and
I" is commensurable with Gz. In the first case G4 has a parabolic Q-subgroup
P,, unique up to Gy-conjugation, such that (Po)z is isomorphic to the one given
in (2.9) below. On the other hand, if Gg has Q-rank two, it has, up to G-
conjugation, three @Q-parabolic subgroups P,, P; and P,:

£ x & %
* % % %
P=ll 0 0 « « [SCep
0 0 % =
(2.9 * 0 * =
* % & %
b= * 0 % % €Ger,
0 0 0 =

P,=P,\P;: a Borel subgroup of Gq.

In the following, all statements for P, should be omitted if I” belongs to the first
case. Let {l=gy, g, ---, g} be a complete set of representatives of the double
cosets in P\Go/I'. By a reduction theory of a connected semi-simple algebraic

group over (J, there exists a Siegel domain F such that \TJ1 giF> is a funda-
o=

mental set in H, for I ([3]). In particular, it contains a fundamental domain of
I’, and has a finite volume. Note also that the set ¥X; consisting of the real part
X; of the point Z,=X,+i¥Y; of gr{F) is compact for each 7. Put, for each
subset S of I,

2.10) 048, ks ={, SIHDNX,

where Z=X--:Y is a point of g7(F>. Then the following estimates for 8,(S, k;Y)
are due to Christian [4].

THEOREM 2-2. (Christian) (i) There exist positive half integers a,, a, with
a;+a,=3, 4.2, such that

@11) 045, k3 V=00s1yg9, ¥=(]" %),
iz 2
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holds for Y €lm(giF>) and k>4.

() If SN, =@ (resp. SNI1,:=), then ai, a, can be so chosen that ai—a:<3
(resp. a,<2), where we put

2.12) Lo v=g7'PoginI, Ins=gi'PiginI.

In fact, this is just a restatement of a special case n=2 of Satz 1 in 4],
with I instead of Sp(n, Z). The Q-rank one case is more or less easier. Note
that the condition Z=X-+i¥ €g7¢F> implies that ¥ is reduced with respect to
the isomorphic image of the reductxve part (I}, )x of I3 4, under the isomorphism
(g7 Porg)u=G Ly(R). Therefore we have also a restatement of Satz 2 of [4]:

LEMMA 2-1. For a positive number a,, a, such that a,+a,<3, 4.<2, we
have for each i (1<i<y),

(2.13) L?(F)yi‘1y§2d2<oo .

Let us now divide the set I” into disjoint union of Se, S1, S and S;; namely
(i) S; consists of elements that are not conjugate to any one of Ig . Ii:
(1=:/=w»), (i) S, conmsists of elements that are. conjugate to an element of I3,
but are not conjugate to any one of I3, (i) S, consists of elements that are
conjugate to an element of I3, but are not conjugate to any one of [ ;=
g7'%Pg:n I, and (iv) S, consists of the remaining elements of I°. Then it is
€asy to see by Lebesque’s theorem (cf. Theorem 2-1, (i), that

2.14 ‘ — s
@.14) sz S HZ)dz= 315,

I ”sliillogr\Hz 225942,

where H,(Z ; )=H,(Z)x(a dumping factor in s), which will be explained below.
For the elements of S,, it follows from Theorem 2-2, (ii) and Lemma 2-1, that
we need no dumping factors, so that we put simply HAZ; s)=H/{(Z). And we
have

2.15 = S

(2.15) Ii= 2 r\H2H7<Z>dZ

TESy

= 1 . . o ~
B, VNG TG G F(Z)dZ.
For the elements of S; (=0, 1), we write

7=h'1g?17’1g1h (/’LE[; 7’1611;.1,),
and put
H/(Z)(det Im g;h{Z>)"* g

H(Z)det Tm gh{ZD)SyF v g

Il
=

H/Z; 3)={

i
e
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where
Y1z
1§ h{Z .
m g:h{Z)= (ylz *>

Y2

Then we have, by using the formula (i) of Lemma 2-2 below,

(2.16) I,=1lim zg H(Z;5)dZ
s—+0 €5 T
=tim 3 | H(Z;9)dZ.
§=+0 (NESin C(ri I'\Hyg

For the elements of S,, we note first that their eigenvalues are all £1, so that
they are either (a) central, (b) elliptic of order two, (h) d-unipotent, (j) J-para-
bolic, or (k) parabolic. We put H,(Z;s)=H,(Z) if r belongs to (a) or (b);
HAZ; s)=H/(Z)x(det Im g;h<{Z>)* if 1 belongs to (h), (j), or it belongs to (&)
and it is not conjugate in Gg to ((1) “i), —det S(Q*)?, where g4, h are as above.

In this exceptional case in (k), we put H{(Z; s)=H/(Z)Xx(det Im g;h{Z>)*y¥.
Then we see from Lemma 7-3, 7-4, that these definitions of H/{Z;s) do not
depend on the choice of g;, h. Moreover, we can easily prove the following

LEMMA 2-2. We have

(1) Hs-3,(Z ; s)=H[6{Z>; s) for any .
(i) HglZy; s)=HAZ; s) for any g&Cyr; Gr)-

2-3. We are now to have the following reformulation of Theorem 2-1, which
asserts the termwise integrability, modulo dumping factors.

THEOREM 2-3. For k=), we have

(2.17) dim S(I")= #%((]?) ZVOI(Co(T I'NCy(y ; Gr))
li 1y(0; 3)
XS_I‘IE) aemp/~ [(C@:D):Cod; I’
168;99=, oo g HUZ5 902,

where the first sum is extended over the set of I-conjugacy classes of the families

rdr.

Proor. The assertion follows from Theorem 1-6, Lemma 2-1, 2-2, (2.8),
(2.14), (2.15) and (2.16), for the subsets S,, S; and S,. Here we note that in
(2.17), the limit and the first sum have been exchanged by Theorem 2-2 and
Lemma 2-1, applying Lebesgue’s theorem. For the subset S,, it will be proved
in the course of calculations of the integrals in §3, §4 and §5. g.e.d.
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REMARK 2-1. We may call I, the contribution from the set S, In fact, it
can be proved by estimating the sum of H,(Z) over each S;, that the equality
1,-=SP\H2 > H(Z)dZ

TES;

holds.

REMARK 2-2. We shall see in §3, that also for elliptic elements contained in
S,\US,, the assertion for the termwise integrability holds without dumping factors.
Here it should be noted that in (2.17),.no data- of I appear in the last integral
I8 s), so that they can be evaluated after normalizing the elements ¢ in the
family [7]r simultaneously by Gg-conjugation.

2-5. Elliptic contributions

For elliptic conjugacy classes, the right hand side of (2.17) can be given a
more suitable expression for the explicit computation. Thus we assume that [’
satisfles the condition (1.5). Then we have

THEOREM 2-4. The elliptic contribution in42.17) is equal to
(2.18) dim Si(l] ple=alk) 3 [g) 2 Ma(A) T cp(g, Ry Ay,
(g)[;Q Lah) »

where the notations are as follows: N

(1) The first sum is extended over the conjugacy classes in Gq of the elements
with finite orders, which are “ locally integral” (c¢f. Theorem 1—3).~

@) La(d) runs over the “G-genera” of Z-orders in Z(g): the G-genus Lc(é)
containing A consists of all Z-orders in Z(g) which are conjugate in Z(g)3NGp
with Ap for all p.

() Ma(A) is the “ G-MaB” of A, which is defined as follows: Decompose the
adelized group (Z(g)xmé)A into disjoint union

2@ NCla= L 2@ NEyslinGs, A=AQZ,

and put Ak=yk/1y;1=Q(y,,p/lpy;;mﬂg)). Then we define

1
(219 Ma()=vol(45 "Cilg; GA\Cilg; Ga) 3 :

[4inGe: 43NColg; G’
where A, 15 a fixed Z-order of Z(g).

@ e, Ry A2)=3(Z(2)* NG \My(g, Ry A)UL),

where My(g, Ry, Ap) is defined in the same way as in (1.8).

) I()=| H(2)dZ.

Cotg; Gp\H
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PrROOF. If we note that the family [y]r reduces to a single element {y} if
7 is elliptic, the assertion follows from Lemma 1-1, 1-2, and Remark 2-2, along
the same way as in [8]. g.e.d.

REMARK 2-3. If Rp,=MyO0,) (cf. §1-3), the computation of the local factors
cp(g, Ry, Ap) has been carried out in [10]. Also Ma(d) can be evaluated by
using the theory of Tamagawa numbers of semi-simple algebraic groups over Q.
We shall use the above theorem and these facts in [9] to compute the dimension
Sy(I')y explicitly for I'=U(2, O) in the case of Q-rank one.

2-6. Finally, we quote from [17, [53 and [18] the following result:

THEOREM I-0. In the formula (2.17), the integral Iy ; s) vanishes unless
belongs to either one of -the types listed in Theorem 1-7.

Therefore, by Theorem 1-7, the first sum in (2.17) is finite. In the following
of ‘this paper, we shall consider the integrals Io(y; s) for the elements of types
listed in Theorem 1-7. Also, we shall restrict ourselves to the case where the
representation y is trivial.

§3." Computation of I,(7; s) for elliptic elements

3-1. Let us first consider the case where 7 has an isolated fixed point in
H,, or equivalently, C(y; Gg) is compact. We put according to the Definition 1-1,
Coy; Gr)={1}. By Theorem 1-1, 7 is then conjugate in Gz to an element of
the form a(y, v), with B(w)? k()% B(k()#1,. The following result is con-
tained, though not so explicitly, in Langlands [17] (see also Harish-Chandra [7]).

THEOREM I-1. Assume that y has an isolated fixed point, and conjugate in
Gz to aly, v). Put g;=e, g,=e”. Then we have

s o) -1 CEON
& s =8 -y

3-2. Now suppose that the set of fixed points of 7 has positive dimension.
By Theorem 1-1, 7 is then conjugate in Gy to one of the following elements:

cos ¢ sinp
_ | —sinpg cosyu .
7= cosy sinp sin p#0,
—sinpg cosy

cosg 0 sing O
B=atp =2 > 1 0 sin 10
= T{—sing 0 cosp Of p=

0 0 0 1
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1000 i
' 0—-10 0
0=a0, M= 5 9 1 0
0 0 0-—1
Put
10000
0 e 0}, , .
3.2) CfB; Gp= 0010 ; ad—bc=1r.
0 ¢c 0 d

LemMa 3-1. (i) As a fundamental domain of CoB; Gg) in H, we can take
the following set :

zy ¢

(3.3) o= ;

(i) No element g#1 of CoB; Gr) has a fixed point in the interior Fy(B) of Fo(B),
and the map (g, Z)—g<Z> from Cy(B; Gr)XFo(B) to H; induces a diffeomorphism

from Co(B; GrRIXFy(B) to HZ—_{(Z()1 3)}

)eH,; Imz,>0, tgo}’. ,

Zy 2
PROOF. We have, for g= €Cy(B; Gr) and Z:(z; Z‘:)EHZ,

OO o
Ao oo

cz,4+d ez td

Z1s azy+b |
cz,-+d cze+d

(3.4) glZ>=

0

0

0

( ¢z 219
23

. . z¥ 2§
Therefore we can send any point Z<H, to a point of the form (z”i 2’.2), by

12
. ab\_(Vy, xeVy TN, . . ab\_ .
putting (c d)"( 0 ? s ) (zs=x5-+1y,). Then by putting (c d)——k(t?) in

k%
g and applying again (3.4) to (:,; z;.z), we can send this point to Fo(8). Now it
12
is clear that no two points in Fy(8) are transposed by C,(8; Gx). This proves
(1), and (ii) follows easily from these facts, q.e.d.

Next consider the § above and put
Co(d; GR)=C(g; Gr),

a; 0 b O
3.5 0a 0 b
Ci6: Gr)= 0 02 - 02 eGpr; a;>04.

0 ¢c. 0 d,
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‘LEMMA 3-2. (i) As a fundamental domain of C.(6; Gg) in H,, we can take

the following set
: it
3.6) Feo={(; [JeH.; 120},
(i) No element g=+1 of Cy(8; Gr) has a fixed point in the interior Fy(0)° of Fy(6),
and the map (g, 2)—g<2> Sfrom Ci(@; Gr)XFy(d) to H, induces a diffeomorphism
. o {70

from Co; GoxFoy to He—{(’% Z)} y
(i) Fo(0) 45 also a fundamental domain of Cod; Gg). The stabilizor of (; 2,) mn

Co(d; Gp) is as follows:

cos 0 0 (1+4t25)Y2%sin 4 0
0 cos 6 0 —(1+1%)*%sin .
—(14)%in g 0 cos 6 0 if 10,
0 (I4+1%-Y%gin g 0 cos 4
3.7
cos 6, 0 sin 8, 0
0 cos &, 0 S | if f—
—siné, 0 cos 4, 0 - ’ ' if 1=0
0 —sinf, 0 cosé,

PROOF. Since Co(8; Gr)TCy(d; Gr), any point of H, can be transformed to
a point Z :(z; ;)EFO(,B). Writing z,=x,--7 ¥1, we put, in the expression (3.5) of
gecl(ay GR)’
as bi\_(vVy: xvVyi TN ras by /10
<0 111‘1)_( 0 @‘1—1) ’ (cz dz)"(o 1)'
Then we have
@=(, L, V7
d Wi

It is easy to see that no two points of F,(J) are transposed by Cu(6; Gg), which
proves (i) and the first assertion of (iii). (ii) is an easy consequence of (i).

eF,0).

Finally, the stabilizor of (; :) in Cy(0; Gg) is equal to

1 0 0 ¢ 1 0 0 ¢\
01+ 0 01 ¢t 0
0010 %001 0] NGOG
0 0 01 00 01
A direct calculation shows that this group is as asserted in (3.7). q.e.d.

