On symplectic Euler factors of genus two

By Tomoyoshi IBUKIYAMA.

(Communicated by Y. lhara)

This paper is an attempt to find a “ genus two version” of Eichler’s corre-
spondence [47] [6]. The results have been announced in [10]. After [47, [5],
several authors have studied the correspondence between automorphic forms
belonging to discrete subgroups of SU(2) and of SL(2, R) which preserves L
functions, notably, [15], [26]. For the groups of higher rank, Thara [13] studied
automorphic forms on USp(d)={gesM,(H); g'g=1,} (H: the Hamilton quater-
nions), and, as a generalization of Eichler’s correspondence, suggested to consider
the correspondence between automorphic forms belonging to discrete subgroups of
USp4) and of Sp(2, R) (symplectic group of size four). This problem can be
regarded as a special case of the problem of functoriality with respect to L groups
proposed later by Langlands (cf. [18], [19]). Let p, be the representation of

1l ...
USp(4) corresponding to the Young diagram % 1 v‘\. Ihara clarified, among
e |y

others, that the weight of the Siegel modular forms which would correspond to
automorphic forms on USpH(4) with ‘ weight p,’ should be v+3, by showing some
character relations between p, and holomorphic discrete series representations of
Sp2, R). But there has been no known example of such a correspondence at all,
and we did not know either, which discrete subgroup of USp(4) should correspond
to which discrete subgroup of Sp(2, R). In this note, we give some examples of
pairs of automorphic forms of Sp(2, R) and USp(4) whose Euler 3-factors coincide
with each other. This coincidence does not seem accidental, since the coefficients
of the Euler factors are fairly large. These Euler 3-factors satisfy the Ramanujan
Conjecture, and are obtained from ‘new forms’ (which can not be obtained as
‘liftings’ of the forms of one variable, and are not contained in the linear span
of automorphic forms belonging to any ‘larger’ discrete subgroups). We also
propose a conjecture which seems reasonable for the present. In §1, we give
examples of new forms and conjecture. To know which form is a new form, we
must obtain all forms containing old ones. So, in §2 and §3, we give eigen
space decomposition of whole space of forms with smaller weights, together with
proofs.
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§1. Conjecture and examples

Let D be a definite quaternion algebra over @ with the prime discriminant p,
and O be a maximal order of D. Put G={geM,(D); g'g=n(g)l,, n(g)=Q*}. In
the typical case of Eichler’s correspondence, automorphic forms on the adelization
D} of D* belonging to H* 1;[0; (H=D@R) correspond with those belonging to

I(p)CSL(2, R). But in the case of genus two, there are large gaps between the
“main terms” (the contribution of the identity element to the dimension of auto-
morphic forms by means of the trace formula) of ‘level one’ subgroups of G and
I(p)-type subgroups of Sp(2, @). On the other hand, we know that any reduc-
tive algebraic group over a local field has the unique minimal parahoric subgroup
up to conjugation. So, it seems natural to consider the correspondence between
automorphic forms belonging to (global) discrete subgroups which are obtained
from open subgroups of the adelization whose p-components are minimal parahoric.
This means that we should consider ‘level 7’ discrete subgroups also for G,
where 7 is a prime element of Op:O@Z@Z p»» More precisely, put

ci={gcmy); o) Ve=n@(] 1) no=ezh

where D,=D®@Q,. For any prime ¢, let G, be the g-component of the adeliza-
@

tion G4 of G. Then, G¥ is isomorphic to G,, and we fix such an isomorphism.
Put

U;-;:(OP Op)"mc;*; and U,=Mi0) NG, for q+p.
. 70y Op

Put Uy(D)=GCG.U% 1;[ U,C Gy, where G is the infinite part of G4. Now, we define
qFp

the space M, (U«(D)) of automorphic forms of  weight o, belonging to U(D).
Regard (x, y)eH*® as the variable over eight dimensional vector space over R.

Denote by I, the R vector space of real valued homogeneous polynomial functions
f(x, ¥) on H? of degree 2v which satisfy

(1) flax, ay)=N(a)f(x, y) for any a=H, and

2) 45=0,
where N is the reduced norm of H and 4 is the usual Laplacian with respect to
the metric N(x)+-N(y) of H% Then, G acts on M, as f(x, y)—f((x, y)g) for
geG. This representation is an extension of p, to G, which will be also denoted
by p.. Then, M(U(D)) is the set of M,-valued functions f on G, such that

(1) flgh)=f(g) for all heG, and
(2) flug)=plu)f(g) for all uslUy (D),
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where wu. is the infinite component of u. For an integer n prime to P, put
T(n)=\_J UD)gUyD), where g runs through the elements of G, NG 5 1;[ My(Oy)

g a*p
whose similitudes are n. Put T(n):H g:.Uy(D) (disjoint). Then, the action of
T(n) on MU(D)) is defined by:

(T(n)f)(g)z? g f(gi'g).
On the other hand, put

* % % %
B p* w x %
B)»=S0 D00 ey o pu -

pE o ox ok

where # runs through any integers. Denote by S.(B(p)) the space of Siegel cusp
forms with weight % belonging to B(p). The Hecke operator T(n)(p ¥ n)and its
action on S,(B(p)) are defined as usual.

CONJECTURE. For each even integer k=4, there exists a C linear isomorphism
iy of ‘new forms’ of My_y(Uo(D)) to “new forms’ of Su(B(p)) such that L(s, ix(f))
=L(s, f) up to Euler p-factors for any common eigen ‘new form’ f of My_o(Uo(D))
of all the Hecke operators T(n)p ¥ n).

Here, we define new forms of M,(U(D)) (resp. Su(B(p))) to be the elements
of the orthogonal complement of the space spanned by automorphic forms of G4
(resp. cusp forms of Sp(2, @) belonging to any larger subgroups of G, (resp.
Sp(2, Q) containing Uy(D) (resp. Sp(2, R)q];[pSp(Z, Z)B(p)p, where B(p), is the
topological closure of B(p) in Sp(2, @,)). We denote by L(s, *) the (denominator
of the) L function of Andrianov type.

Now, we give some examples for p=2.  Put D=Q+Qi+Q;+QFk,
=—1, j*=—1, ij=—ji=k, and O=Z+Zi+Zj+Z(1+i+j+k)/2. Then, the
discriminant of D is two and © is a maximal order of D. We can show that
the ‘class number’ of Ud(D) (that is, the number of the double cosets in
G\G4/UD)) is one. Then, M, (UD)) can be identified with

ML )={feM,; f{(x, W)=f(x, ) for all rely},
where

a O 0 a . _
F‘)_{(o d)’ <d 0)’ a, d€0*, Nla—d)=0 mod.z}.
Under this identification, the Hecke operator T(n)(2 / n) acts dn ML) as

Flx, 3) — (T(n) f)x, y)=gedzllp =, »g),
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where
An:{gz(f S)EG(\MZ(O); n(g)=n and N(a—d)=Nb—c)=0 mod.z}.