Finally consider y=y(8). Put
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a 0 b 0 B
0 a 0 b
Cor; Gr)= c0do ; ad—bc=1},
0 ¢ 0 4
3.8
b 0
0 .5

Glr; Gr=

OO On
oo ©
Q
|
A
<

LEMMA 3-3. (i) As a fundamental domain of Cy(y; Gg) in Ha we can take
the set : ' :

1
F()= TI*

(& Desrar

CFo(0)>

[on BN e i aw
o On ©
O = OO
SRS )

where TT* means the disjoininess except for the set of measure 0, corresponding

) i 0 .
to the orbit of (i )€Fi0) G.e., 1=0) )
(i) A fundamental domain of Coly: Gg) in Hy is given by

1000
0 a 0 b :
Fo(?’)—g]é}g 0010 KFo(B)>
0 0a?

and the map (g, Z)—g{Z) from Coy; Gr)XFyy) to H, induces a dz'ﬁ’eomorpﬁism
from Cur; G/ £ % By 1o H—{(5 DY),

0 z

PrROOF. (i) is a direct consequence of Lemma 3-2. Let us consider the
condition in which the two points

1 000 . 1000 .
R A R ()
0 ¢, 0 d, VO ¢ O dz :

are in the same orbit of Co(y; Gg). By Lemma 3-2, (iii), we have then t,=i,.
Suppose f{,=t,=t>0. Again by Lemma 3-2, (iii), we see that the condition is
equivalent to the equality .

<d1 b1>“1( cos 8 (l+t2)1/zsin0>(a2 b,
¢ dy —(1+»)"Y2%sin 8 cos 6 cs ds

=( cos d (14123Y%in 0)-1

_(l_l_tz)-l/zsinﬂ cos 6 (fOI' some 0ER)
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If we write
1 0N 0 a; b1 0
Ai—(o “1)( 0 (1+t2)“‘>(ci di)( 0 (1+t2)-1/4>’
(¢=1, 2), then it is equivalent to saying that 4, and A, are SO(2)-conjugate. So

the problem is reduced to classify the set (é _(_)l)SLz(R) by SO(2)-conjugation.
Since each element of this set has real eigenvalues s, —s~*{(s>0), we can write

it in the form X3 _ )X, XeSL(R). For each fixed 5>0, we have a
bijection
oS 0 N\, o
{X (o —s“)X ; XGSL2<R>}/ i = D\SLAB)/SO),

s 0
X )X DXSO@)
v 0

where D={(O -

1); v>0}. Our assertion follows from these facts. g.e.d.

3-3. Suppose g is an element of Cy(d; Gr)=C(; Gg) of the form in (b-5),

Theorem 1-1. For Z :(Z1 Zm)eHg, one has
. 212 22
B9 = :
) g (crz1+d1)(cozetdo)—c10020
X((0121+b1)(0222+d2)“‘(11522?2 212 )
Z12 (c1z1+d ) (@szo4by) — 10525/

If, in particular, ¢,=0 and Z :(; Z)EFO((S), one has

K Z>=X+i¥,

. a —a1C,d 12 +by(c+dB) td,
@10 X= €§+d%( td, al_l(azcz+bzdz)>
o ai(dj+ci+t%cl) —icy
r= c%+d%< —tc, ai? )

If we write, by the Iwasawa decomposition of SL.(R),
as b\ _luyw 0/ cos@ sind
@.11) <Cz dz>—(0 l) 0 v“‘X—sin& cos 0) . (u, 6ER, v>0),
then (3.10) is expressed as
X:(aﬁtzsinﬁ cos f+asb;  aqtv cos 0)

3.12) a,tv cos 6 u

_(ai(1+t%in%d)  aitvsinfy
Y—( atvsin 8 22 )
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A direct calculation shows that one has

0(X1, Xis, Xz, Y1, Y1z, Vo)

— 4,,8
ey by 1, v, 6,0 A
from which it follows that, for g=Ci(d; Gg),
(3».13) dZ=(detY)*dXdY =tdt(2at*d a,db,)2v-*dudvd ),

where (az b2> is as in (3.11). Note that 2a7®da;db, (resp. 2v-*dudvdf) is a

¢y dy
left invariant measure of {(%‘ ;_11>} (resp. SLy(R)).
1 M .

PROPOSITION 3-1. For any measurable function f(Z) on H, we have the
following integral formula: '

o ek (e e

where dg is an invariant measure on Co(0; Gr)=SL(R)YXSLy(R) defined by dg=—
dada,, da;=2v7%dudvdf; (=1, 2).

PrOOF. By (3.13), we have

)

.19 szf(z)dzzgo gclw; Gn)tf(g<(i §)>)dgdt (geC; GR))'

For >0, demote by g.(@) the element of Cyd; Ggr) given in (37). Then by
Lemma 3-2, (iii), the integral above is equal to

%SZ”S:SM ot (sguo{(; )))dodgar.

For each ¢, one has a disjoint decomposition
Co0; Gry= II GCi0; Grgu),
0sd<en
so that each element 2 of Co(0; Ggr) is expressed as A=gg,(8), g=Ci(0; Ggr)

uniquely (if :>0). Identifying Co(d; Gg) with SL,(R)XSL.(R), we write h=
28(8)y=(aFk(8), a:k:(0)™"), where

k,(&):( cos & (1412 %sin 0)

—(1+#%)""*sin § cos 4

Then the Haar measure of Cy(0; Gr)=SL,(RYXSLy(R) is expressed as
dh=d(aFhk,(0))d(ak.(0)7)

=d(afkO)da,

=14+3)"Vidafdbda,,

_ a b
where dat=2a"*dadb for at=(( ).
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The assertion follows from this. q.e.d.

7t

3-4. For Z:(t ;

)eFo(B), we have
HyZ ; )=HyZ)=(—D*1+1*)"",
Therefore by (2.17), and Lemma 3-2, we have
Ca b (=D
1s; $)= Zn'So (0P
_{(=D* ] I'(E—3/2)
T 2w 2I(R—1/2)°
Let y be an element of I, and assume that it is conjugate to 6 in Gz. We have
7=g g for some g=Gg, and we can put Cyy; Gr)=g*Cy(d; Gr)g. Then it is
easy to see that I (r; s)=I1,0;s). Moreover, by the same way as above, we
have

dt

5 5 1 (= tdt
Scom GR)\HszT(Z, s)idZ—ESo REEDEED <Aoo,
Therefore, by Lebesgue’s theorem we have
S‘1’\1‘12 rél‘HT'(Z; s)dZ:Scm r)\HzHr(Z; 94z,

which proves the assertion in Theorem 2-3 on the termwise integrability in
(2.17), for the subset {y}r of I'. We summarize the result as

THEOREM I-2. Let y=Gpg be conjugate to 8. Then we have
(=n* (—1)*(2k—2)(2k—4)
27(2k—3) 294 :

3.16) I(r; s)= =a(k)™
3-5. Let us next consider 8=p(f). By Lemma 3-1, every point ZeH, is

x1+iy1 t

expressed (uniquely for ¢>0) as Z =g<( : z')>’ where g is an element of

Co(B; Gp) as in (3.2). If one writes (? db> in the expression of g as in (3.11),

with ¢ instead of @, then one has Z=X+:Y,

Xz(xl—i—tz sin g cos ¢ vt cos @

vt COS ¢ 2
Y_(yl-f-tz sin®*¢ vtsin go)
T\ utsin g v/

Then we have

0(%1, %19, X2, Y1, Y1z Vo)
a<xh t: U, ¥, v, (/7)

=20%,
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so that the invariant measure dZ is expressed as
dZ=(tdt)(yi*dx:dy)de,
where da=2v-*dudvde is the Haar measure of SL,(R). Thus we have proved

PROPOSITION 3-2. For any measurable function f(Z) on H,, we have the fol-
lowing integral formula

o @az={[{ [ty (a7 ))dadyaat,

.

where g, is an element of Co(B; Gg) wz‘th»_ az(: 5)

Following lemma is proved by a direct compufation.
LEMMA 3-4. We have, for Z= (x-}-zy t)EFo(,@) (B=p(9)),
Hﬂ(Z)———(—Zzy)"[(1+x2+y2+t2y)sin 6+ {(1—cos )*—2y cos G}i]*.

By this lemma and Proposition 3-2, we see that there exists a constant ¢>0,
which depends only on 4, such that -

|He(Z; $)1dZ

Scow;GR)\Hz
@ ffeofea Z‘yk—s
écg_wgo SO m dtdydx< —+oo,
This proves the assertion of Theorem 2-3 for each subset {y}r, where 7 is
conjugate in Gg to some S(4).
To evaluate the integral Io(8; s), we need the following formula which is
proved by an elementary residue calculus :

LemMA 3-5. Let b, c€C be constants with ¢+#0, such that (x+b)*+c=0 has
no real roots, and let k be a half integer with k=1. Then one has

- dz _ TG—1/2T(1/2)
@.17) Sm CITgT = e

for a suitable choice of the branch of half-integral powers (e.g., if k€Z and
Re(c)>0, then one takes the branch Re(c*)>0).

Using this lemma, we have

I8 s):SFO(ﬁ)Hﬁ(Z")dZ

_ (—24)* r YT ty”‘%tdydx
(sin )% J-=Jo °[ byt Lottty L (1 cos 0 —2y cos 0}2:,
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(=2 F(k—l/Z)F(l/Z)
(smﬁ)” (k)
mfe #-34td
] e
[y2+t2y+1+ S5F {(1—cos )t2—2y cos 0}2}

-1/2

Noting the equality

1—cos @ z)( _1tcosé z')

24y cot f+1=(y+— 0 siné

we see that the double integral above is equal to
1 Soo yk‘s dx L

2Jo 1—cos § \*-1/2 So _1d4cos @ \F2
o+ ) 1 (str—Sa5 I

_ 1 Sw yk—sdy
B o ) - T

_ (sin 6)* (=1 _ xFdx __ (4cosflix**dx }
T 2R3 S { (x2—2ix cos @-+sin?@)*-12  (x?—2ix cos §+sin2g)*-12 )"

3-6. Suppose that % is an integer with k=2, and consider the integrals
appeared sbove. Put, for each integer p such that 0Zp<2k—3,

3.18 B.(p; = xrdz

3.18) #P; (x*—2ix cos @-+sin®g)k-12
It is easy to show the convergence of these integrals under the above conditions.
Changing the variable x by x~'sin®?#, we see that they have the following
symmetry :

(3.19) Bi(k—2+p; O)=(sin@y?"'By(k—1—p; 8) (0=p=k-1.

(sind=0).

LeMMA 3-6. Bu(p; 6) satisfy the followz'ng recurrence formulae:

(3.20) Biup; )= cosﬁBk(P 1 0+5—= Bk {p—2;6),

2k3

for k=3, 25 p=2k—3,
(3.2 Q2b—p—2)B.(p; &)

=i(2k—2p—1)cos 6 Bi(p—1; )+(p—1)sin®6 Bx(p—2; ),
for k=2, 2=p=<2k—3,

ProoOF. The first formula is derived from (3.18) by integrating partially. We
have, by definition

2
Bulp: O)= S x?"%{(x*—2ix cos +sin®6)+2ix cos §—sin®d} x

(x2—2ix cos §+sin2g)*-1/2
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=B,1(p—2; 6)+2i cos § By(p—1; 6)—sin?8 Bi(p—2; (9~) .
The second formula follows from this and (3.20). ' g.e.d.

For small values of 2, we can evaluate B «{p; 0) by shifting the path of
integration as follows:
TJ/

Ofr b = | o >x
]
H ) ] ﬂshift
—7icosf Li )
~—{(1-+cos 6);
Fig. 1)
Then we have
) = (t-+i cos §)? cosd (—{)P*(t—cos §)P
B.(p; 0):So(tle)"‘1/2_ S — s 4t

o =i
B(0; 0)=(sin6+i cos 0)/sin@

By(1; 6)=(sinf+; cos 8)

By(0; 6)={2sin*0-+; cos (1 +2sin®0)} /3sin*0
By(1; 8)=(—cos 20+ sin 26)/3sin 6

By(2; 6)=(—cos 20+ sin26)/3

Bi(3; 6)= {2sin*0+i cos 6(1+2sin?6)} /3.

(3.22)

Now it is easy to prove the following formula by induction :

PROPOSITION 3-3. For k=2, we have

F(l/Z)['(k—l) . g (k=181
I'(k—1/2) (—20)F1 °

(3.23) C T Bule—1; )=

Applying it to the calculation in the preceding paragraph, we get the
following '

THEOREM I-3. Suppose'rebGR is conjugate to P(6) with sinf #0, and y=
£7B(0)g, g=Gp  Then we can put Colr; GrR)=g7'Co(B; Gr)g, and we have
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.oy — 1 . i . -(k-2)0i__(1 ~(k-1)63
1T = 4 Frsm (i —cos )k De (k=2)e b
(3.24) _ 1 1
Tl S Lo s )= s s 6 —cos )
X {(k—1)sin(k—2)0 —(k—2)sin(2—1)6}.

3-7. Now let us consider y=y(d). Let Cy(r: Gz) be as ini(3.8). We have
Co@; Gr)=Cylr; GRI®Cy(8; Gr) (semi-direct product).

It follows from Proposition 3-1 and Lemma 3-3 that the integral formula
1 N
(.25 SH,_f(Z)dZ— .2—nS00<7; GR)SF1<r)f(g<Z>.)dng
holds for any measurable function f(Z) on H,, where dg is the invariant measure

of Colr; Gr)=SL.(R) as in (3.13), and
(3.26) dZ=1(1+)"2dt(2v~*dudvdg),  for

5 7t
z —g“«t z)>
. (tzsin @ cos +(1+t%sin®p)  vi(cos ¢+ sin go))
- vt(cos -7 sin o) U+t ’
(g« is as in Proposition 3-2).

The following lemma is obtained by a direct computation.

LEMMA 3-7. Suppose Z&Fy(7) is as in (3.26). We have
HAZ ; s)=(20)**[ {u—#*sin ¢ cos p)sin 6 —24vt sin ¢ cos 6}
+{(1+t*sin®p—0%)sin 6 —2vt cos ¢ cos 6} 2+4v*(1+15)]%,

By this lemma we have

|HAZ; 9)] é( Sizrf 7] )Zk[(u—z‘zsin ¢ cos @) (1412 sin 2p— 022421197 F
and it follows that

S |H(Z; $)|d2
Fin

=

r rﬁn 1+ %2~ dpdudidu

o [u+1+isin®p—v?) + 4 1+
gmgwgzz (I+s)2x*2dopd xds
ododo [{x—(1+s sin’p)} 2t-dx(1+s) 517
gwrgu (I4-s)2x*2dpd xds

o [(x41)2+2s5x]%-12

0Jo

00,

=
o

A

Cs

¢ Jo
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< 45*&* s2x%2d xds
5
oo x k-T2
gcsjou—zmdx<+oo,
‘where ¢; are positive constants which depend only on k. Therefore we have

0

lH,(Z‘;s)ldz‘<+oo,

Sco(T'GR)\H

s0 that the assertion of Theorem 2- 3 for each subset {rir is proved, if 7 is
conjugate in Gz to some 7(@). ’

Now by comparing (3.25) with (2.17), we have

Io(r(0); S):%{SF <T)H,(Z ;8)d2
1

_ 2'” 1 r Smrfﬂ 201 7)1k *dodidvdu
w(sin §)2% ) oo o Jo [{(u—ﬁsm @ COS p)—24vt sin ¢ cot #} 2 B
precy (14194 {(1+t2sin?p—v?) —27vt cos @ cot §}2 J

Here, putting x=u—#sin ¢ cos p—2vi sinp cot §, we can shift the path of
integration with respect to x to the real line. Then we can apply Lemma 3-5:

coem 2 TA/I(R—1/2)
T 9= amem = Ty

XSOOSOOSZK 2t(l+t2)1/2 2k—3d¢dtdv
eoeve [{(H—t’smp —v")—2ivt 08 @ cot 0} +— 26’ (1+t2)]k_”2‘

Putting x=tcos ¢, y=tsin ¢, we see that the last integral is equal to
ST r 20142+ ¥y 3d yd x dv
oo [(1+y2——v2—2ivx cot £)24- flv:'? (1+y2tx 2)]

k-1y2

Again by putting y= tang 0=¢=r/2), x;=x cos ¢, vi=vcos ¢, we see that it
is equal to

-

Y“S“’ S"’Z 4(cos )0t - xt-+ 1) 2dpd %, dv,

B [(v%+2iv1x1cot6—1)2 @L;gb]k e

_ I’(ng}I’(k—-S/Z) ST AR5 1) 5 dy
(k=1 Jo ‘”[(v2+2zux cot f— 1)+ 4” (x2+1>]""“2'

Noting the identity
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W +2ivx cot 0—1)*+4v(x2+1)/sin %8

——{v—}— 1+cosz9 (x_’_\/—)}{ L 1— cos«9 _\/m)}
. 1+cos @ z . 1— cos a
x{v—l—z—sine (= VD Ho—i— =2 = etV FFD),
we put Hi=v(x++/x2F1), t,=v(+~/x*+1—x). Then we see that the last integral
is equal to

iSmSw 3R 3(8, +1,)2d L d
o [(t+i tan 6/2)(t—7 tan §/2)(t,+i tan 6/2)(¢,—7 tan 6/2)1**

Thus we have

o 221:—3[’(]3_-]_/2)[’(/?—3/2)
Iy (8); s)= TR (k—1)

X {B(k—1; O)By(k—3; 0)+2B(k—2; 0)B4(k—2; 0)
+Bi(k—3; 0)B(k—1; 00},

where Bi(p; 8) is defined by (3.18). From the results in the preceding para-
graph, it is now easy to show

Bu(k—1; 0)By(k—3; 0)+2Bi(k—2; 6)Bu(k—2; )+ Bi(k—3; 0)Bu(k—1; 6)

_ I'(e—DI(k—2)2k—3)x
= T oegindg T(k—1/2)

Therefore we get the following

THEOREM I-4. Suppose that y=Gg is conjugate to y(8) with sin@+0. Then
we have
Z'n o, 2k—3
sin®6(2F —2)(2k —4) =ak) g

(3.27) I(y(8); s)=

§4. Computation of I,(r; s) for elliptic/parabolic, parabolic,
and J-parabolic elements

4-1. Let us first consider the elliptic/parabolic element
cosf O sinfd O

o s 0o 1 0 2 .
F=PO, D=\ _Gno 0 cosg o] ©nG AFO
0 0 0 1
Put
1000
A 010 u
4.1 Co(B; Gr=1=% 00 10 ; ueR.
000 1
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Then it is easy to see that a fundamental domain of Co(ﬁ ; Gp) in H, is éiven by

Fo(ﬁ)'-—“{( xitiyy x;z+zy12) %1, SR, }
X157F7Y12 Y2 V1, Yo, Y1Ye—35>0
A direct computation shows the following

LEMMA 4-1. For ZeFyp),
HYZ; )=Hy(2)y(3:9:—y2)~*
=2 i(y192— ¥1) *[(26y,—sin 6 {xx;"Zixlzylz(Ziy—Z)“l} :
+2x%.{2y%8in 6(2 y,—2)~'—1+cos 6 +:y,sin 6} +y§(2iy2—2)’sin’0v
~20:1(2 y,—2)cos G+(2y,—Asin 021y, y%sin 8 —2y2,(1+cos 6)]-4
Then we have, by (4.1) and the definition of Io(f; ),

168; 9= 1" §_ HZ; 90— 380-*d3udyadyadad .
Applying Lemma 3-5 twice, we get

]o(B' o= AL . ra/2re— 1/2) I'Q/2re-1n
(2sin §)'/2 I'(B) I'(k—1/2)
XS i1y~ 3%)* 0 d Y, d yiad v,
y>o[ {2y%,sin 6+ A(—1+cos §47ysin §)} V*
X[LA(y3+1)sin 6 —2i A y,cos 0—27y,y%81in 0 —2y%,(1+cos 0)]’**]
- (k—1)(sin 8)*

2212—}/2

XS _ Y119 =38 " d yid yrud y,
boi: [Zy%z‘l’A(—_‘M—!—iyl)]m ,

sind

A(y3—2iyicot 6+1)—2iy,y%,— 2_1MJ J

[ ¥i Vi +1D—2iy,y% 2y S g

where we put, for simplicity, A=2{y,—2A. .
Noting the identities

14cos g

A(y%—zmcote+1>—2fy1yf2—'2y%2 :
sin @

14-cos @
—Z(yl —-Sm—)[z(ylyz %z)ﬂﬂ%ﬂﬂ@ya—kzlﬂ

—1-+cosd | .
23’?2+A(—W +zy1)=—[2(y1yz yw)+zly1+z—co—sq(2y2+ ZZ)]

we have
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2k+17r
83 9= F G —Tism oy*
S“S‘”S“W i1y — 1) 0 d ydyidy,
0Jodo _;1-4cos8 ""l: e dyd - 1—cos 8 iA :lk‘m.
(3’1 »Z—Sinﬁ ) (¥13a— %)+ 5 +175in0 ( a5 )

Put y%,=t3(14:%)"'y,y. ¢>0). Then the integral above is equal to

2k+1 00 (*00
S Y1) P A d yid ydt
(yi—ilEeosfy™ Hy1+(1+z2>_———1—.°03 4 }y2+—(1+z2)(y1+z1.07°w)}k‘”2

sin f sind sin @
2k+1 S S (t2+1)1+6‘y§—5/2
T *(E—1)(sin 0)* 1+cos@ o l—cosd |
(y sin @ ) [y‘_H(l—HZ) siné ]
fi- sy,
X — dy.dt
1S° - iz(1+t2)(y1+il%)v T
yat . linclos [
2fytitm sl
_ 2k+17z. . . 21+Sr(l+s)l—'(k__3/2_s) . e—(sgn Z)n’i($+l).l2
T iRE—1)(sin 6)* T(k—1/2) | Z]+2
Smgm yllz—5l2dyldt
0Jo .1+cosf \*? . o 1—CO8 @ \#-8/28 1—cos § \'**"
(y1 sinf ) (y1+z(l+t) sind ) ( 1t sin@ )

Here we have used the following formula which is well-known and is easy to
prove :

LEMMA 4-2. Let k, s be real numbe_rs such that k>1, 0<s<k. Then for
any A€C—(—o0, 0], we have

Smx’?‘l-‘sdx () (k—s)
o (ZHDE I'(k)

where we take, in log A, the principal branch such that —rn<arg(log )< z.

4.2)

o= log 2
2

Now by using Lemma 3-5 again and then integrating in f, we get
_—,‘ 2k“”n‘F(l/Z)[‘(S—}-1)F(k—2-—s) ;e—(sgnzmﬂsﬂ)/z
gkt 1N(k—1/2)(1—cos §)Y? | 2|5+

Sco ylf—S/Zdyl
o (yi—2iyicos §+sin®g)**"

Iu(B; s)




440 Ki-ichiro HasuimoTo

4-2. Here we consider the integrals

o xP2dx
o (x*—27x cos §-}+sin2g)*-1

where %, p are integers such that k=2, 0=p=2k-—3. Changing the variable x
by sin*f/x, we see that they satisfy the following symmetry :

4.9 Calk—2+4p; 0)=(sin 0?7 Calk—1—p; 0) (0=p=<k—1).

Also, in the same way as in Lemma 3-6, we can prove

4.3) Cutp; = (sin 60),

LEMMA 4-3. The following recurrenc\e formuﬂze hold :
@5 Clp; =i cos0Cu(p—1; 1+ L2, (52, ),

k=23, 2=p=<2k—3.
(4.6) (2k—p—5/2)Ci(p; 6) o ?

=7 cos 02k —2p—1)C,(p—1; O)+sin®6(p—3/2C,(p—2; 8),
for k=2, 2<p<2k—3.
By these formulae, the computation of C,(p ; 8) reduces to that of Culk—1;0).

PROPOSITION 4-1. For k=2, we have

F(I/Z)F(k~3/2) e(zk—smiue—(k—slzwi
T'e—1) 2F-32

N

4.7) Cr(k—1; )=

¥i(1-}tcos 6)

:——z'b(l—cos )

K(r, R)

(Fig. 2)
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PrOOF. Put C,=C,(k—1; 8). By Lemma 4-3, it is easy to show
B—5/2 . _,.

= 2}2'—‘/4 ze‘e‘Ck_l.

Therefore it suffices to prove the assertion for k=2:

o xY2d x
o x2—2ixcos 8-+sind °

o

c=Cil1; )=|
Considering the integral along the contour K(r, R) as in Fig. 2, we have
7ri/4e—07.'/2,

T
C2—7—2——e

from which the assertion follows. g.e.d.

4-3. Applying Proposition 4-1 to the calculation in §4-1, we get
(4.8) 1488, 5 5)

=__< 1 1 +0<S)>e—i[(k—3/2)0+(sgn Dms+Dn/el.

a(k) 2*r sin § sin7 |af=

where o(s) is a function of s independent of A such that }}210 0(s)=0, and sgn(x)
=zx/|x]| for xeR".

Now we consider the totality of I,(y; s) corresponding to a family [y1r. By
definition, such a family consists of those y'&C(y; I') that are conjugate in Gg
to B(ﬁ, A) with fixed 4. It is easy to see that there exists ¢ with 0=a<1 such
that
cos@ O siné 0

0 1 0 a+n
—sind 0 cosd 0

0 0 0 1
for some g&Gg. For each y’e[7]r, we can put o’ ; Gr)=g 'Ci B8, 2); Gr)g.
Then C(y’'; [y=C(y; I") for all y’[r]r. By (4.8), we have

4.9) rdr=g™ i neZ, a+n#0ig,

1 1 .
) I,y s)=— . -(k-3/2)61%
a0 <a<k) 27 sin 6 sin%JrO(S))e
e—sgn(a+n>7ri(s+1)/2
. Xa%io“ la+n|*
1 1 :
—— . -(k-3/2)0%
= (a(k) ” 7 -{—o(s))e

7 sin @ sin+
2

X e TN (541, @) +em e (s 4, 1-a)},

where {(s+1, a) is_the Hurwitz’s zeta function which is defined by
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st o= 5 —L (>0
' _aﬁiio (atn)™ .
It is well-known that {(s+1, a) has the following expansion at s=0:
%- I[:((a“; +ols) if a#0
(4.10) Ls+1, a)=
?+C+o(s) if a=0.

It follows that )

(4.11)  emter0rg ] a)—{—e”““”zC(\s—l—l, 1—&)=—7z(1+z' cot*za)-+o(s),
where (and also in the following) we Wri:te

cot 6 (6 #nz)

(4.12) cot*d ={
0 (@=nx),

and we have used the formula
I"(1—a) _ I"(a)
m Tm-—ﬂ' cot 7[(1“: ((19&0).

Summing up, we have obtained the following

THEOREM I-5. (i) Assume that 1rE€Gr is elliptic/parabolic, and it is con-
jugate to 3(0, . Then I(y; s) is given by (4.8).

(ii) If rI, and the Jamily [y]r is expressed as in (4.9), the totality of
I’ s s) for y'elrlr is expressed as

l e—(k—s/z) 63 i .
~ta g HOOHe T (s 1, a)erie (s i1, 1-a)).
28

7 sind sin7
(iii) We have
(4.13) lim 3 IG';s)
r :

s~+0 pre(7=1]

—_— 1 .
- a(k) 92

A {cos(k—3/2)6+cot*za sin(k—3/2)6}.
sin @ sin7

4-4. Let us next consider the paraelliptic element

cosé sinf Acosf Asin@
—sinfd cosf —Asind 2Acosf
0 0 cos 4 sin

0 0 —sinf  cos @

=76, = (4, sin§+0).