On the other hand, by using Igusa [12], the graded ring A(B(2)) of modular
forms belonging to B(2) and the ideal of cusp forms in A(B(2)) has been given
explicitly in terms of theta constants, together with an explicit dimension formula
(cf. [11]). Now, let feM(U,D)) or S,(B(2)) be a common eigen form of all
T(n)2 Y n). Then, the Hecke polynomial of f at a prime ¢g=2 is defined by

H(T, /=T AT gy —Ag)— g™ )T~ AT +¢**-*,

where m=Fk or v+3 for f=S,(B2) or M,([3), respectively, and A(g) or A(g?) is
the eigen value of T(g) or T(¢?) on f, respectively. Denote by ML) or SYB(2))
the space of new forms of M,([y) or S(B(2)), respectively. For small odd v and
even k, we obtain the following table:

13579 2 4 6 8 10 12
dim®,(y) 0 0 1 1 2 dimS(BZ)» |0 0 1 3 6 12
dimMly) |0 0 0 1 1 dim SB@) (0 0 0 0 1 1

Define the real valued functions x;=x,(x) (=1, -, 4) on H, by x=x,+x+x]
+x.k. Put

folx, 9)=V(3)—N(x)(N(x)* = 3N(x)N(p)+N(p)*) ;:Ii[l(y_x)i , and
folx, J/)Z(N(y)~1\7(%))<1531\’(X>“—1122N(96)3N(y)+26181\f(x}21\7(y)2

—1122N()N(3)* -+ 153N ) — 1292 ;‘1 (yx)‘é) 1f[ (55)% .

Put also
X=(0%000+ o0+ 03010+03011>/4’

Y =(040000 0016800010 0011)%,
Z=(0%100—0%110)%/16384, T =(0010000110)*/256,
K=(051000 01109 10000 10010 11000 1111)%/4096, and
R=(X*—Y —1024Z —64T)/64,

where 0,(r) is a theta constant on the Siegel upper half space of genus two
given by

Onlz)= 2 exp 2mil*(p-tm’/2e(p+m’[2)/2+H(p+m' 2" /2]
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for any m=‘(m’, m”), m’, m"Z* Put
Fy=12XTR—2XY Z+X*K+YK+1024ZK-+9RK, and
F,=36YTR-+36864ZTR--3840T R*—1920RY Z +12X*TR
—21Y2Z —21504Y 2+ XY K+1024 X Z K —3840K*+13X*Y Z+7X*K.

THEOREM. Bases of MIy) or SYBQ2)) for v=7,9, and k=10, 12, are given
respectively as follows:

MYI)=Cf:(x, y),  MYL)=Cfx, 3),
W(B2)=CFr, $(B(2)=CF.
The Hecke polynomials of these automorphic forms at q=3 are given by:
Hy(T, f)=HyT, Fi)=T*+18360T°+2970164707*--3'"-183607 +3**

=(T24-108(85—8+/61)T+317)(T2-+108(85-+8+/61)T +3'7) ,
and

HA(T, fo)=Hy(T, Fp,)=T*+14760T°—93303324007 >3 - 147607 +-3**
=(T2+436(205+2+/5845969) T +321)(T2+36(205—24/5845969) T 4-3%*) .

The absolute values of the zeros of these polynomials are equal to 3*"/* and 3%/%,
respectively.

§2. Eigen space decomposition in case of USH(4)

In §2, we shall give Euler 3-factors of the Dirichlet series defined by Hecke
operators acting on M,(U(D)) for some small v when the discriminant of D is
two.

2.1. As before, let D be a definite quaternion algebra over @ with a prime
discriminant p. (Very soon, we take p=2.) Introduce two more subgroups of G,:

O, =0,

oyt vtam(% T

) NGE.

Put
UDy=G.TIU,-U¥, for =1, 2,
q#p

and let Uy(D) be as in 1.1. Decompose G4 into disjoint union:
ni
Ga= ]_IlUi(D)xijG (=0, 1, 2).
j=

Call h; the class number of UyD). Put I;=x7}U(D)x;;NG. The main volume
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(Mass) of U;(D) is defined as
j
MU (D))= 2‘1 VAT e
iz

Then, MgU(D)) t=1, 2, 0) are given respectively as
(p—D)(p*+-1)/5760, (p*—1)/5760,> (p*—1)/5760.
In fact, the assertion for U,(D) is a special case of [9] Prop. 9. The rest is easy
if we note that
[Uf,: UFl=p*+1, [U%,: Usl=p+L1.

2.2. From now on, assume p=2, and present D and @ as in §1. Put r=

i—k and gZ((l) —71) Define subgroups I (=0, 1, 2) of G by:

L=GL(0)NG, I =g"'GLx0)gNG, and DI=INI

Then, I3 is G-conjugate to U (D)"NG and h;=1 for each 7=0, 1, 2. In fact, the
first assertion can be easily proved by giving local ‘integral’ conjugations. On
the other hand, we have |I;|=1152, 1920, 384 for i=1, 2, 0, by direct calculation,
so h;=1 by Mass formula. (The fact that h,=h,=1 has been also contained in
Theorems in [9].) More precisely, I, consists of the following elements of G

1 1 1

D (o enn) @ (L ),
@ @0, (04,

(I+r*x)a r'xaaq,
(5) ( rlxa (l-l-r‘lx)aao)’

where e€0”, aoe{*l, %i, =j, =k} and xe{—i, k, (£1—i+;+£)/2}. The
group I consists of elements of the forms (3) and (4), and

B={(§ € ) 0207,

Now, since h;=1, we can identify each WM, (U,(D)) with

M(LD={f(x, »EeMy; f(x, Y)=[f(x, y) forall yeli} (=0, 1,2).

PROPOSITION 2.1. Notations being as above, the dimensions of automorphic

D This was first pointed out to me by K. Hashimoto who thought that U,(D) is
important as well as U;(D), but did not consider on Uy(D).
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forms belonging to U,(D) are described by the formulae

- b (A1t 41
Z‘i)dlm 9}2y(U1(D))t - (1»—Z‘Z)(l—t4)(l—“t6)(l—tl2)
2 o (IO (L=t tP— 124 19)
y;odlm imez(D))t - (l——t4)2(l-‘t6)(l”‘t10)

o RO i )
y=20d1m Emy(Uo(D»t - (l__tz)(l__#)z(l__te) 4

where t is an indeterminant.

593

PROOF. It is obvious that dim MUD)=( 3 tr pu1))/|[3]. So, use the
1€l
character formula of Weyl. (As for /=1, 2, an explicit formula for M.(U,(D)) for

general D has been given in [9].)

g.e.d.

Now, recall that the space of new forms MUU (D)) is the orthogonal comple-
ment of WU (D)-+M(U(D)) in MAUD)) with respect to its natural inner

metric.