Put
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1 0 0
010 uj

(4.14) Co(?; Gpy=1+ 0010l usR;.
0 0 01

Then as a fundamental domain of Cy(f; Gz) in H,, we can take the set FO(B),
which is given in §4-1. -Next lemma follows by a direct calculation.
LemMma 4-4. For ZEFO(B), we have
Hy(Z; )=Hp(ZX9190— %)™

_ 224 (yyyp—yi)*°
- (sind)2*

3 2 1 . -k
X[ et 2iyscot 0 +4f = (i—scot 0+ L it yubing]
Then by using Lemma 3-5 twice, we have

I7; 3)=S':OS10SY>OH?<ZA§ SHP1Ye— 1) dy1d y.d yid x,d x4,

- 222 (1/2) ] (k—1/2)

(sin 8)** (k)
sw S (31Ye— 952 d y1d y:d y1ad x5
; 2 . k-1/2
e [4{x?2~%(y1~yz)cot 0} +§§—29—(y1+y2+22)2]

_ ZZkF(l/Z)F(k—1/2)F(1/2)F(k_1) S (ylyz—yiz)”'“'sdyxdyzd;vm
- (sin @)**(k)2%* 1 (k—1/2) Y>0 [—i—(yl—kyz—i-il)z(sin 0)_2]k‘1

2R (B —23) ST (yuy2)* 5 %d y.d y,
T (sin0)(k—DI(E—s—3/2) oo~ (yiFy,FiR)*F

Here we apply Lemma 4-2 twice, and see that the last integral is equal to

o o ygk—z-l—(k+s—1/2)dy2
k-5-5/2
So ri {So Lyet(yiHinJee-2 }dyl

o L5 —1/2)I(k—s—3/2) P(14+25)[(k—5—3/2) ¢=(sn Dricitanss
- I'@k—2)[(k+s—1/2) P

Using the duplication formula of I“function
I(k—3/2)I (k—2)=25"2*(1/2) [ 2k —14),

0

we thus get

. 2274?2 e—-(sgn A)mi(1+28) /2
176, 2); s)={ S0k —1)(k—3/2(5—2) +"(S)} afEs
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where o(s) is independent of 2. -

Now consider the sum of I4(y'; s) for all y’el” in the family [y]r, where 7
is assumed to be conjugate in G to #(6, A). By definition, [71r consists of
those elements 7’ of C(y; I") which are paraelliptic and whose semi-simple factors
are equal to that of 7. It is easy to see that there exist g&Gp and ¢=R with
0=<a<1, such that

cosfd sinf Acosf Asind
— )| —Sinf cosf —2sin@ 2Acosf| rcatZ
(4.15) rlr=¢ 0 0 cos G sinf |’ 4#0 Jg
0 0 —sinf - cosd

Put, for any y'<[y1r, Co(t’; GR=g 'Co(7(0, 2); Gr)g. Then we have Cyy’; I)
=Cy; I') for all y’€[7]r, and we can prove the following theorem in the same
way as in Theorem I-5.

THEOREM [-6. (i) Assume that y=Gg is pamellz‘ptz’c,‘ and it is conjugate in
Gr to 7(8, 2). Then we have

1 1 - o= (s8n ) mi(1+28) /2
Ir; )= a(k) 2z s REZ
(it If yel, then [r]r is expressed as in (4.15), and the totality of I(7'; s) for
v'€lydr is expressed as

+0(S)}

_ 25t

{ Sin*0(2k —2)(2k —3)(2k —4) +ols)}

X {eTTHBYQs 4, @) FemeHIL2s 11, 1-a).
(i) We have | |
11

——azk—)m(l-rl cot*za).

(4.16) im > I; s)=
s—+0 7 Ep ;
4-5. Consider the 5-pa‘rabolic element §==8(1,, A,) where (41, 2)#(0, 0). Sup-

pose first that A, 4, #0. Put .

4.0
0 %
10
0.1

Then a fundamental domain of Cy(§; Gz) in H, can be taken as

S i x12+;y12 . s }
FO(B.)_{(xlz’H-ym 1y, )’. Y Ya Y132 5>0p,

4.17) Cold; Gry={% s by BER

OO O

1
0
0
0

and it is easy to see that, for Z €Fy(8), we have
HH(Z; $)=H3(Z)(3:13:— 3%~
=(—1)k(ylyz-yﬁz)""[ﬁz—%-(y1+2'21/2)(yz4522/2)]'k-
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Therefore we can proceed in the same way as in §4-4:

4 bt (y1yz—y?z)k““'*dyxdyzdymdxm
. —_— k
143 9)=(-1*| gm._.Ex§2+<y1+z'zl/2>(yz—z'zz/z>]k

_ (—1)kF(1/2)F(k—i/2)S (19:—y8)* = d y1d y12d ye
- I'(k) v>0 (114 /2) RV (y,—i Ry 2) k12

_(—1)"7:]"(k—1/2)1"(k—2—s)§°° yhms-oitdy, S? yé‘s‘f’“dy;
- (kY[ (k—s—3/2) o (31HiA/2)F 2 Jo (ya—ily/2)% 12

_ {ZZW(fl)kf(ku)F(k—3/2) o) e eom inriirn
LRI (k—1/2) b lal ]

where o(s) is a function, independent of 2,, A,, such that }11510 0(s)=0.

—co,

Suppose that 7 is an element of I” and that it is conjugate in Gg to 3(%, A
above. This is possible only if G, is of :Q-rank two, so that I" is commensurable
with Sp(2, Z). By definition, the family [7]r consists of 7/€C(r; I') that are
d-parabolic of type (4, 4»), A1, :#0. We can assume, without loss of generality,
that there exists g& Gy such that ’

1 0 wmte 0 Z
— : m, ne
0 1 0 am—!—b}n—[—ac S mAer0 .
am-~+bn+ac+0
0 0 0 —1
where @, b are integers with (a, b)=1, >0, and 0=<c<l (cf. Theorem 6-1).
Put, for each r'<[r]p,
Cor'; GRI=g""C(8(2, 2); Gr)g -

Then Coy’; I)=Cy(r; I') for all y’, and we have the following

THEOREM’ I-7. (i) Suppose that y<Gy is d-parabolic and it is conjugate in
Gz to 82y, ), A1, 22#0. Then we have
— k ~(sgn 11)7:1;(84-1)/2 {sgn 12)7ri(5+1)/2
R T
(ii) If yel and the family [7]r is expressed as in (4.18), then the totality of
Iy’ ; 8) for v'€[r]r is expressed as
[LoCD
a(k) 2:m2b?

+0(S)} 2

4.19)

+0(S>}

R O

X{e”““l)’z‘C(s%—l; . a(].;‘C) >+2—ﬂ(3+1)/2C(5+1, b“‘aé].‘!‘(l) )}

% bi{e-zi(s+1>/zc<s+l’
j=0 §

(iii) We have
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(4.20) im 3 I, s) T

s=+0 7' €01p

L DPege o GRony, . alitos
= o) '—ng (1+Z COt*-—b———)(l—Z cot _—I;—>

PROOF. By the above calculation and (4.18), we have

’ . — 1 (_l)k
3, 1005 9={ g gt (o)}

rémp

e-sgn(m+c)7ti(s+1)/2 esgn(a,m+bn+ac)7:i(s+l)/2

X3

o {m—4c s+t |am+bn+aclstt
where in the right hand side the sum is extended over the pair of all integers
(m, n) such that m-c, am+bn-+ac=0. If we write m=bm,+j, n=n,—am,
(0=7<b), we get a bijection for each i
{im, myeZ*; m=j (mod b)} =, {(m,, n)eZ?.
The assertion follows easily from this as in §4-3. q.e.d.
REMARK 4-1. In connection with Problem 2 in §0-1, it would be interesting

to note that the sum appeared in (4.20) is closely connected with the Dedekind
sum; if ¢=0, the sum is in fact equal (up to constant) to the Dedekind sum

_ Ll ¢ ajzm
S(a, b)= 7 FZ)lcot—b——cot 5

since we have
b= 3 b= ;-
gcot*%r = j;:cot* ————aljjﬂ =0
(cf. F. Hirzebruch and D. Zagier f12D.

4-6. Finally consider the d-parabolic element §=3(2, ¢), 10. Put

é 0 g 0 ©eER

a a

. Go= L (ab

@.21) GO CrR=1% o o 1 ¢ P )esLumf
0 co0d

Note that we have
{£C.(0; Gr} =V X Cy(8; Cr) (semi-direct product),
where Ci(0; Gg) is defined in (3.5), and

Accordingly the invariant measure dg of Ci8; Gg) is decomposed as dg=
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dga(2v-*dv), dg. being the invariant measure of Co(3; G) defined by dg.=duda,

az(g 3)ESL2(R). It is easy to see frdm Lemma 3-1, 3=2, that a fundamental

domain of Ci(8; Gp) in H, is given by

'Fo(g)‘—:{go((; §>>=<Z:: 1?); v>0, 220}.
w? vt
vt 1
Hs(Z; s)=H3(Z)(det Im 2)~*
=(—=DFprR=BTy (1412 4+42/27%,

A direct calculation shows that, for 2 :( )EFo(g),

By applying (3.15), we have
1@, 0); s):SFO(E)Ztu-SHg(Z; s)dtdv

[ A v
Tlodo @4 2102/2)F

_ (__l)k . r(s+1)r(k_2_s) . 23+1e—(sgn l)xi(s-{-l)/z

T 2k—1) I(E—1) 4]+

(cf. Lemma 4-2).

¢

Now suppose that yeIl, and it is conjugate in Gg to 8(2, 0). This occurs
only if G, has Q-rank two. The family [7]r consists of those y'eC(r; I') which
are §-parabolic of type §(2, 0) and whose semi-simple factors are equal to that of
7. It is easy to see that there exists g&Gp such that

0 | nez
0 |’ n%0 (8"

10
4.22) =g 0
. 7‘ P"“g 0 0
00
Then we put, for each 7"<[y]r,
Coly’; Gr)=g 'Co(5(2, 0); Gr)g,
and see that Co(y’; I)=Cy(r; I'). Therefore we can prove in the same way as
§4-4, 4-5, the following

THEOREM I-8. (i) Suppose that y=Gy is 8-parabolic and it is conjugate in
Gr to 6, 0), 2#0. Then we have

. B 1 . (_1)&(2k_3> 1 e-—(sgn A wils+1)/2
w,s)—{a(k) i OO

(it) If y&T, then [y]r is expressed as in (4.22), and the totality of Iyy’;s) for
v'€ly]r is expressed as
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{a(lk)._' (——l);(:f—S) +0(S)}C(s+l)cos( 5_51 )7:

(iii) We have

. 1. ('— 1)’“(2k—3)
( ) }_‘HE) r’G%JpIO( ’ ) a(k) 267t2 :

§5. Contributions from parabolic conjugacy classes

Calculations in this section are essentially based on [1], [5], [18], and on
some results of Siegel [31].

5-1. Suppose 7 is an element of I” which is conjugate to r(S):((l) ‘i), where

S is 2 non-degenerate symmetric matrix. Then there exists g&Gq such that the
family [7]r is given by
1 X
5. = 5 -1
6.1 lr=g{(; 7); XSMR}gAT.
For each family [7]py, we shall fix, once and for all, such g&G,, and associate

with it a lattice L in the vector space SMu(R) of symmetmc 2% 2 matrices, which
is given by

5.2) ( ) (l SMZ(R)) g

Since g Gy, L defines a natural Q-structure of SM,(R) such that det S, tr SeQ
for all SeL. Let P be the parabolic subgroup of G, corresponding to [y1r. P
is defined over Q. Let P=Py-Py be a Levi-decomposition of P. We have

(6.3) (Pu)r=GLAR), (Py)r=SMyR).
Denote by (Py), the image of P, under this isomorphism. We may assume that,
under the isomorphisms (5.3), (Py)s acts on (Py)z as X— AX*A. Moreover, for

some technical reasons, we make the following assumption on I", which holds for
a wide class of arithmetic subgroups:

ASSUMPTION 5-1. For each parabolic Q—subgroup P of Gy, the equahty
PAT=(PynI)-(PyAI" holds for a suitable choice of Py.

5-2. First suppose that, in the expression r=g7(S)g™* of 7, S is definite.
Put, for any é=[r3r,

5.4) co; Go=g(p Mg

0 1

and take as a Haar measure of Cu0; Gp) the standard Euclidean measure of
SM,(R) via the expression (5.4).

=(Po)r,
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LEMMA 5-1. Under the assumption 5-1, we have

@) g(‘(‘)1 ,Af’_l)((l) )l()g'lefa Xel, AeG(L),

where G(L)Y={A=GL,R); AL'A=L}.

) 1S
(ii) For 6€lrdr, put g”"g:<o 15)’

A 0
Or(sy={A=6IN0S; &y . ,.)87 T}
Then we have
[C@; I'): Co(d; II=40r(Ss) .
(ill) Two elements 6, 8. of [y]r are conjugate z'n'I1 if and only if there exists

AeG(L) such that S;;=AS;'A and g(‘(;1 ' j.l)g‘leﬂ

The proof is straightforward. Here we note that the group G(L)*=G(L)n
GLi(R) is a Fuchsian group of the first kind, and (PunI¢=PunD):n\GLFR)
is a subgroup of G(L)* of finite index. It is easy to see from (5.4) that Cy(y; Gp)\H,

(1) SMz(R))\Hz—-{zY Y >0}, and we may put d Z=(det ¥)~dY.

Then we have, by [18], p. 241,
Io(r; S)=j

_ 257: 12i7”( 3-28)/2
—{ 2k—2)(2k—3)2k—4) S)f (det S)ys+erz?

where the sign =+ in the exponent is taken according as S=0. It follows from

Lemma 5-1 that

is diffeomorphic to (

Hy3,(Z)det Im 2)d Z

2-1C(ri Gp) g\Hy

1,3 s)
5 Becrzn;/f [CG; I : Co6; )]
- r 1 1
=] - .-2-—”—+0(S)}XSSGL+mO§PMn 10 0SS S

In the right hand side of this formula, S runs through the complete set of rep-
resentatives in Lt={S<L; S>0}, modulo the action of (Py~\I)..

THEOREM I-0. (i) Suppose r is conjugate in Gq to r(S), with S=20. Then
. 1 e_n'l( 3-28)/2
I{y; S)—‘{ a(k) 23 2 W'
(ii) If rel’, the totality of I,(5; s)/[C(5; Iy Cyo; )] for o&lyr/ isex-
pressed as (5.5) above, under the assumption 5-1.
(iii) We have

+0<S)}
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. I(5; s)
6.6 B sei TCG; )2 Co®; T
1 1 1 vol((Pun\IV\H,)

T ale) 2 TPunDo: PurINE] volColr; INC(T; Ga))
(Note that the expression in (5.6) is independent of the choice of g=Gy.) In
fact, the last assertion follows from

PROPOSITION 5-1.Y  Notations being as above, one has

. 1
®.7) S vt mip e 30 (S)(det SyF+72

_LGL): (PynI)e]  vol(G(L)\Hy)
~ALG(L): G(LY]  vol(L\SMy(R))’

PROOF. We prove the assertion in the case where I” is commensurable with
Sp2, Z). The Q-rank one case is more or less easier. Also, we assume, to
simplify the notations, that I” is contained in Sp(2, Q). Then there exists
AeGLy(Q) such that '

{C o)

Put
0 0 1/2
B='AG,4, &=/ 0 —1 0
172 0 0

Let pa4 be the homomorphism from {VeGL(R); det V==1} to O(©)=0(l, 2),
defined by .