Numerical examples.

v 6 1 2 3 4 5 6 7 8 9 10
dim MU (D)) 01 06 1 0 2 0 3 0 3
dim MU (D)) 1 0 6 0 1 1 1 0 2 1 2
dim MU (D)) 1 6 1.0 2 1 3 1 5 2 6
dmMUDy |0 0 0 06 0 0 0 1 0 1 1

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

06 1 7 1 8 111 2 14 3 15 3 21 6

1 3 2 3 2 5 3 5 3 8 5 7 511 8

3 10 5 12 6 17 10 21 12 28 17 33 21 43 28

2 1 2 2 3 4 6 5 7 6 9 11 13 11 14

THEOREM 2.2. Canzmqn eigen basis of WM,(Iy) and ML),
polynomials at 3, for small v, are given as follows :

y=bh
9325(1-6):9}25([,2):0]:5 »

and their Hecke
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where fo(x, y)=(Fx)(F)(F0)(Fx)N(¥)—N(x)). We have A(3)=1080 and 29)=
2800089 for fs and Hy(T, fo)=(T—=30T—3"(T*+18367 +3).

y="7
9537(13): {O}, m7(a>:Cf7 s

where fo{x, v)=Ffs(x, yYNxP—=3Nx)N(y)+N(y)?®. We have A(3)=—18360 and
A9)=—2973591 for f,, and Hy(T, f)=T*4183607%429701647072+3""- 183607 +3%.

v=9
M(L)=C[fs", MU )=CfP+Cf,,

where f{¥=34g,+gs, fy=b1g,—646g,
4
gi=/o(x, )14 3 G0E-BNGPNGY),  and

ge=fs(x, y)XCLN(x)*—154N(x)*N(y)+-296N(x)*N(y)*—154N(x)N(9)*+21N(y)*) .

The polynomials f§¥ and fe are common eigen forms of T(n)2 ) n) and we have
A(3)=307800 and A(9)=3%-8142169 for f$¥, and A(3)=—14760 and A(9)=6061405689
for fo. The Hecke polynomials are

HA(T, f&)=(T—3"YT —3")(T2—71604T +3%),
and

Hy(T, f)=T*+14760T2—93303324907"2--321-14760T +3*%

ProoOF. By routine calculation, we can show that fs fi, f§¥ and f, are
automorphic forms belonging to I;. By virtue of Prop. 2.1, these span T0.([%)
for v=>5,7, 9. Next, we calculate the eigen values of T(3) and 7(9). We have
deg T(3)=40 and deg T(9)=1201. Let 4, be as in 1.1, then the representatives
of cosets 4,/1, for n=3, 9 are given as follows:

45/ Ty

z; 0 ..
(1) (0 ZZ), 2, ze {l+i+j}, and

@) (Z55), pe0, Np=2.

The numbers of elements of the form (1) and (2) are 16 and 24, respectively.
4,/

(1) (8 2), where ¢ and d range over the set
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(BY\Ulz122; 2192, 21, Z2E {1 R j}].

(2) (1— b), beo, Nb)=8.

(3) ( 7 b), where »=:/—% and b ranges over the elements of © such that
NbY=T7.

gi), where b ranges over the elements of @ such that N(b)=5, and
for each b, we take an element e=0©* such that be=b mod.r.
(Such ¢ always exists for each b.)

Zy ,8122 2 21182 L
+ ,_(,_
(5) ( |- ), ( B 2 ), where z, z,€ {14i+j}, pB. ranges over the

elements of @ such that N(B,)=2, and B, ranges over the
elements of @ such that N(8,)=2 and z,8,z;'€0.

The numbers of elements of the form (1), ---, (5) are 16, 24, 192, 144, and 672,
respectively. Then it can be seen that

(4.6) (T@P—T(9)/=39fBx, 3y)+3 T f(lx, y)g)+6 2 f((x, )g)

for any f=M,([y), where

_ z2r Bz, . o :
A—{(_le Zz), 2z, z2z€ {1#i%7}, and B is an element of
© such that N(3)=2 and 21_1‘@226@},
and

B:{<g ((1))? aE {71225 217F 72 21, Zze{liiij}}}'

Incidentally, | A} =96 and | B|=12. Now, we calculate A(3) and 2(9) for f,. Note
that, to obtain A(n), we need only calculate the coefficient of the monomial
X1X%:%35%, in the polynomial (T(n)f,)(x, 1), since M,(I5) is one dimensional. For
polynomials f and g in four variables xi, x,, xs, X, We write f~g if their
coefficients of x,x,xsx, are equal. Then, for z;, z,= {1-£74;}, we have

Folwzs, 20 =27 T (Zrxza) )L NG —3NG) -+ NG))~2T T oz

Put z,=1+7+7. Then, we have iz '=1+i—j, jzoj '=1—i+j, and kzk ‘=
1—i—j. Then, it is easy to see that

4 4
z];[l (Z1x2Z5)3~ ;[[:1 (onzo)iz3x1(x2-}—2x3——2x4)(2x2—}—x3+2x4)(2x2—2x3—-x4)

~Ox XXXy .
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So, the contribution of the cosets of the form (1) of T'(3) is 3888x,x,x.x. Next,
we calculate f.(x—8, xB+1) for f=© such that N(B)=2. First, we show that
Folx—pB1, 2B+~ fo(x—f, xB.+1) for any By, B,€0O such that N(B)=N(B)=2.
Put Qy={=1, &4, =, =k}. Then, it is easy to see that, for any f=O and
e= Qs we have

fa(x—Bg, xfet)=fo(x—&f, xf+8&)=Flex—§, exf+1)~fi(x—F, x5-+1).

Note that {8=0; N(B)=2}=(1+NQ:\J(1+7/)Q:\J1+£)Q, So, we can assume
that =1+, 1+, or 14+k. But, we have a'(14+7)a=14j; and a ‘(14 a=1++k
for a=(1—i—j—k)/2. It is obvious that

fla(x—Pfla, a *xp+Da)=f(x—F, xf+1) and
fla7xa—B, a'xaB+D~fi(x—F, xf+1).
So, we need calculate f,(x—j, x3+1) only for p=1+i. For B=1+i, we have

file=B, 2~ L (= F— B )(2er(x B)— L)G(er(x §))—Btr(x §)—1)
~Ox3x (X122, — 1), +2x,+ 1) (dx, —4x,—1)(40x, %, +10x,— 10x,+1)
~—027x:%,%3%4.

So, the contribution of the cosets in T(3) of the form (2) is —22248x,x,%s%,. S0,
T(3)f;=—18360f,. In the same way, we can show that T(3)f;=10807;. Next,
we calculate A(9) for f,. First, we calculate the eigen value of T(3)*—7(9). For
ac {2125 2,%#Zs, 71, 7€ {11171}, we have f,(3x, a)~ f+(3%, z.e2,), where e=1,
7, or j. For these ¢, we can show that f,(3x, zeezo)~—3"-5x,x,xs%,. For ex-
ample,

f+B3x, Z)~31 1T (33x),
=1
~31°(x1—{—2x2+2x3)(2x,—x2—6—2x4)(2x1—x3—2x4)(2x2—2x3+x4)
~—31. 5%, X0X5%, .
S0, 63 fa(x, ¥)g)~—63772920x,x,x,x,. Next, for z1, z2,€{l+i+j} and Be0
gE€EB

such that N(8)=2 and z7!fz,€0, we get the following equivalence :

fil(x—=B)zy, (xB+1)zy)
N36< f_[=1 (Z(x —ﬁ— B]EE)ZD;-)(ZU‘(}C[;) —l)(S(tr(xﬂ))z—Str(xﬁ)—l) .