, o* 2b b
5.8) pA(<Z d)):A" ac ad+be bd |A.
¢t 2¢d d°

The image of p is SON@Vou(§ °,
called a proper unit of &, if ‘U&U=® and U transforms each of the two con-
nected components of the set {xeR®; ‘x&x >0} onto themselves. Denote by
I'(®) the group of proper units of &, and by I'(&, m) the subgroup of it con-
sisting of U<=I(&) such that Um=m, for each meZ®% Also, denote by S, the

))300(@). An element U of GL«(Z) is

element (;1 ;Cz) of L such that Am=%x,, xs, xs). Then it is easy to see that
2 8

I'®, my=p({VeG(L); VSa'V=S.}).
In [31], Siegel defined a zeta-function attached to a lattice in the space of binary

» The author was informed of this proposition by Professor T. Ibukiyama. . For a different
proof, we refer to F. Sato: On zeta functions of ternary zero forms, J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 28 (1982), 585-604.
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quadratic forms. In our situation, it is expressed as
1

S,,LEL'F%odG(L) (S, m)(*mSm)*
By an easy argument using Lemma 5-1, we see that this function can be written as
2 = . 1
CG(L): (Pyn\I)o] sez+ méd®yno $0 r(S)det S)*°
Let ¢ be the natural map from the set {x&R®;xSx>0} to PXR), the real
projective plane: ¢(x)=(x;: x,: xs). In [31] Satz 3, it is proved that the residue
of {(s, ©) at s=3/2 is expressed by the following formula

(5.9 LG, ®)= (Re s>3/2).

(5.10) lim (s—3/2)(s, ©)=5{__o,
§-3/2 2

F (&)
where w is a 2-form on P¥R) such that o={(x8x)"**x,dx,dx,, and F(&) is a

fundamental domain of I'(®)=p.(G(L)) in the image of ¢. Now put x=A"'y.
Then we have the following commutative diagram

% /(&)
{xeR?; 'x&x>0} Im¢ F(&)
4 s A rey 14
{yeR?; 'y&,y >0} Img F(&,)

where F(&,) is a fundamental domain of I(&,)=pi(G(L)), p, being given as in
(5.8) with A=1,. Note that A can be taken as an upper triangular matrix. It
follows easily that we have w=(det A) '(*y&,y) ¥2y,dy,dy.. Now put y:,/y;=
x%+3y?% y./ys==x, and consider the map

frImon{y:#0 — H,
ity yay=x+iy (>0

Then it is easy to see that f is a diffeomorphism and commute with the action

of SL,(R) (cf. Lemma 5-2). Moreover, pl(((l) _Ol)) acts on H, as x+iy——x+iy.

Therefore the right hand side of (5.10) is equal to

1
2[G(Ly: G(LY*]

_ 1 _VOUG(L)Y"\H,)
T 2[G(L): G(LY] vol{Z\SM,(R))"

This completes the proof. g.e.d.

dxdy

cynHy Y?

(det A)‘lg

5-3. Let us next consider y=7(S), where S defines an indefinite quadratic
form over . Put
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Cly; Gr) - if —det S&(Q)?
Gy ; Gr)= : .
TEILEOSMEEY i _gersetoy.

Note that the second case occurs if and only if G4 has Q-rank two (c¢f. Theorem
1-5). In[18], Theorem 9, it is showed that the integral [ 0(7’, s) vamshes in the
first case; and in the second case, it is equal to

} 2% 1
{" @E—2)2k—3)2k—4) J“_"(S)} TldetS[E’
where ofs) is independent of S. Therefore, in ‘the following we assume that

—det S€(Q*)>. Let 7 be an element of r, whxch is conjugate in Gy to 7(S).
Then the family [7]r is given by

(.11) _ [r]r=g((l) If)g'-‘,
v-vhere L is as in (5.2), and L*={SeL; —det Se(Q)%.
LEMMA 5-2. Lgt S=(ss:_2 SSI:) be any‘_n_on-degenvemte symmaetric matrix with
real coefficients and let z, 2’ C\J {co} be defined by the identity
$1.X° 4251 XY 48V =5,z X+ Y N2’ X+ V) =5,( X421V )X +2' 1Y),
with Imz20, Im 2’<0.  Then, if we transform S by AeSLy(R) to AS'A, (2, z)

is transformed to (azz—!—!-cli)’ cazz _—}_l_g ), where A:(;Z 2)

The proof is straightforward. By‘ this lemma, we have a bijection
(5.12) fi L mod(PunD)i -2, (QV {eo})® mod(Py~I)E.

Let 8; (1=7=t) be a complete set of representatives of cusps of the Fuchsian

group (PynI)f. For each 8, let B; be the stabilizor of §; in (PMmZ"' ). Put,

for each positive rational number d,
6.13) a(d)=#({SEL*; —det S=d%, f(S)=(x, B,)}/B,).
Then we have the follovﬁng
PROPOSITION 5-2.  Notations being as above, there exist positive rational num-
bers dj, ¢; (1=71), such thai .
{ a{d)=0 if d#=0 (mod.d;)

(5.14)
: afndj=nc;  for all neN. .

PROOF. Taking V&SL,(Q) such' that V{8;>=co and consxdermg V B,y
instead of B,, we may assume that 8,=co. Then
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(5.15) Li=:f"(Q, o))

= ont

is a lattice of {(: 3)}/\SM2(R). It has a unique basis of the‘; form

(3 8)' Gz,- (f)j)’ d;>0, 1> |t,] 20.

It follows that —det S€diN for any S=LS, and that

1 Z,c,
(5.16) B,:{—_L—( | 2d; )} (for some ¢, N).
0 1 , , .
The assertion follows eaéily from these facts g.e.d.

By Lemmas 5-1, 5-2 and Proposition 5- 2 the contribution of the family
[rlr is ,
5 Io(r’;_ s)
setiipiy [CG7 5 1) Cor; 1]

=5 = LG5 )
.. % seLfmad <PMnl‘>+ :

={--1 S 0! D I L.

Ta®) 7 s |det S[72

;{:_E(IT)'W“(S)} 2 e

Summmg up, we have proved the following

THEOREM I-10. (i) Suppose 7 s con]ugate n GQ to r(S), and S indefinite.
Then

{_ d(k) . 237_[2 +0(3)I ]detS]Slz Zf —detSE(Q )
O ...................................... e seeeen Zf detSEE(Q >2

(ii) Assume that yel', and let 8; UZ/<t) be a complete set’ of cusps of
(PunI'), where Pis as in §5-1. Then the totality of Iy ;) /ECG s F) Coly™s Y]
for Y] r/o is expressed as above, and we have

I(r’; s) !
(5.18) lim T,GE%,N [CG s D):Cor s 1 ety 253

where ¢;, d; are as in Proposition 5-2.

(5.17) Io(r ;3 S)=

t
PR

3
J

A0

5-4. Finally consider y=y(S), with S=(0 0

), A#0. We can put
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Cor; GrI=Cr; Gr)

1000 1 s ut
(5.19) =4 0 a 0 b 0 1 ¢t 01 ad—be=1
170 o010 0 0 1 —s) s, ueR|"
0 ¢c 0 d/\0 001
From Lemma 3-1, it is easy to see that a fundamental domain of Cir; Gz) in

H, can be taken as
iy; O
Feo={(3 9 220}

1 0 0 0 1 s ut
0 V3 0 xvyt 0 1t 0 Y/iv 0
=0 0 1 o0 001——s<(02')>
0 0 0 +%*/\00 0 1

(<y1+sz)z+(u+st) (sz-}-t)\/—)
(52+t)'\/y2 KoY,

it follows that
dZ=(y7*d y:)(y7*d x:d y.)(dsdtdu).

Moreover, the stabilizer of Z =(Z%1 0) in Cyr; Gg) is easily seen to be
1 0 0 o0 !
0 cosfé 0O sin@
0 0 1 0
0 —sind 0 cos@

, Which is independent of Z. Therefore we get

PROPOSITION 5-3. Fo? any measurable function f(Z) on H,, the following
integral formula holds

(5:20) 5 f(Z)dZ—EScmr GR)SFapf(h«iJ(;l (z)’>>)dhd2

where dh=dadsdidu (az(? 5)ESL2(R)) s the standerd Haar measure of
Cor; Ga), and dZ=y7*dy,.

From this follows that

L(S); )= 5 H(2)dZ

So (y+22/2)”

1 1
(k D=2 12"
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If 7 is an element of " which is conjugate in G, to 7(S), then choosing g in
(5.2) suitably, the family [7y]r is given by

010
000

where Lé¢={SeL; det S=0}, and d is a positive rational number. Then we
easily have the following

THEOREM I-11. (i) For y=7(S) with s:(g 8) 2#0, we have
1 2%-3 1
&) T AR

@) If rel is conjugate in Gg to 7(S) above, then the family [r]lr can be ex-
pressed as in (5.21), and we have

Lir'; ) _ L 2e=3 1
(5.23) sl—1~+OTEET][’/~ (¢ ;0 : Gy’ [')] a(k)y 283zt d*°

(5.22) I(r; s)=—

REMARK 5-1. In Theorem I-10, and I-11, we have used the fact {(2)=x?%/6.
It should be noted, in connection with our Problem 2 in the introduction, that
this special value of Riemann’s zeta-function may also be used to evaluate the
volume of (Py~\I"){\H, which appeared in Theorem I-9.

5-5. We shall now resume the results obtained so far.

THEOREM 5-1. (Main Theorem) Under the assumption 5-1 on I', the dimen-
sion of the space Sy(I') of cusp forms of weight k=5 for a lattice I' of Sp(2, R)
is given in the following formula:

. _ a® vol(Coly ; "'\Coly ; Gr))
628 dimSyD)=gy o 3 SR AL 1)
a(k) vol(Coly ; TINCr 3 GR)) ’.
FRZT B LC0 D) o Tl o a0 )
alk) I(y'; s)
+— 22(0) & EVOI(Co(T IN\Cy(r; Gp)) lim il im r'ec%pw (o D) : Colr - D’

where, in the first term the sum is extended over the set of conjugacy classes of
elliptic and central elements in I', and in the second (resp. third) term, [¥]r runs
over a complete set of representatives of conjugacy classes of elliptic/parabolic,
paraelliptic, and d-parabolic (resp. parabolic) elements. Iy) and the limit of the
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sum of I(r’"; s) have been evaluated in Theorems I-1, - , I-11,

REMARK 5-2. It should be noted that no two elements of [r]p are conjugate
in I', unless 7 is parabolic. If I'\H, is compact, the second and third terms do
not appear. If I satisfies the condition (1.5), the first term is expressed more
simply as in Theorem 2-4.:

§6. Application (1): the case of ['=Sp(2, Z)

In this section, as an illustration of the validity of our general formula for
dim S(I") in Theorem 5-1, we shall specialize it to the case I =Sp(2, Z); thus
putting all known data on conjugacy classes of Sp(2, Z) into our formula (5.24),
we shall derive a completely eXplicit formula for dim S,(Sp(2, Z)), and see that
it coincides with the one that has been given in Igusa [15] (see (0.3)). All data
that we quote here will be used also in the next section.

-6-1. We quote the followmg results on conjugacy classes, from Miinchhausen
[19], [20]. For elliptic classes, the same results are obtained also by Sakamoto

22].

THEOREM 6-1. The complete list of representélz’ves of Sp(2, Z) which are of
type as in Theorem 1-7 are as follows:

1000
i Jo100 1
(@) central: =+ay= 0010 (x=1)
0001
(b) elliptic:
0 0 10
b2 a= _(_)1 g 8 é ~a(z/2, 7/2) (x241)2
0 —1 00
0 0 1 0
tay= _01 g _01 (1) ~a(2r/3, 21/3) (x?+x+1)
0 —1 0 —1
-1 0 —10
+ay= (1) _01 8 _01 ~a(—21/3, —22/3) (- x+1)°
01 0 0

(b-1)

+a;=

A=

x1—

(2483

O3~
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~a(—n/4, 3n/4)

1 ~a(—3r/4, n/4)

—1L 0 e/ e/

B O

L\ a(=2/3, —n/3)

[}
O O

~a(2rn/3, —x/3)

0
0
)NC((—ZTL'/B, 7/3)
0
1
0
0

COO COHO OHOO OHOO
—
| oo moo o

ok
r—-‘ O OO OOO[

[
-

|
-
oo

Na(—27r/3, 71'/3)

o OO

0

co oMo
I
—

~a2m/3, —x/3)

et
o |
—

bt

NQ(—T[/6, 57'['/6)

coro ol

O H OO H OO O
~mooo ol om
ool

457

(x*+1)

(x'+1)

(x*+1)

(P+x+1)(xP—x4+1)

(P4 x+D(x2~x+1)

(x4 (xt—x+1)

(P +x4+D(x2—x41)

(P x+ 1) x*—x+1)

P+ x+1)(x2—x+1)

(x*-=x*+1)
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)-3)

i"‘“:(—l 0
0 —1
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0100
0114=((1) 8 é (1) ~a(r/6, —57/6)
~10 0 0
011 1
+a15-—( 0 o o Y hanss, x5
~10 0 —1
—10 1 0 \ _‘
+a16=(_01 e L atdnss, 2/5)
1 —1-10
0 —1-1 0
iam:(“ll o0 o at—tz/5, —22/5)
01 0 0

01 0 0
00 1 0

10
00
Ta=
01

0

0

00 —1 -1
1—-1-1
= 0 ~a(—2x/5, 47 /5)

-1 0
0 —1
0 0 ~a(f2ﬁ/3, —7/2)
0 0

0
0

DO b

~a(2r/3, n/2)

o |
—

~a(—2r/3, ©/2)

Q
)
Il
P SR
o |
—
oo
I
—
SO O oo~

[l
oo o

OIO)—A
o

1 —01 ~a2r/3, —x/2)
0

~a(—2x/3, 0)

I+

w

=

i
—

| oo o

—
OO oo o
< | O

—
O oo

(= 22+1)

(2 x2+x-41)

(i x5 41

(x*+xi+x2x+1)

(20 x2Fx+1)

(x*+D(x*+x4+1)

(x*+1) (x4 x+1)

(P +1)(x*+x+1)

(x®+1D)(x24x+1)

(x—1x*4-x41)

(b-5)

i
-

O O OO0 OMFHO
COHHO OCOMDO OCOHO OOHO OO

OO OO0 O

Te=

+7s=

51:

OCOOH OO0 OCOHO OO MO SO O O

e
HOOH FPOOO0O OO0 OO0

OOO'

OO O |
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[ony

~a(2z/3, 0)

ey

~a(—n/3, 0)

)Na(n'/3, 0)

—
CO HOOD HOOO HOOD HOOOD HOOO

)Na(—n/Z, 0)

)Na(n/Z, —a/2)~y(z/2)

~a(r/2, 0)

~a(r/2, —u/2)y~y(n/2)

l o ol
= [

=

0
01 ~a(2n/3, —2it/3)~7(2n/3)

0
)N&(O, )
1

1

< o

—1
1

I [ i e B ]

~a(0, )

| oo |

—
—

O = O O OO
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(x—=D¥x*+x+1)

(x—=1)%x*—x+1)

(x—=1x*—~x+1)

(x—D*x*+1)

(x—D¥x*+1)

(x*+1y

(x*+1)*

(%4 x+1)

(x—D*x+1)

(x—1*x+1)y
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(d) eliiptic/parabolic

0
+hi(n)= _01
0
1
=+ Baln)= (1)
0
0
=hum=|
0
-1
i/§4(n)=(_?l
0
—1
iﬁrs(n)—(:i
0
0
iﬁs(n)=< (1)
0
0
ti(n)—( (1)
0
0
iﬁs(n)-—(ol
0
0
iﬁg(n)—<~ll
0

OO O OO O SO = O

SO HO OO RO SO O

O O kO

O D= O
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10 ‘
0 7 i~B(x/3, n)
10 neZ

0 1 n#0

—10

0 n \~pB(—x/3, n)
00 neZz

0 1 n+0

—10 .