As we can put z;=¢;2067), Z,=€,2.67%, for some e, es={1, 4, 7, k}, it is easy to
see that f7((x—pf)zy, (xB-+1)zo)~ f((x—f1)zo, (xf1+1)z), where B,=£,8¢,. But,



Symplectic Euler factors of genus two 597

we have z7'8z,0 if and only if z7'8.z,0. So, we need calculate

f’l((x"BDZo, (xﬁ1+1)zo>
only for

Bre{x(+7), +(+hk), £G—R).
But direct calculation shows that
Slx—F1)ze, (xBit1)20)~38-5-23%,%05% 5%,
for all these §5,. So,

3 ;4][7(()6, V)g)~217300320x 1 x5x55, .
=y,

These calculations show that

(T(3)*—T(9) f,=3400631911,.
In the same way, we have

(T3)*—T(9) f5=—1633689f5.

So, we obtain A(9) for fs and f..
Similar calculations show that

T(3) [ =307800f§ and
(T(3)g)(x, 1)=1528632 x,x,x3x,+59547312 x5xox,04F -+ .

So, we have

(rei )0 somao)( )

So, the polynomials f{, f, are common eigen functions of 7'(n)2f n), and A(3)
=307800, —14760, respectively. Similar routine calculations show that

> P ((x, )g)~--860934420-21 x x,x5%,,

8€B

> 80 ((x, »)g)~10458758880-21 x;x,x5% 4,

gE4

> follx, )g)~—860934420+21-51 x,x,%,x, , and
gEB

= [ol(x, 3)g)~5262446880-2L-51 x,x,x5%,.
:4=¥:%

So, we obtain A(9) for f§¥ and f, easily from these data. qg.e.d.
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§3. Eigen space decomposition in case of Sp(2, R)

In this section, we decompose the space S,(B(2)) into common eigen spaces
of all the Hecke operators T(n)2 f n) for even small 2 and calculate their eigen
values A(n) for T(n) for small n. The examples of common eigen forms in this
paper are divided into two classes:

(1) Those which satisfy the Ramanujan Conjecture (at least) at their Euler
3-factors.
(2) Those which do not satisfy the Ramanujan Conjecture.

For each example of the common eigen form f, or f{ in M,([G) in §2, there
exists a common eigen form F in S,;i(B(2)) such that Hy(T, F)=Hy(T, f.) or
Hy(T, f&). Some of these F are of type (1) and some are of type (2). We also
note that there exist many forms of type (1) or (2) whose Euler 3-factors do not
coincide with those of any forms in M,-;([5). By virtue of Oda [24] and Kojima
[16], or Yoshida [31], [32], we can show that the examples of the forms of type
(2) in this paper are obtained by lifting cusp forms of one variable with weight
2k—2. Namely, for each examples F of type (2) with weight 2, there exists a
form f belonging to Z_'(‘)(Z):{g:(? 2)651;(2, Z); c=0 mod.z} with weight
2k—2 such that L(s, F)=C(s—k+1){(s—k+2)L(s, f), up to Euler 2-factors. But
we shall omit the proof of this fact in this paper, since it should be proved in
general situation. Instead, for the convenience of the readers, we give here the
common eigen new cusp forms of S,,-.(I'42)) and their eigen values w(n) for
small # and n. (As for the examples of the eigen values of the cusp forms
belonging to SL(2, Z), see [17].) Put v=(204+60%)/2 and u=05-104,0%+6%.
Then, it is easy to see that the graded ring A(I'}(2)) of modular forms belonging
to I'Y(2) is generated by these algebraic independent forms u and v. The ideal
of cusp forms of A(I'i(2) is generated by (u—v®(u—4v?). We denote by

9.-o(I"%2)) the space of new forms of S;,_(I'42)). Let I'¥(p) denote the group

generated by I'i(p) and (O

s 0 ) Now, the eigen forms and the eigen values are

give as follows:
dim S(I"4(2)=1
hyp=(u—v)(u—4* - w@)=—156
dim S§,([7i(2))=2
hP =(u—v)(u—d i {(u—v?)+-(u—40*} - »3)=-1836
P =u—)u—h{lu—v®)—(u—4»; - w3)=1236



Symplectic Euler factors of genus two 599

The former is also the form belonging to I'¥(2).
dim S%:(I75(2))=1
his=4v(u—v®)(u—4v%) {4 — 0?2+ (u— 40" — 1Tv(u— 22 (u —40?)?

- w(3)=6084
dim S%(15(2))=2
7P =2v(u—v?)(u— ) {u—v¥*+(u—40%)%}
+3lv(u—v) u—40?)* {{(u—v®)+(u—4%} - »(3)=71604

AP =2v(u—v)(u—4?) {(u—4*)°—(u—0%?%}
+33v(u—vB2(u—4)? {(u—v¥)—(u—4?} -+ »(3)=59316.

The former is also the form belonging to I'¥(2).

3.1. Now, we explain the general procedure of calculation of the eigen
values of common eigen forms belonging to B(2). For any cusp form f(Z)=
> a(T)e* ™ T2 in Sy(B(p)), put (f1T(mNZ)= ¥ a(n; T)e*™* =TD(p } n). Then,

>0

>0

for a prime g#p and a positive integer d, a(¢®; T) can be easily described as
follows as in [1], [6], [21]: For a positive integer ¢, define an equivalence
relation of pairs of coprime integers by (u;, us)~{ui, us)<—>au,=ui and au,=u;
mod. ¢ for some a=Z. Fix a complete set of representatives (u;, u,) of the
above equivalence classes so that p [ u,, and for each (uy, u,), fix a vector

! uz)e‘]}(p): {tg; g=lip)}. Let R(g®) be the set of these

IR VU0 b2 ) @y bu/2
matrices <v ” ) Put T:(b/Z . )and Ur Uz(b 2 e ) for any U=SL(2, Z).
1y 2 U U

u
(vy, v,)EZ? s0 that

Then, we have

3. — (B-2)5+(2k-3)T a auq‘ﬁ‘7 buq-7/2 >
@1 el ) ?%qu , " UGRE@AB) a<q (buq'T/Z cuqﬂ"r) ’
T auzo(qﬁ'*'r)
b=, =0t
where «, 8, and 7y are integers.

Therefore, we can calculate the representation matrix of T(n), as far as
sufficiently many Fourier coefficients are available. The Fourier coefficients of
X, Y, Tand K in §1 were calculated by using an electronic computer. We
used the table of coefficients of the Eisenstein series with weight four in
Resnikoff and Saldafia [25] to obtain those of Z. Here, we write down some
of the relations (3.1) which will be used later. We denote by {fy, f,, t) the half

. .. . . 4, t/2
integral positive definite matrix ( ; /é 1,{ .
2
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3.1
a@; (1, 1, 0)=a(,3,0

a(3; (1, 1, I)=a(3, 3, 3)+3*2a(l, 1, 1)

a@; ({1, 2, 0)=a(3, 6, )+2-3*2a(3, 1, 2)

a(3;(, 2, 1))=a(3, 6, 3)

a@3; (1, 3, 0)=a(3, 9, 0)+3%2(3, 1, 0)

a(3;(1, 3, )=a(3, 9, 3)+2-3*%(3, 1, 1)

a@3; (2, 2, 0)=a(b, 6, 0)

a(3; (2, 2, 1))=a(6, 6, 3)+3% 24, 1, 1)

a(3; (2, 2, 2)=al6, 6, 6)+3%2a(2, 2, 2).

Moreover, we have

a(9; (1, 1, 0)=a(, 9, 0)

a(3; (3,3, 0)=a(@, 9, 0)-43*2{a(l, 9, W+a®, 1, 0)+2a(5, 2, 2)}
+325=2a(1, 1, 0)

a9;(, 1, )=a(®, 9, 9+3%%a(3, 3, 3)

a(3;(3, 3, 3)=a(9,9, 9+3%%(3, 3, 3)
+3%2q(1, 7, H43%-2-2a(7, 1, 1D+3%*%a(l, 1, 1).

So, if F is an eigen form of 7(3) and T(9), we have

A9a(l, 1, 0)=43)a(3, 3, 0)—3*2a(1, 1, 0)
—3%%{a(1, 9, O)+a(9, 1, 0)42a(5, 2, 2)},

A9a(, 1, D=2@)a(3, 3, N—3%**2a(1, 1, 1)
—3F%{a(1, 7, D+2a(7, 1, D)+a(3, 3, 3)}.

Now, to clarify the meaning of the new forms of S.(B(p)), we consider some
more. discrete subgroups of Sp(2, R). Put

—1
p:
p
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* * * *
E3 * ¥ £
Lp=1geSp@ 2); g=|, . mod.pt,
0 0 = =
* * * *
4 — . — 0 % x= =x
Lip)=18€5p2, 2); 8=y  , o] mod-P¢s
0 = % =

I'{(p)=pl(p)p™" and
* ¥ xp7lox
- D*
K(p)= S»2 ;2= s
(p)=18€5p2, Q); g bi pr %

px ok k%

* * *

where * runs through integers. The topological closures in Sp(2, @,) of these
subgroups and Sp(2, Z) and pSp(2, Z)p~' make up all proper parahoric subgroups
of Sp(2, @,) containing B(p),. By definition, SYB(p)) is the orthogonal comple-

ment of Sy(La(p)+S(L s pN-+SU(IY(p)) in SL(B(p)) with respect to the Petersson
metric. Now, put

01 00 1 000
1000 0 0 0—1
SI—BUJ)O 00 1 B(p), Sz—B(ﬁ)O 010 B(p),
0010 0100
and
0 0—p10
. 01 0 ©
Se=B(p) 50 0 0 B(p)
00 0 1

Then, [(p)=B(p)US,, I'{p)=S\JB(p), and I'{(p)=B(p)JS, By virtue of
Iwahori and Matsumoto [147], we have Si=p-14+(p—1DS; (=0, 1, 2) as elements
in the Hecke algebra, where 1 denotes the identity element, that is, B(p) as a
double coset. The next lemma is easy and the proof will be omitted.

LEMMA 3.2. For any f€S(B(p), we have fi{1+SpNES(Lo(p), f11+Sy)
eS5(p), and fIA+S)ESIY(p). Put Vi=S«(B(p)(p—S:) for i=0, 1, 2.
Then, V,;={fS(Bp)); f1{1+S:)=0} and the orthogonal complement of S (I(p)),
SH5pY), or Sy(I5(p)) in Su(B(p)) with respect to the Petersson metric is given
by Vi, V., or Vo, respectively. Besides, we have SYB(p)=V. N\ VNV,
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Now, for the sake of convenience, put U=(0%00+ 05001+ %100+ 0%111)/512. We
have U=R-+64Z. Bases of S,(B(2)) and S,(I3(2)) have been given in [117], and
bases of S K(2), S I':(2)), and S (I¥(2)) for small £ will be obtained in the
following way :

(1) The dimension of the space S,(J#(2)=S.(pl's(2)p~*) has been known

({117), and
SeIEON={F=S,(B(2)); a(t,, t, )=0 if ¢, is odd}.

So, we can get a basis of S,({'7(2)) if sufficiently many Fourier coefficients are
available.
(2) We have S,(I"{(2)=S,(S(I'{(2))), where S,=B(2)p. As we have

—1\/2
. —1 2
o= 1 1 3
1 1
it is mot difficult to give the representation matrix of p by using the theta
—1
transformation formula for the action of -1 . Actually, we have

1
X{[ph=X, Y|[pl=1024Z, Z|[pl=Y/1024,

Ullpli=(Y—1024Z+16U)/16, Ki[pl=K, T|[pL=T,

and Ri[pl=R.
(3) The space S (K(2)) is obtained as the intersection S,(Is@NNS(IF(2)).

3.2. First, we shall give examples and proofs for =6, 8 and 10, and later
for k=12. As for the cusp forms belonging to Sp(2, Z), the non-vanishing of
the Saito-Kurokawa or the Oda lifting and some examples of the eigen values
have been known ([2], [177], [20], [33D.

THEOREM 3.3. Common eigen basis of Sp(B(2)) and their eigen values An)
for k=6, 8, 10, and small n, arve given as follows:

k=6
Se(B2)=Se(Lo(2)=<K>
So(I73(2))=So(L77(2))=Ss(K(2))= {0}

A(3)=168, A(9)=32841,
and we have
L(s, K)=L{(s, hy){{s—4){(s—5)

up to Euler 2 factors.
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Sy(B2)y=<XK, YZ, TR>
Se(lo2)=<XK, YZ>
Se(L73(2)=So(175(2))=Ss(K(2) =<Fo,
where Fo=(YZ—-XK-—4TR)/4.

Eigen forms are 3YZ—XK, YZ— XK, and Fs.
A(3)=4152, 2A(9)=9914841, for 3YZ—XK,
A(3)=1080, (9)=2800089, for YZ—XK and Fs.

We have
L{s, 3YZ—XK)=L(s, h{")(s—6) (s—T), and

L(s, YZ—XK)=L(s, Fg)=L(s, hi®){(s—6){(s—T),
up to Euler 2 factors.
k=10
S(B@NY=KXYZ, XTR, X*K, YK, ZK, UK
SwlH2N=<(XYZ, X*K, YK, ZK»
S1(Sp(2, Z)=<YK>
Sioll¢2N=(XYZ- X K+48UK—4XTR, ZK>
S Ts@N=(XYZ—X?K+3YK—3072ZK--48UK—4XTR, YK
S1(K@)=(XYZ—X:K+-48U K—4XTR-3072ZK>
W B2)=<F1o,
where
o=90UK+12XTR—2XYZ+X*K+YK—5120ZK .

Put
F®=bXYZ-2X*K—YK—1024ZK .