0 7 \~px/3, n)
—10 nez

01 n+0

10

0 n Nﬁ(Zn'/S, n)
00 nezZ

01 n#0
11

0 n i~B@r/3, n—1/3)
00 nez

01

-1 0

=1 n |~pB@4xn/3, n+1/3)
-1 “‘l nEZ

0

~10

0 n \~pf(—=/2, n)
Ov 0 nez

01 n=+0

10

0 7 i~B(x/2, m)
00 ne”zZ

01 n+0

1 —

0 ni~fBln/2, n—1/2)
00 neZ

0 1

(x—1)*(x*—~x+1)

(=¥ xP—x+1)

(x—1*(x*+x+1)

(x—i)z(x2+x+l)

(x—D¥x*4-x41)

(x—D¥x2+x41)

(x—1)x>+1)

(x—DHx*+1)

(x—D*x*41)"

+Bu(n)=
(i) d-parabolic

G-1)  ou(m, n)=

(-2 £h(n)=

(k) parabolic

k-1)  zelS)=

(k-2) +ey(S)=

|

OO O

OO O OO O = OO O OO = O O OO O = OO O

O DO O =
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[l =]

O O - D

—10

1 n\~B(—x/2, n+1/2)
01 neZ

01

0
n |~§(m, n)

0 (m, n)eZ?
—1 m, n#0

O o 3

m —1
1 n Ng(m, n)
0 (m, n)sZ?

0 —1 m, n0

2m  m+2

m—2 n ~d(m, 2n—m)
1 1 (m, nyesZ?
0 —1 m, 2n—m+0

2m—1 m

m—1 1 \~§m—1/2 2n—m-+1/2)
I 1 (m, n)eZ?
0 —1

n 0

0 0 \~5(n, 0

1o nez

0 —1 n0

n —1

10 \~é(n, 0)

10 ned

0 —1 n+0

S12

S1 Siz
S12 Sg S_(Sl 312>ESM2(Z>
reduced, dejinite

S12 Sz
reduced, indefinite,

o s“) s=(* ¥)esmyz)
—det S&(Q*)®

461

(x—1)*(x*4-1)?

(x—1)¥x+1)*

(x—1%(x+1)

(x—D¥x+1)

(x =D x+1)?

x—DHx+1)?

=D

(x—=1p

(x—1»¢
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1 0 0 s
0 1 S12 Sg 0 s5p
+ = —
elS= 0 0 1o S (812 SZ)ESMZ(Z)
00 01 0=5,<2s,
1 0 00
010 »n 0 0
k-3 =+ - =3
9 —5‘<S)<0010 s=(p 1)
000 1 neZ, n+0
(1) paraelliptic
0 —10 —n
_ 1 0=xn 0 ~P(—z/2, n)
Fi(n)= =m/2,n
<O 00 neZ
001 o0 n#0
0—-1 0 —n
Paln)= é 8 "Z)H 0 \~p(—n/2, n+1/2)
- ned
00 1
0—-11 —n
- 10 n —1i~us(— 2
Fa(m)= F(—n/2, n)
_ 0 00 neZ
001 o0 n+0
0—-1 1 —n
mmz( DOt U2, 1
- nes.
00 1 0
0 —1 —n —2n
1 -1 n —pn 2
o ~i(2r/3, n)
W= 0 o neZ
Q 0 1 0 n#0
0 -1 —n —2n
i 1 =1 n+1 —n ~72z/3, n+1/3)
EPn)= ’
¢ 0 0 —1 —1 neZ
0 0 1 0
0 —1 —n —2n
7, (m)= 1 =1 n4+2 —n ~72r/3, n+2/3)
0 0 —-1 -1 neg
0 0 1

{x—1)*

(x—1)

(x+1)?

(x?+1)?

(x2+1)

(x*41y

(rhxtly

(x4 21y

(x®+x41)2.

Here we note that “+” means that —7 should be added in the list, although

we are writing +7 alone.
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REMARK 6-1. The parametrization of non-elliptic families are slightly dif-
ferent from that of Miinchhausen [197. Also we are taking different representa-
tives from [19], in some cases, in order to make them to be mutually commuta-
tive in each famﬂy, or in other words, that they should be transformed into the
canonical forms simultaneously.

6-2. Here we shall describe briefly the centralizers C(r; I"), I =Sp(2, Z),
for each representatives of conjugacy classes listed above. Again, the most part
of the results are contained in Miinchhausen (207, and in Sakamoto [22] for
elliptic classes.

(b-1) and (b-2): For these classes, C(y; I') are finite groups. Their orders are
as follows.

#Clar; 1)=32, $Clas; 1) =4Clay; I)=T2,

#Claw; IN=4Clas; IN=8, #Clas; [N=8, #Cla,; =12,

#Cas; 17=36, #Clas; IN=§Clas,; [N=12,

#Clans; IN=#Clerse; IN=36, $C(ase; IN=4Clars; =12,

#Clons; I =4Class; IN=$Clay; IN=£Clans; I)=10,

$Clays; F>:#C(a’20§ [’):#C(azl; F):#C(azz; Iy=24.

(b-3): Let Co(8; Gr) be as (3.2). Then Cy(B; Ga=SL.(R) and Co(B;I) is a
lattice of Cy(8; Gp). We have
C(Bs; I)=CBe; I)=C(Bs; IN=C(B; I
I ECA ) (Si<e),
J=0

1000

0 0 o b .
CEs D=\ o ¢ 1 o | Cesluml  asize.

0 ¢ 0 d

[OB:; I): (=1 Cs; T1=3  (1<i=<4).
ClBs; D=C(Bs; = H BiC(B:; ) (1=i=6),
[C(B:; I): {1} Culs; T)I=2  (i=5, 6).

(b-4): Let y=y(8) be as in Theorem 1-1, and let Co(y; Gr) be as (3.8). Then
Coly; Gri=SLy(R), and for each 7,1 such that Ti=gr(0)g, gClyi; Mg is
a lattice of Cy(y; Gg). Put, for each rational number b, q,

a 0 b 0

0 0 & b A
6 Taino=il ¢ 40 (e Fnstal
0 ¢ 0 d
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Then we have Co(yy; I=I(r; 1, 1), and

Cory; D= I ri T 1, 1),

[CG; 1): Colrs; D1=2.

Cres Dy=g(, I, hihihi Ty 4, D)g™

100 1/2 0100 40 32 0
{0tz o), J-1000) _f04 032
o001 of ™ o001/ 100 ¢4 o

000 1 0 0—10 010 0 4,

3/2 0 1/4 0\/1 10 0\
po| 0820 1/4)—11 0 0
*=l1 01200011}

0 1 0 1/2/\0 0 —11
GG I): gl(y; 4, Vg™ 1=
[CGe; I'): Colye; IN1=4.

Clys; F)=g(ﬁ hi I'(r; 6, 1/2))g‘1,
J=1

2 0 0 0 1000
|1 —vT o0 0 h| 0100
€510 0 12 V36 Tl o010 )

0 0 0 —+/3/3 0001

172 372 0
ho| V32 12 0
' 0 0 1/2 f/z

0 0 —3/2 172

172 —/3/2 0
h| V32 12 0
S ) 0 1/2 f/z

0 0 32 172

0 +/3/3 0 0 0 1/2 0
| —VEB 0 0 0 0 0 1/2
“E o 0 0 +3/3 —6000

0 0 —+/3/3 0 -6 0 0

12 36 0 0 0 1/2 0
L~V 12 0 0 0 0 1/2
oo 0 12 «/_/6—6000

0 0 —/3/6 1/2 —6 0 0

Cusp forms on Siegel upper half plane 465
1/2 —+/3/6 0 0 0 0 12 0
hoe V3/6 172 0 0 0 0 0 1/2
& 0 0 172 —~/3/6\—6 0 0 0 f
0 0 V36 172 0 —6 0 0

Colys; D=gl'(r; 6, 1/2)g™,
[CGs; I Colrs; I')]=6.

(b-5): Let Co(d:; Gr)=C(5,; Gp). Then Co(dr; Gr)=SL,(R)X SL,(R), and

Co(d1; I') is a lattice of Cy(d,; Gg), isomorphic to SLAZYXSLAZ).

s 0 b1/2 0 a; bi [ d;eZ

0 a, 0 b2 a[d, ,b,t’tt—l =
2c, 0 d;, 0 ; a1=d,, dJ—az (mod 2) g
»0 2, 0 d, » bi=¢,;, 1=

Code; IN=C(0s; =g

0 0 1/2
11/2 0
0 { 0 (0, =gb:1g7Y).
0 0 1

0q
I
OO O M

Non-elliptic conjugacy classes

In the following we shall give, for each family [7],, a matrix T eGp which
transforms the elements of [7], simultaneously into the canonical forms; namely
T-%7'T is a canonical form as given in Theorem 6-1, for all r'€[lrlr. By using
this T, we can write down explicitly the subgroup C(y; I") of C@r; I so that
we can compute the index

(6.2) ind()=[CG; I': Co(r; I3,

which appears in our general formula (5.24). Note that ind(y) depends only on
the family [7]r, except for the parabolic classes,

(d) elliptic/parabolic

2 0 0 0
s s s s 01 0 0 L .
BBy BB T=| (= e=v3/6. ind()=6 (1<i=d).

0 0 0 1

c 0 0  1/3
5 A ¢/21 +/3¢/6 0 o ST ot AN g
Be Be T=\(/2 0 vFo/2 -1 /3] ¢=2V3/3 ind(By=3 (=5, 6).
; 00 0 1
B, Bs: T=1, indf)=4 (=7, 8).
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B, 1310 H

(j) O-parabolic
G-1) 0,: T=1,

S
~
Il

o
iﬂ
I

G-2) é,:
52: T=

(1) paraelliptic
fi: T=1,

SO O OO O

O OO
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1 0 0 12
|12 -1 =12 0
, 0 0 1 -—12
0 0 0 -1
00 1/2
11/2 0
01 0
00 1
0 0 —1\/Z 0
1 -1 0\ 0o 7,2
0 1 —1/2)l 0 o0
o0 1/\o o
0 0 —1/4/vZ 0
1—1/4 0 | 0 v2,2
0 1 =172l 0 o0
00 1/\0 o
00 1/2
11/2 0
01 0
00 1
000
101/2
010
00 1
00 1/2
1172 0
001 0
00 1
00 1/2
11/2 172
001 0
00 1

ind(f;)=4

(t=9, 10).

ind(3,)=2.

ind(3,)=2.

ind(By)=2.

ind(3)=2.
ind(3)=1.

ind(8,)=1.

ind(7,)=2.

nd(P.)=2.

ind(Py)=2.

ind(7)=2.
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vz 0 0 0
L V22 —B/2 0 0 U
5. T= 0 0 VI NE/6 ind(75)=3.
0 0 0 —+/6/3
vz 0 0 —+/6/18
Lo [ V2/2 —V6/2 V212 —T4/6/36 s
e T= 0 VIZ2 6/ ind(fe)=3.
0 0 0 —+/6/3
V2 0 0 —+/6/9
. _|vVZ/2 ~v6/2 V26 —T/G/18 N
fr T= 0y 0 V22 B/ ind(-)=3.
0 0 0 —+6/3

6-3. Putting all these data into (5.24), we obtain an explicit formula for
the dimension of S.(Sp(2, Z)):

THEOREM 6-2. We have, for k=5,

(6.3) dim S,.(Sp(2, Z2N=224r:; k),

where the sum is extended over the complete set of representatives of conjugacy
classes modulo +1, of families in Sp(2, Z) listed in Theorem 6-1. The contribu-
tion Hy; k) of [+y1r is given in the following.

Hao; k)=27°3"5"42k—2)(2k—3)(2k—4)

Hay; B)=27"(—1)*

Heva; B)+Has; B)=—2723"3[0, 1, —1; 3]

Hau; R)+Has; R)+ias; B)=27°[1, 0, 0, —1; 4]

Haq; k)+ias; k)=3"%—1)*

Haes; B)+tlase; £)=2723"7[2, 1, —1, —2, —1, 1, 6]

Hawu; B)+ion,; B)=273"[2, 1, —1, —2, —1, 1; 6]

Kaus; B)+tan,; )=272371[0, 1, —1; 3]

Hews; B)Ft(ense; k)+ - +tlas; B)=571, 0, 0, —1, 0; 5]

Hotss; B)+tatse; )+ -+ +tlage; k)

=2"%3"[1,0,0, -1, —1, -1, —1,0,0, 1, 1, 1; 12]
HBi; RI+1(B.; £)=273[2k—3, —k+1, —k+2;3]
HBa; B)+#(B; B)=2737 [ —1, —k+1, —k+2, 1, b~1, k—2;6]
, H(Bs; B)F1(Be; B)=2753"1[—2, —p+1, —k+2, /e——l'; 47
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Hi1; k)=2"3-Y2k—3)

H7a; B)=2""(2k—3)

Hrs; B)=2"13-%2k—3)

t0y; B)=2""3"A—1)* 2k —2)(2k—4)

10z B)=2"%3"(—1)*(2k—2)(2k—4)

«Bs; B)+1(Be; B)=2"73-100, 1, 1, 0, —1, —1;6]

HBss B)+1(Be; k)=—213-1T2, —1, —1 ;3]

#(Ba; B)+1(Bs; I)=—3T1, —1, 0; 3]

HBe; B)+H(Be; by=—27[1, —1, —1, 1% 4]

#Bo; B)+t(Bu; BY=—2"1, —1, —1, 1; 47

123 By=tB,; =27%(~1)*

1055 B)+H(.; By=2-5(—1)*

6,5 B)=—2%3-3(—1)*(2p—3)

1525 k)y=—2"%(—1)%(2k—3)

Hey; b)=2-331

t(ey; £)=0

Hes; B)y=—2713"1

Hes; B)=—273"2(2k—3)

WPes ) +1(Fe; B)=1(e; B)+1(7,; b)y=—2-¢

UPs; R)+HHFs; k) +17,; b)y=—2713"1,
where t=t(R)=[1, t;, -, tp-1; p1 means that t=t; if k=j (mod p) 0=7=p-1).

An easy calculation shows that the generating function

g}sdim SHSp@, Z))i*

coincides with (0.3), which was given by Igusa [15].

REMARK 6-2. It would be interesting to observe thaf, if we put k=4
formally in (6.3), we get the correct value 0. On the other hand, if we put
k=3, we get —1, while the correct value is 0.2

COROLLARY 6-1. For the principal congruence subgroup I'(2) of Sp(2, Z),
the dimension of S (I'(2)) is given by ‘

» RI%M{\RK 6-3: Ir'l’ 971, we shall give a different proof of the above formulae for the
elliptic contributions to dim St (Sp (2, Z)) using (2.18), which is independent of Theorem
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6.4) dim Se(I'2)=taae; k)+2,(5:; k)+tz(§1; B)+1,(8:; k)
Foley; B)+ioles; R)Ftoles; k),

where ty(r; k) denotes the contribution of the families of I'(2) contained in
[Flspe. N I(2), which is given by

toato; )=27%3-2k —2)(2k —3)(2k —4)
101 ; k)=2%5(—1)*(2k —2)(2k —4)
1451 ; k) =2-23%5(—1)*
1015 b)=—2"%3.5(—1)*(2k —3)
toes; B)=2"%3.5
toles; R)=—273.5

ties; k)=—275(22—3).

~ This is an immediate consequence of Theorems 6-1, 6-2, and the fact that
I'(2) is a normal subgroup of Sp(2, Z) of index LSp2, Z2): I'2Y]=720 (see
Remark 7-1 in §7-2). :

§7. Application (2): the case of I* =13(p)
7-1. For each positive integer N, the group I3(N) is defined by

@y 11,(N)={(é g)ESp(Z, 2); C=0 (mod M)},

Throughout of this section, we. assume that N=p is an odd prime. We shall
describe briefly how each conjugacy class {7} spe.z, listed in Theorem 6-1, de-
composes into [(p)-conjugacy classes. Put, for each resp@, Z),-

(7.2) My ; Ip)=1{x=Sp2, Z); x"rxcly(p)}.
Then as in Lemma 1-1, we have a bijective map
(7.3) 7 sm,zml}(p)/m == Cr s Sp2, Z0\M(r ; T(p)/ (o),

which sends the class {x~rx} Iy to the double coset Cx1=C(y; Sp2, Z))xI\(p).
The following lemma, which is proved easily, will play an essential role in
the computations of this section.

LEMMA 7-1. As a complete set of representatives of the coset space
Sp2, Z)/T\(p), we can take the following [Sp2, Z): I (p)]=(p+1)(p*+1) “generic”
elements : :
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a—b—10 —ba 0 —1 fa b —1 0
01 00 1000 b ¢ 0 -1
74 10 00 ("r’(0100)’1000’
b 0 01 010 0 10 O
1 000 1000
0 ¢ 0 —1 0100
0010°7V 00107/
0100 0 0 01

where a, b, ¢ runs over the rational integers modulo p.

REMARK 7-1. We shall often confuse an integer modulo p, with an element
of the finite field Z/pZ, and denote by a~* the integer x (mod p) such that
ax=1 (mod p).

Combining this lemma and (7.3), we can decompose the set {rrsoce. N o(p)
into I5(p)-conjugacy classes; Namely we first pick up, among the representatives
x in (7.4), those which satisfy x~%rx el(p), and then check whether they belong
to the same C(r; Sp(2, Z))-I3(p) coset, or not. These are carried out by

elementary, though somewhat lengthy, straightforward calculations. In the fol-

lowing, we shall list up the set of x’s which form a complete set of representa-
tives of the double cosets in (7.3), for each representative of the conjugacy class
of Sp(2, Z) in Theorem 6-1.

7-2. Here we treat the case (b-2), i.e., Y=ai, a,, and as, separately, where
the situations are most complicated. Suppose y=a, (resp. @, or a;). Then a
direct calculation shows that x~Yrx ely(p) (x is one of the elements in (7.4)) if
and only if ’

-5 0 0 —1
{1000 e
=4 0 0 with 4*4+1=0 (mod p),
0610
or,
a 0-1 0
x= g S 8 “01 with a*+1=¢4+1=0 (mod p)
010 0 (resp. a?*+a-+l=c24c+1=0 (mod p)),
or, .
a b—-10
x= ’; g g "01 with b=£0, a+c=a?+1-+b2=0
01

0 0 (resp. H=£0, atetl=a*+a+1+52=0)
: (mod p).

It is easy to see that the first elements are equivalent (i.e., belong to the same
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double coset in (7.3)) to the third ones. Among the 4 elements in the second,
two, which correspond to (g, c)=(a, —a), and (—a, a) (resp. (a, —1—a), and

(—1—a, a)), are equivalent. As for the elements in the third, we have

LEMMA 7-2. The elements corresponding to the following values of (a, b) are

equivalent :

r=a: (£a, +b), (+1/a, +b/a)

—1—a

r=as ac: (a, xb), (~1—a, +b), (I/a, =b), (T2,

—1

—b

1

PROOF. Omitted.

1+a’ + 1+a)’ (l_—l—aa’ = 1_—1——121 )

By using these results, we get the following lists.

2)

(7.5) ay:
) number of double order of the
* P mod8 | ocets in (7.3) centralizer
a 0-=1 0 1 241 32, 16
0 ¢ 0 —1 5 241 32, 16
1 00 0 3 0
010 0 7 0
a*+1=0
c*+1=0
'1;—9
1 12 4
a b —1 0 g 8
b—a 0 —1 »—5
10 0 o0 5 5 +1 4,8
01 0 O
-3
b2, 3 ?8—+1 48
a*+1+52=0 1
1
7 3 4
(7.6) a, and a,:
number of double order of the
* p mod 12 cosets in (7.3) centralizer
a 0—-1 0 3 1 72
0 ¢c 0 —1 1 2+1 72, 36
100 0 7 241 72, 36
010 o 5 0
a*+a4-1=0
¢ c+1=0 11 0
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3 0
¢ b —1 0 1 : %“21—3+2 6, 12
b —1—a 0 —1
1 0 0 0 7 _2:7__,_1 6, 12
0 1 0 0 12
b=£0 p—5
ai+a+1+b=0 5 TR 6 12
. T pH1
11 - 6

DEFINITION 7-1. For each y&Sp(2, Z), let 74, -, 74, d=d(y), be a complete
set of representatives of Ii(p)-conjugacy classes contained in Y spe. xNLo(p).
We define the “relative MaB of r”, with respect to Sp(2, Z)/T|(p), by

7.7 mly ; Sp@2, Z)/Ty(p)= g: [CGs; Sp(2, Z2)): Cre; To(p))].

We shall often denote it simply by m(y). Note that, it depends only on the
conjugacy class {r}spe.z. Also note, from (7.3

(7.8) d()=%Clr; Sp2, Z\M(r; Tv(p))/ T\(p)) .

REMARK 7-2. Relative MaB can be defined similarly for any lattices I3O1}
such that [I7: [}]<co, If I} is a normal subgroup of I3, we have m(y; I1/I3)
=[{1:I}] unless d(y)=0. The elliptic contributions for dim Si(I7) are related as

(7.9) dim SuD| {tr,nLe=mly ; I/ 1) -dim S| ir,

for each conjugacy class {rlr,. We have used this fact for the compu.tation of
dim S,(I"(2)) in Corollary 6-1.

As an immediate consequence of the above results, we get

PROPOSITION 7-1. The relative MaB of a,, ey, o with respect to Sp(2, Z)/Tp)
are given by
—1
mlas)=p+2+(=>),

(7.10) _3
T) p>3

1 o p=3.

p+2+(

mlas) =mlas)=

Compare this with (7.21). We can prove this also by using local computations
as expained in §1-3.
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7-3. In the cases where 7 belongs to (b-1), we have always C(r; Sp(2, Z))
=C(r; I(p)), so that m(y)=d(y).

(7.11) r=a, as:

b (mod 8) x aw)
PP ERA N P 2=
_ ¢ 0 — =
1 100 0P |100 o0 4 | el=0
010 0 010 0 (mod $)
—15—10
b 100 be+2=0
3 1000 2
0100 (mod p)
a 0-1 0
0 a 0 —1 a’+1=0
5 100 0 2
010 0 (mod p)
7 f 0
(7.12) r=ay:
i
» (mod 8) ( x ai)
2041 a —1 0 b b—1 0 _
30220 +1=0
. @ 2e+10 —1) [b 10 -1 bf;;?
1 0 0 o0f|100 o0 =
0 1 0 0 010 0 (mod $)
2a+1 a —1 0
3 a 2a¢+1 0 —1 2 3a*+2a+1=0
1 0 0 0
0O 1 0 0 (mod $)
b b—1 0
b 10 -1 B*+1=0
5 100 0 2
010 0 | ' (mod p)
7 0
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(7.13) r=ay:
0—-b—-10 2¢ a -1 0
_ —3\\¢ /01 00 a 2a 0 -1
4=(1+( 5 ) "‘<1 o oofl1 0 0 o0f
b 0 01 60 1 0 0O
B*+b+1=3a>+1=0 (mod p).
(7.14) 7=ay: . »
a O —1 0 2 —
a’+a+4-1=0
_ —3\\2 10 ¢ 0 -1 _
d(r)—(l+(7)), =1 00 o) cHeri=0
0 1 0 0 (modp).
(7.15) T=as, as: ‘
-2 b =190 a 0—-1 0
B =3w _[b5 10 —1) [0 a0 —1
dm—(“r(“p—»’ 1 00 o0fl100 o}
0 10 0 010 0
b*+3=a*+a+1=0 (mod p).
(7.16) 7T=ay, as: 0—1 0
a — 2 -
a*+a+1=0
(=3 [0 ¢ o0 —1 -
an=(+(7)) a= ] &0 G ereti=o
010 0 (mod p).
(T17) r=as, ay:
p (mod 12) x aw)
—1 b —1 0 a 0 -1 0 b2+lEO
1 b 00 —1 0 ¢ 0 -—1 4 et 1=0
100 0fl100 o0 =
V0 1°0 0 010 0 (mod p)
—1b—-1 0
b 00 —1 b2+1=0
> 100 0 2 '
010 o (mod p)
a 0—-10 f
7 0 ¢ 0 —1 2 a*ta+1=0
3) 100 0 (1)
010 0 (mod p)
11 0
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(7.18) r=aus, -, an:
p (mod 5) x 4o |
a b—-10 E a*~+at4a+a+1=0
1 b ¢ 0 —1 i =—1/(a+1)
® 100 0 J D | =—1/g
010 0 | (mod p)
2,3 4 L0
(7.19) V=0, *or, Qg e 0 —1 0
. —1 -3 10 ¢ 0 —1 . 1
d(T)—(l‘f‘(T))(l—i‘(T)), x= 100 0 a*+a+1=c2+1=0.
010 0 (mod p)
7-4. For elliptic elements of types (b-3), (b-4), (b-5), we have the following
results :
(7.20) r=84, -, Be:
|
7 % | an | m(r)
a 0-10
8: 0100 1+ =3 (p+1(1+ ;3_ a*+a+1=0
000 1 (mod p)
a 0—-10
Pubs 111000 1+(55) (HD(H(T))
0001 (mod p)
(7.21) 7=71, 7o 15t
7 o d() m(r)
—b0 0 —1
1 000 —1 —1 p»L1=0
[&! 1, 010 0 2+(T) ﬁ+2+<—p°—)
0 b 10 (mod p)
—bb 0—1
1000 —1 —1 b2+1=0
o lelg 100 () p+2+(57)
6010 (med p)
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—50 0 —1 l
1000 -3 —3
ol Blo1 oo (") P42H(57) | pppri=0
0510 >3
| (p=3) {(mod p)
(7.22) 7=0s, 6,1 d()=1, x=1,, m(r)=(p-+1)

7-5. Now consider the non-elliptic elements. Let P,, P; be the Q-parabolic
subgroups of Sp(2, Q) as in (2.9). Ii(p) has three (resp. two) point (resp.
1-dimensional) cusps, which correspond to the double cosets decomposition

(7.23) Sp2, 2)= 11 PAZ)x.T(p)
(resp, Sp(2, Z)=i];I1 P;(Z)xiﬂ(ﬁ)>,
0 0-10 1000
0 00 —1 0 0 0-1 _
where x;=1,, x,= 100 0f % g 1.0 p and P(Z)=P;~\Sp(2, Z).
010 0 0100
Put
(7.24) Pi=x7"Px; (7=1, 2, 3; j=0, 1).

Then it is easy to see that, every paraelliptic, J-parabolic, and unipotent (resp.
elliptic/parabolic) elements of I(p) are conjugate to an element of PUZINT(p),
i=1, 2, 3 (resp. PUZINT(p), i=1, 2). The following lemmas are easily proved:

LEMMA 7-3.  Suppose’ £€35p(2, Q) is conjugate to (é ‘i), det S#0. Then there
exists a unique Q-parabolic subgroup P¥ of type (P,) such that gePty. If

x—l((l) ?)xEPo for x€Sp(2, Q), then x<P,

LEMMA 7-4.  Suppose g€5p(2, Q) is conjugate to =go Xt+w

O N Oy
SO O
O 8 O
—or o

#2, u#0. Then there exists a unique Q-parabolic subgroup P¥ of type (Py), such
that geP¥. If h™'gheP, for heSp2, Q), then heP,.