Then, eigen forms are YZ, ZK, XYZ—X?K+A+48UK—4XTR, 2XYK+X?K, F{&,
and Fi,. We have

A(3)=21960 for the first four eigen forms,
A(3)=32328 for F{?, and
A(3)=—18360, A(9)=—2973591, 2(5)=741900, for Fi.

We have L(s, F)=L(s, 4::){(s—8)(s—9), up to Euler 2 factors, where F is any
aigen form of Sio(BQ2)) such that A(3)=21960, and 4.5 is the unique normalized
cusp form belonging to SLQ2, Z) with weight 18. We also have L(s, F{@)=
L(s, hp)l(s—8)(s—9) up to Euler 2 factors. As for Fy, we have
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Hy(T, Fi)=T"+18360T°+-297016470T*+4-3'7- 183607 3%
=(T*+108(85—8+/61)T +3'")(T*+108(85-+8+/61)T 437,

and this 3 factor satisfies the Ramanujan Conjecture.

PrROOF. We shall prove this theorem for each &.
k=6
We have a(1, 1, 1; K)=1, a8, 3, 3; K)=87, a(l,7, 1; K)=—156. So, by virtue

of (3.1), it is easy to see that A(3)=168 and 1(9)=32841. The Oda lifting from
h1o does not vanish. So, L(s, K) is decomposed as in the Theorem.

k=8
We have the following table of the Fourier coefficients :

XK YZ TR
(1,1, 1 1

3,30 912 5232
3,3, 3 3423 3423
5, 2, 2) 5286 858
L, 9, 1) —3290 —3290

So, we can see that a form, whose coefficients at (1, 1, 0) and (1, 1, 1) vanish, is
a constant multiple of Fe. So, Ss(I'{(2)=<(Fs>. But, Fs|[pJs=Fs. So S,(I'4(2))
=S4(K(2)=<(Fs. 1t is also easy to see that

7(y2)~(res mea)vz )

So, we get easily A(3) and A(9) for the forms in S (J3(2)). But, the coefficients
of (S;+1)TR) at (1,1, 0) or (1,1, 1) are 2a(1,1,0; TR)+a2,1,2;TR) or
3a(l, 1, 1; TR), that is, 2 or 0, respectively, since a(2, 1, 2: TR)=0. As noted
in Lemma 3.2, (S;-+1)(TR)eSs([4(2)). So, we get (S;-+I)TR)=(YZ—XK)/2.
So, we have L(s, TR)=L(s, YZ—XK) up to Euler 2 factors. The Oda lifting
does not vanish algo in this case.

k=10
We have the following table of the Fourier coefficients :

XYZ XK YK ZK UK XTR
1,1,0) 2 —2 —2 0 0 1
(1,1, 1) 1 1 1 0 0 0
1,2, 1) 16 48 —16 0 0 —8



3, 1,2 28
@, 2,0 —288
@, 1,2 2
@, 2, 2) 400

@3, 3, 0) 62352
@3, 3, 3) 17703
(3,6,3) 351360
(6, 6, 0) —1605888
®, 3, 6) 62352
6, 6,6) 6749424
a,9, 0 22986
©, 1, 0) 22986
G, 2, 2) 22986
(,5,0) 5128340

Symplectic

—92
—1760
—2

112
—80784
10791
1054080
—48086784
—80784
545040
—41418
—41418
—41418
—9183380

Euler factors of genus two

36

32

—2

240
—43920
15399
—351360
702720
—43920
3695760
—4554
—4554
—4554
~1073300

OO O = O NO

—43920
0

15399

0

0
0
0

-2
—136

0

52
—1056
—48
16128
—2098848
960
788460
0

—576
—288
—94080

605

288

0

48
23112
1152
17856
9715968
25344
1034064
16101
9189
12645
2448970

Using the table, we can see that the space of those cusp forms whose Fourier
coefficients at (1, 1, 0), (1, 1, 1), (1, 2, 1) and (3, 1, 2) vanish, is two dimensional.

So, it coincides with S,(I'¢(2)).

A basis of Sy(I70(2)) and S (K(2)) are also
easily obtained. Now, we note that the matrix of the coefficients at 11,0,
1L LD, 120 21,2, (220 and (2, 2, 2) of UK, XTR, XYZ, XK, YK
and ZK is non singular. So, calculating a(3; (1, 1, 0)) etc., we get the repre-
sentation matrix of the action of 7°(3):

TRMUK, XTR, XYZ, X*K, YK, ZK)=A"UK, XTR, XYZ, X*K, YK, ZK),

where
5832
—193536

A= 0

0
0
0

—2016
—2232
0

0
0
0

216
6912
27720
—11520
0

0

—120

—144 884736

—3168 —2592 9732096
—2304 —1152 —1179648 |
2304 2359296

26568
0
0

21960 0
0 21960

S0, we can get an eigen basis of S,(B(2)) and the eigen values of 7'(3). The
eigen space for the eigen value 2(3)=21960 is four dimensional, and the generators
are given as in the Theorem. Now, it is easy to show the following relations :

URNYK)=642XYZ+X?K)+48YK-+65536Z K ,

URYK)=—10242XYZ+ X2K)+138496 Y K-66060288Z K,
IUY K)+U@RMY K)=139264YK-+67108864Z K .

and
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where U(2)=1,(2) 14(2). Besides, XYZ—X?K+48UK—4TR—3072ZK

2

eS1(K(2)), and its image by 1+4S; does not vanish, since the coefficients of the
image at (2, 1, 0) is equal to —72. By virtue of these relations, we see that
these four cusp forms are common eigen forms of all the Hecke operators
T(n)2fn), and their L functions coincide with each other up to Euler
2-factors. It is well known that S{(Sp2, Z))=Y K ([12]), and that L(s, YK)=
L(s, 4:)C(s—8)(s—9) (21, [177, [20], [33]). So, we have the assertion for the
forms with A(3)=21960. It is also easy to see that L(s, F&)=L(s, hs)l(s—8)L(s—9),
up to Euler 2-factors. Now, we get a(l, 1, 0; Fy,)=4+0. So, we get A(9) and
H,(T, Fy,) easily. g.e.d.

Next, we give the examples for k=12.

THEOREM 3.4. A basis of cusp forms belonging to each discrete subgroups is
given as follows:

Sw(B@)=<Y?*Z, YZ*, XYK, XZK, K*, X*YZ, X*K,
YTR, ZTR,UTR, YZU, X*TR>,

Sel2)=<Y?Z, Y2, XYK, XZK, K*, X*YZ, X*K),

Siu(l§(2)=<4, B, C, D>,

Su(l{2)=<A’, B', C’, D>,

S(Sp2, 2)=@Y*Z-2XY K+4-3072K%),

S1(K(2)=<F{?, 67584 A—1344B-+18C—23D),

1(B@2)=<Fi»,
where

A=XZK+12ZTR,

B=—8YZ*+384ZTR+8UTR--YZU+XUK,

C=Y?Z-17192Y7Z2*—XYK—4Y TR—2048Z TR+-64UTR+32YZU ,

D=4608Y 2>+ X*YZ—X*K—192UTR—9%6YZU —4X*TR,

A'=Allpl, B'=B|lphs C'=Cllpl. D’'=D|[pls

F{P=—18432A+240B4-3C+D),
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F,,=36Y TR—2088967 TR+-3840U TR—1920U YZ+12X*TR—21Y*Z
4101376 Y2+ XY K+1024X Z K—3840K*+13X*YZ+7X K.,

An eigen space of T(3) in Si(B2) for each an eigen value of T(3) is at the
same time a common eigen space of all the Hecke operators T(n)}2 Y n). The
eigen values and eigen spaces are given as follows:

(i) A(8)=107352 for the four dimensional space spanned by 3X*Z—2XY K-+3072K?,
3VZe-3K2—2XZK, —9Y2Z-14X2YZ+10X3K—23040K2—6144XZ K, and 67584A
—1344B+4-18C—23D. For any element F of this space, we have the equality :

L(s, F)=L(s, 4,)¢(s—10)t(s—11) up to Euler 2-factors.