By using these lemmas and Lemma 7-1, we can show that each paraelliptic,
0-parabolic, and parabolic (resp. elliptic/parabolic) family of Sp(2, Z) decomposes
into three (resp. two) families of I'y(p), corresponding with P, i=1, 2, 3 (resp.
Py oi=1,2), if it is non-degenerate, i.e., not of type (j-2), (k-3).

For each element 7= ly(p) of ahove type, we put
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(7.25) H=LC(r; Sp2, Z)): Coly; To(p))].

7-6. For elliptic/parabolic elements, we have the following list of represent-
atives of conjugacy classes of families:

(7.26) r=Fi(n), =, Buoln):

;o x oan | A
a 0—-10
00 0 —1 -3 a*—a+1=0
100 0 1+,( b/ ) P n=0
. 010 O
(n)
& c 0—10
0100 -3 _
—_ 1 E—c+1=0
(l 00 0 1+( 7 ) ct—c+
0001 (mod p)
a 0—-10
0 00 —1 =3 a*—a+1=0
(1 00 © l+( p ) P n=0
. 010 O
n
pelr) c 0-10
0100 —3 _
—_— 1 E—c4+1=0
<1 00 0 1—{—( P ) c—c+
0 0 01 (mod p)
a 0 -1 0
000 —1 1+(i) » a*—a+1=0
100 0 ‘Np (p>3) n=0
010 0
—1a—1 0
A a 0 0 —1 P a=0,1,2
ﬁs(n) ( 10 0 0 3 (ng) ne= gt
010 0O
¢c 0-—-10
0100 —3 _
— 1 f—c+1=0
(1 00 0 1+( 7) emer
0 001 (mod p)
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e 0—1 0 —2a—1 a —1 ¢
000 —1 =3 b a*—a+1=0 ¢ 00 -1} =1 2a°+2a+1=0
100 0 1+(5) 553 | w0 1 00 0 ) GO B
010 0 5 0 100
Beln)
—1la—-1 0 ¢c 0—-10
A a 00 -1 P a=0,1,2 0100 1+ —1 1 c24+1=0
Pm 100 0 3 (523 | nm—qr 1000 (<)
010 0 0 0 01 (mod p)
c 0-10 —2a—1 a—10
0100 -3 . _ a 00 -1 1(=L 2a*+2¢-+1=0
(1 000 (5 |1 [ emeri=o ( 1 00 o) () ? =12
0001 mod . 00 1
(mod 2) Buotn)
3a~1 a —1 0 _3 c 0-10
¢ 00 —1 1+(7,—) , 3a*—3a+1=0 (1) (1) 0 8 1+<_—1) 1 t+1=0
1 00 0 (»>3) n=1/3 0 ?
N 0 10 0 0 (p=3 0001 (mod p)
Bs(n) (p=3)
¢ 0-10
0100 = , N .
1000 +<—p—> 1 cF—c+1=0 7-7. For §-parabolic elements of non-degenerate type, we see that two
000 1 (mod p) families correspond to P, hence there are four in all.
3¢a—1 a—1 0 _3 (1.21) y=6im, n), -+, O(m, n):
a 00 —1 H’(T) o 3a®—3a+1=0 7 x 20()
1 00 0 (p>3) n=-1/3
. 0 10 0 0 (p=3) 1, 1
Be(n) p= res
€910 0 0—10 op. 10
_ - .
0100 1+(=2) 1 et 1=0 000 1) [+ 00 -1 .
1000 2 =p=
0001 p (mod ) 100 ofl100 o P m=n=0
P 010 0 010 0
a 0-1 0 0x(rm, n) 100 0 2r=1
000 —1 —1 a*+1=0 resp. o
(1 00 0 1+ p> p =0 ds(m, m) 8 8 (1) 01 (mod p) p n=0
Bu(n) 010 0
01 00
Ben) ¢ 0~—10 -
0100 1+(:i) 1 2+1=0 (1) 8 g ol
1000 P e 010 0 b m=0
0001 d
(mod p) 0010 {(mod p)
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1, p+1
0 0—1 0
&4(S) 000 —1 ,
pH(p+1) ~(00
100 0 s=(09)
010 0

n=0 (mod p)

Ga(p)z{(f §>EGL2(Z); ¢=0 (mod p)}.

7-9. Paraelliptic elements.

(7.30) r=tin), -, Foln):
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1. 1
resp.
2 0—1 0 # 0—1 0
=n=0
000 —1} [0 0 0 —1 . =
100 0f|{100 o ? D
A 010 0 010 0 2m—1=n=0
ds(m, n)
resp. 00 0—1 =0
g(m n) 1000 b res
77 0100 P-
20 0—1 m=2n
1 O O O resp.
0100 2m—4n=1
) 0-21 0 (mod )
(7.28) r=éy(n), 8y(n):
r | x | i)
1, ‘ p+1
31(”) reSp.
resp. IRAN S
o(n) 100 oflo1o0 o p(p-+1) n=0
010 0 0010 (mod p)

7-8. For parabolic elements, we get in the same way the following list.

(7.29) 7=¢:(S), &:(S), £4(S), 84(5).!

r x io(7)
L 1 S: GLy(Z)reduced

0 0—1 0 es: t=1, ¢;=2, d,=1
000 —1
1 0.0 0 p* St GLy(Z)-reduced

si('S) 010 ¢ S=0

1=<:=<3 100 o g1 t=1, ¢;=2, di=p
00 0—1
0010 ? S: GI(p)-reduced
0100 S, =0

&g t=2, Cj=2, dj=l

7 x aq) io(r)
1, 1 1
0 0—10
000 —1 3
=0
(1 00 0 1 p n
50 0 —1
1000 -1 B
=L 1 b+1=0
0100 1-+( p) +
0 b 10 (mod p) -
1 1 1
0 0—1 0
0 0 —1 n=—yp
(l 00 0 ' ? 2r=1
Po(n) 010 0 ,
—b —r 0 —1
1 000 —1 B
: —L 1 p1=0
(0 100 1+( p) +
0 510 (mod )
1. 1 1
0 r—1 0
Foln) r 00 —1
_ 0
(1 00 0 1 b n
010 0
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—bb 0 —1
. 1000 -1 o
#s(n) (o 1o o 1+(7) 1 br+1=0
0 b 10 (mod 5)
1, 1 1
0 »r—1 0
r v 0 -1 _
(1 00 0 1 2 n=—r
74(n) 010 0 '
—b b—r 0 —1
1 0 00 -1 : B
(0 1 oo | 5 1 b+1=0
0 b 10 “ (mod p)
1, 1 1
0 0—1 0
000 —1 B
100 0 1 P n=0
010 0 (p>3)
a 0 -1 0
0—a 0 —1 B
(1 0 0 0 3 » n=q
7s(n) 01 0 0 (p=3) (a=0, 1, 2)
—50 0 —1y
1000 =3 1 B 4b-+1=0
0b 10 v
—la 0 —1
1000 B
(0100) 3 1_ (a=0, 1, 2)
0110 (»=3) (mod 1)
1, 1 1
) —s0-—1 0
7eln 0 s 0 —1
1 00 0 1 P n=-—-s
010 0 (p>3) 3s=1
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—ba 0 -1
Peln) (1) 0 8 0 1+(:§) 1 b*+b+1=0
1 0 Y4 (p>3) a=—b/(2b+1)
0510 (mod 5)
14 1 1
—2s 0 -1 0
0 25 0 —1
1 Os 0 0 1 by n=—2s
Fa(n) 0 0 0 (p>3) 3s=1
—ba 0 -1
1000 —3 b b1=0
1+(— 1
0100 ( p ) (5>3) a=—2b/2b+1)
0610 S (mod 5)

7-10. Finally we put all these data into (5.24), and get the following ex-

plicit formula for the dimension of S.(Iy(p)):

THEOREM 7-1.

(7.31)

We have, for k=5, and an odd prime p,
dim Sk(ﬂ(p))=§ t(re; &),

where the sum is as in Theorem 6~2, and 1o(7i; k) is the contribution of conjugacy
classes of families contained in [xrdspe.nLo(p), which is given as follows.

tolae; B)=27"3757(p+1)(p*+1)(2k —2)(2k —3)(2k —4)

ACH k>=2”(1>+2+(_71))<—1)k

tolas; B)+tplas; B)=—2"23"0, 1, —1; 3%

tplas; k)4 - +tp(as; £)=27[1, 0, 0, —1; 4]><[

tlan; D +olen; D=3(1H( 1) (-1

-3
(p+2+(—p—)) o p>3
1 ce p=3

4...p51
2. p=3 5 (mod 8)
Q- ;DE7

tolata; B)+tp(ass; k):2‘23'2(1+<;p3—>>2[2, 1, =1, —2, —1,1; 6]

ty(atss; k) Fopla k)=2‘23‘3(1+<:;)>2[2, 1, ~1, —2, —1,1; 63



484

Ki-ichiro HasuimoTo

w

tplays; B)+to(a; k)y=27%3"10, 1, —1; 3IX

(=3 N
s s S

4 -. b 1
tolos; k)t o Aiplass; £)=5"1 0,0, —1, 0; 5]x{ 0-.- $=2, 3,4 (mod5)
1. 5

tp(afls} k)4 - +tp(0(22; k)

=2"23"[L 0,0, —1, =1, —1, —1,0,0, 1,1, 1; 12](1+<:5£))(1+(—;g))

t(Bas B)Ftp(Ba; B)=273"[26—3, —b+1, —h42: 3](p+1)(1+(—;§))
to(Bs; k)+1p(Bs; B)
=273 ], —p+1 —p42 1, k—1, E—2: 6](z>+1)(1+(;3))
¢ ¢ > ) 2 td p

to(Bs; B)+tp(Be; B)=2"3"[k—2, —h+1, —k+2, b—1; 4](;;.;_1)(14_(_;_1))

L k>=2-63-1<2k—3>(z>+2+(‘71))

tolre; B)=2""(2k —3)(p—f—2+(”71)>

p+2+(‘73) e p>3

tp(0r; R)=273"(—1)*(2k—2)(2k —4)(p+1)?
tp(0z; R)=27"3"M(—1)*(2k—2)(2k —4)(p-+1)

t(Ba; B)+1p(Be; B)=273100, 1, 1, 0, —1, —1: 6](14—(_73))

8p(7s; B)=27"372(2k—3) X {

to(Be; B)+p(Bus k)=~27137[2, —1, —1; 33(”(;;1))

-2 . —3 _
+{ —3-21, —1, 0; 3](1+(—p—)) o p=3
0 ?

tp(;és§ k)‘l‘tp(téﬁ R)=—=37[1, —1,0; 3]<1+(“;—3>>X{

B B+ y(Bes )=—2701, —1, —1, 1; 43(1+( —1>)
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tp(;é9; k)+tp(ﬁlo; k):—z_sl:l: -1 =11 4]<1+(——p_1>)
t,G0; B)=t,(50; k)y=2-5(—1)*

t0s; 4,6, =2 1ix| L =]

2. p=3
tp(b1; k)=—27"3"1(—1)*2k —3)(p+1)
tp(8s; B)=—2"(—1)*2k —3)(p+1)

tpler; B)=273"1(p+3)

tp(es; k)=0

to(es; B)=—2"3"1(p+1)

tples; B)=—2743"22k —3)(p+1)

to(Fs; B)HE(Fes )=ty(Fe; R)+1(Fi; k>=—2-4(3+("71))

(mod 4)

. N el -3
to(Fes B Fto(Ge; Rttalres =—273"(3+(7),
where t=tk)=[t,, t,, ---, to-1; ¢1 means that t=t; if k=j (mod ¢) 0<j<g~1).

7-11. Numerical examples

NiS67891011121314151617181920
2000 1 0 2 0 4 0 7 010 015 02 1 2
3 0 2 0 5 010 016 02 13 34 4 6
5 | 0 5 013 025 3 44 6 66 16100 25136 45 188
7 | 0 11 02 55 159 28145 58222 97 312 143 417
11 | 2 31 9 80 33164 80 283 158 462 278 694 444 991 666 1365

REMARK 7-3. For p=2, the dimension of S#(I4(2)) has been computed by
T. Ibukiyama [14], by using results of J. Igusa.

7-12. Finally, we make some remarks on our formula (7.31), concerning the
validity for weight £=4, 3, 2. Since Selberg’s trace formula (Theorem 2-1)
works only for k=5, our result is valid only in these cases. It seems, never-
theless, not meaningless to consider the values we get in putting 2=4, 3, 2, in

view of Remark 6-2. Suppose first £=4. Then we make the following

Conjecture 7-1. The dimension of S«(Iy(p)) is given by (7.31) by putting
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Note that the similar assertion is true for the principal congruence subgroup
I'(N) of Sp(2, Z) (compare [18] with [36]). Suppose next k=3. Then some
correcting term is necessary; for Sp(2, Z), it is +1, as we saw in Remark 6-2.
This is also the case for elliptic modular cusp forms of weight two, in which the
correcting term (=1) does not depend on the lattice I". So we can make the
following

Conjecture 7-2. The dimension of So(Lu(p)) is given by adding +1 to the
value we obtain by puiting k=3 in (7.31). '

These conjectures fit to the following numerical table, in which we give the
values we get in putting to (7.31), k=4 3, 2.

N 3 5 7 11 13 17 19 23 29 31 37 41

(7.32) 4 1 13 7 11 20 27 41 75 90 143 185
3 -1 -1 -1 -1 -1 0 0 1 3 3 8 10
2 6 0 0 0 0 0 o O 0 0 0 0

Suppose finally 2=2. In this case the situation is completely different;
namely we have the following

Observation 7-1.  The fomula we get by putting k=2 in (7.31) is identically
zero ! '

We do not know the real meaning of this vanishing, and we can not make
any conjecture in this case.
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Added in proof :

After this paper was accepted, the author learned that the formula of Langlands
[17] for the integral I (r) (=x() in [17], (2), p. 101) can be made explicit and
useful also for singular elliptic elements 7, if we make a small modification of
‘it. So the calculations of ‘§3 of this paper could have been avoided, as we did
for regular element. However, to provide a completely elementary proof as
presented here would not be meaningless and is, hopefully, of some interest.