() A(3)=295512 for 9X YZ—X*K—3456 K*+-9216 XZ K and its L function coincides
with

L(s, h@)(s—10¢(s—11) up to Euler 2-factors.

(iii) A(3)=307800, A(9)=3%-8142169 for the two dimensional space spanned by F @
and 12Y32Z 13X YK—16X2YZ--X*K-+12288Y Z*—5760K%4-3072XZK. For any
element F of this space, we have the equality:

L(s, F)=L(s, h$9)¥(s—10){(s—11) up to Euler two factors.

(iv) A(3)=—88488, A(9)=—1563802119 for the four dimensional space spanned by
V2Z 45X YK—1024YZ*—5120XZK, 13XYK-—-2X*YZ-4-X*K—4608YZ*+5760K*—
9728XZK, 27136A—496B-+11C—7D, and 27136 A'—496B'+11C'—7D’. The L
functions of any elements F of this space coincide with each other up to Euler 2
factors. The Hecke polynomial at 3 is given by

Hy(T, F)=T*-+88488T*+4-59071438627 88488 -3*' T +-3*
=(T*+36(1229--2+/3273745)T +3*)
X (T?+36(1229—2+/3273745)T +3*),
which satisfies the Ramanujan Conjecture. »
vy M3)=—14760 for Fi,. The Hecke polynomial at 3 is given by
Hy(T, Fp)=T*--147607T°—933033249072--14760 -3 T -3
=(T24-36(205--+/23383876)T +3*)
X (T*4-36(205—+/23383876)T +3%),

which satisfies the Ramanujan Conjecture.
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PrROOF. We use the following table of the Fourier coefficients:

. Yz YZz2 XYK XZK K* XYZ

{1, 1,0 2 0 —2 0 0 2
1,1, 1) 1 0 1 0 0 1
{1, 2, 0) —52 0 —12 0 0 76
1,2, D —24 0 8 0 0 40
21,0 —52 0 —12 0 0 76
21,0 —24 0 8 0 0 40
2,1, 2) 2 0 —2 0 0 2
2,20 960 6 1856 —2 6 1728
22,0 600 4 —1224 0 —4 1560
(2,22 96 1 288 1 1 736
G L0 608 0 544 0 0 352
3,1, 1) 251 0 —261 0 0 251
G, 1,2 —52 0 —12 0 0 76
32,0 —6984 —16 —7992 —48 —16 —7752
3E,2, D —6648 —4 3240 0 4 8520
3,23 600 4 —1224 0 —4 1560
3,3 0 54960 —336 —183984 —240 176 —37200
3,33 8367 96 37551 192 32 118959
@3, 6,0) —4430136 —7392 3311544 —672 6944 12515784
(3, 6, 3) —4124736 —1152 305856 0 1152 11593152
¢, 1,1 —1448 0 1848 0 0 —3048
4,2, 4) 960 6 1856 —2 6 1728
(6, 6, 0) —32208384 834576 —264749568 —183984 474128  —8744448
6, 6,3) 51782184 117216 91807560 0  —117216 —567587736
(6, 6, 6) 140689824 77487 162153696 37551 11951 187528992
(5,2,2) —127302 —96 10566 —288 —96 —78150
(1,9, 00 —373062 0 —210618 0 0 —188742
X*K YTR ZTR UTR YzZU X*TR

{14, 1, 0 -2 1 0 0 0 1
1,1, D 1 0 0 0 0 0
1,20 —140 —10 0 0 0 54
1,2, 1 72 —8 0 0 0 —8
2,1,0 —140 —16 0 1 2 48
2,1, 72 —4 0 0 1 —4
21,2 —2 0 0 0 0 0
2, 2,0 —6080 —64 2 132 344 1728
(2,2, 1) 2808 356 1 48 231 —156
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2,2, 2 160 —32 0 2 60 96
3,1, 0) —3296 112 0 8 —4 624
3,1, 1 1787 64 0 —4 0 —192
31,2 —140 6 0 0 2 6
3,20 —56376 92 4 272 —1204 9564
3,2, 1 15336 —2728 0 —24 —208 —168
3,23 2808 200 0 —8 208 —312
3,30 252240 47192 20 80 —19264 —936
3, 3,3 105135 —4864 —16 —808 6272 2304
(3,6,00 —6064968 —1287004 56 27104  —383524 4033188
3, 6,3 —1228608 —305856 0 —7488 50688 1021248
“4,1,1) 16632 412 0 —32 —25 2460
“4, 2,4 —6080 —320 0 12 296 448
(6, 6, 0) —875260416 106703360 184496 9920864 43333928 263950848
(6, 6, 3) 1231366536 20824668 20304 —1459296 —1375767 —291100068
(6, 6, 6) —172954272 3577312 6656 882014 4620548 60080544
(5,2,2) —333498  —26019 24 1248 —5280 20061
1,50 —1722 —40611 0 0 0 —46755
51,0 —1722  —29859 0 —768 2880 —79011

We see that the space of the cusp forms whose Fourier coefficients at (1, 1, 0),
(1,1, 0D, q,20, 1,21, 3,1,0, 31,1, 32,0, (32, 1) vanish is spanned
by A, B, C and D. But, dim S,,(I'¢(2)=4. So, S (I¢2)=<A4, B, C, D>. So,
it is easy to see that S;,(I'4(2)) and S;,(K(2)) are given as in the theorem. By
calculation, we can show that the matrix of the Fourier coefficients at (1, 1, 0),
1,1,1), 1,2,0, 1,2, D, 2,2,0), 2,2, 1), 2,2, 2) of Y*Z, YZ%, XYK, XZK,
K3 X®YZ, X°K, is non singular. So, by using the Fourier coefficients at (3, 3, 0),
3,3,3), (3,6,0), (3,6,3), (6,6,0), (6,6,3), (6,6,6), and (4, 1,1), we get the

representation matrix of T(3) on S;;([4(2)). That is, we have
TRNY?*Z, XYK, X*YZ, X°K, YZ%, K® XZK)

=THY*Z, XYK, X*YZ, X*K, YZ%, K* XZK),
where
102744 13824 —55296 6144 18874368 21233664 132120576
—6912 109656 9216 —15360 28311552 -—63700992 179306496
—124416 103680 204120 —5376 —127401984 84934656 106168320

T=| 186624 —55296 —41472 74328 191102976 —281346048 —56623104 |.

18 126  —54 6 102744 20736 13824
0 —12 60 —16 0 45144  —12288
27 171 9 —15 —6912 —62208 109656

Then, the eigen values and the eigen spaces of T is given as follows:
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A(3)=107352 for
BY:Z—-2XYK+3072K® 3YZ*+3K*—2XZK,
—0Y*:Z+-14X*YZ+10X* K—23040K*—6144XZ A >\
A(3)=295512 for
OXYZ—-X*K—3456K*+9216X Z K.
A(3)=307800 for
12Y2Z4-3XYK—16X*YZ+ X K+12288Y Z*—5760K*+-3072X ZK .
A(3)=—88488 for
KY?*Z+5XYK—1024YZ*—5120XZ K,
BXYK-2X*YZ+ X*K—4608YZ*+-5760K2—9728XZK > .

Next, let V_ be the eigen space of S; in S,,(B(2)) corresponding with the eigen
value —1. Since T(n) commutes with S; for odd n, the space V. is invariant
by all the Hecke operators T(n)(2 }f n). By Lemma 3.2

V.=2=S)YTR), @=SHZTR), 2—S)UTR),
@=S)Y ZU), @=S)(X*TR)>.

As we have seen in Lemma 3.2, (S;-+1)f=5,(l4(2)) for any f=S.(B(2)), and the
coefficients of (S;+1)f at ({4, £;, 1) is given by

alty, &, t; f)+alts, i, t; HAalti+t.—t, t, 2t,—1; f).

So, we get the following table of the Fourier coefficients:

(S;+DYTR (S,-+DZTR (S,+DUTR (S+LYZU (S;+1)X*TR

1,1, 0 2 0 0 0 2
(1,1, 1) 0 0 0 0 0
1,20 —20 0 1 4 108
1,2, 1 —16 0 0 2 —16
2 20 —448 4 276 984 3904
2,21 912 2 88 670 —624
@, 2,2 —96 0 6 180 288

So, we obtain the following equalities:

(S, +HOYTR)=T*Z-XYK)/2,
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(S +DZTRy=(YZ*—XZK)/2,
(S;+DUTR)=28YZ*—28XZK+3K*—(Y* Z—-XYK—X*YZ+X*K)/256,
(S+IYZUy=160Y 22— (Y Z - X*YZ)/32,

(S +DX*TR)=(X*YZ-X*K)/2.

Then, the following table of the Fourier coefficients is obtained by routine calcu-
lations :

@2—S)YTR (@2—S)ZTR (2—S)UTR (@2—-S)YZU @—S)X*TR

1,1, 0 1 0 0 0 1
(1,2, 0 —10 0 —1 —4 54
1,2, 1 —8 0 0 —2 )
2,2,0 256 2 120 48 1280
2,21 156 1 56 23 156
(3,30 22104 108 4464 —1152 141912
3,6, 0 0828 3528 145818 —497412 2809188
3,6, 3 1297728 576 —61056 —154800 —3347136
6,6,0 203839488 44208 —2655936 —4247424 358594560
(6, 6, 3) 82486692 29304 —437472 —3526551 26176932
3,12 38 0 —1 2 —90
4,1, 1) 412 0 —32 —25 2460

Noting that the matrix of the coefficients at (1, 1, 0), (1, 2, 0), (1, 2, 1), (2, 2, 0),
2,2, 1) of 2—S)YTR etc. is non singular, we get the representation matrix of
T(3) on V.. That is, we have

TRY2—S)YTR, ZTR, UTR, Y ZU, X*TR)
=T'Q-S)YTR, ZTR, UTR, YZU, X*TR),

where
17496 202899456 —1474560 —737280 4608
103.5 109656 —1440 —T720 4.5
T'=| 2376 —3907584 10584 12672 2088
—5040 —17547264 193536 82008 3888
\ 138240 0 2211840 1105920 3672

By routine calculations, we see that the eigen values and the eigen forms of 7
are given as follows:

A(3)=107352 for
(2—S)@BYTR+48UTR+24UYZ+X*TR),
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A(3)=307800 for
(2—S;X(—27Y TR—89088ZTR+-960U TR+480U YZ+11X*TR),
A(3)=—88488 for the space spanned by
2—S)4Y TR+64UTRA-32UYZ—3X*TR)  and
(2—-S)M4096ZTR+-64UTR+32UYZ—-3X*TR),
A(3)=-—14760 for
(2—S)QBYTR—17408ZTR+320U TR—160U YZ4- X*TR) .

Then, it is easy to see that the eigen spaces and the eigen values of the action
of T(3) of S..(B(2)) are given as in the theorem. Next, we see that the eigen
spaces of T(3) are also the common eigen spaces of all the Hecke operators
T(n)2 ) n). Here, we shall prove the assertion only for the eigen space with
A(3)=—88488, since the proofs for the other cases are virtually the same. As
27136 A—496 B+11C—7D (resp. 27136 A’—496B’+4-11C’—7D’) is the unique eigen
form of S;,(I'(2)) (resp. Si(I4(2))) up to constant such that A(3)=—88488, each
of them is a common eigen cusp form. But, we have

(S;+1D(27136 A—496B-+-11C—7D)=#0 and
(S:+1)(27136 A’—496B’+11C"'—7D")+#0,

since the Fourier coefficient at (1, 1, 0) of the former is 16. So, we need only
show that the (two dimensional} eigen space V of T(3) in S,,(/%(2)) corresponding
to A(3)=—88488 is also a common eigen space. The space V is invariant by the
action of U(2) and p, but it is easy to see that U(2) and p do not commute on
V with each other. So, the assertion is proved. g.e.d.

§4. Concluding remarks

We give some remarks on the automorphic forms belonging to some para-
horic subgroups which are not minimal. Pairs of examples (f5, Fy) and (f§?, F®
suggest that there exists a good correspondence between S,(K(p)) and M,-s(Ux(D)).
In fact, there exists an interesting relation between the dimensions of S(K(p))
and W,_s(U(D)). (The dimensions of M;-(U.(D)) have been given in [97 (1),
and S,(K(p)) has been obtained explicitly by the author, using Hashimoto [8]
which gave a general but not explicit formula of dimensions of Siegel cusp forms
of genus two.) This will be given in the forthcoming paper, together with a
precise conjecture. As for S,([y(p)), we note the following: Let V be the eigen
space in S;(J4(2)) with A(3)=—88488 as in the proof of Th. 3.4. As we have
seen, any element of V is not a common eigen form of U(2) and p. So, judging
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from the definition of the new forms of genus one case (cf. Atkin and Lehner
(30, it is natural to call the elements of V “old form from I'§(2) and I'7(2)”,
despite that they satisfy the Ramanujan Conjecture at 3. 1t is plausible that the
“image” of M, (U,) is contained in a space consisting of a sort of new forms in
S, a(L5(p)) if v is odd.
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