30 T. Ibukiyama

[9]1 T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ.
Tokyo Sect. TA Math., 30 (1984) and Proc. Japan Acad., 57 Ser. A no. 5
(1981), 271-275.

, On automorphic forms of Sp (2, R) and its compact forms Sp (2),
Sémi. Delange-Pisou-Poitou 1982-83, Birkhiuser Boston Inc. (1984), 125~
134,

[1131 , On the graded rings of Siegel modular forms of genus two belonging
to certain level two congruence subgroups, preprint.

[12] J. Igusa, On Siegel modular forms of genus two, Amer. J. Math., 84 (1962),
175-200, (II) ibid., 86 (1964), 392-412.

[13] Y. Ihara, On certain arithmetical Dirichlet series, J. Math. Soc. Japan, 16
(1964), 214-225. }

[14] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture
Notes in Math., 260, Springer (1972).

[15] R. P. Langlands, Problems in the theory of automorphic forms, Lecture
Notes in Math., 170, Springer (1970), 18-61.

[16] ——, Stable conjugacy: Definitions and Lemmas, Canad. J. Math,, 31 (1979),
700-725.

[17]1 H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81
(1965), 166-193.

[181 J. Tits, Reductive groups over local fields, Proc. Symp. Pure Math., XXXIII
part 1 (1979), 29-69.

[10]

Department of Mathematics
College of General Education
Kyushu University

Ropponmatsu, Fukuoka

810 Japan

and

Max-Planck-Institut fiir Mathematik
Gottfried-Claren Str. 26

5300 Bonn 3, BRD

Advanced Studies in Pure Mathematics 7, 1985
Automorphic Forms and Number Theory
pp. 31-102

On Relations of Dimensions of Automorphic Forms
of Sp(2,R) and Its Compact Twist Sp(2) (II)

Ki-ichiro Hashimoto and Tomoyoshi Ibukiyama™

In this paper, we show éome good global dimensional relations
between automorphic forms of Sp(2, R) (matrix size four) and its compact

"twist Sp(2). One of the authors has already shown such relations when

the p-adic completions (for a fixed prime p) of the discrete subgroups in
question are maximal compact (See [24]). In this paper, we treat discrete
subgroups whose p-adic completions are minimal parahoric. Our aim is
a generalization of Eichler-Jacquet-Langlands correspondence between SL,
and SU(2) to the symplectic case of higher degree. Such correspondence
should be proved by comparison of the traces of all the Hecke operators.
Our results mean that there exist relations of traces at least for 7'(1) for
some explicitly defined discrete subgroups of Sp(2, R) and Sp(2) (§ 2 Main
Theorem I). Besides, they give meaningful examples for Langlands
philosophy on stable conjugacy classes (§ 2 Main Theorem II). Roughly
speaking, such comparison is divided into character relations at infinite
places (which are more Or less known) and arithmetics at finite places.
Our point is to execute the comparison of the arithmetical part explicitly.
It seems that our Theorems are the first global results on such relations
except for GL, (cf. also [24]). In Section 1, after a brief introduction, we
give a precise formulation on our problems between Sp(n, R) and Sp(n)
for general n, e.g. on how to choose discrete subgroups explicitly. For
automorphic forms with respect to these explicitly chosen discrete sub-
groups, we propose there two conjectures (which were first given in [21],
[23]): coincidence of dimensions and existence of an isomorphism between
new forms as Hecke algebra modules. For n=1, these are nothing but
the theorems by Eichler [10], [11], and the above conjectures are a natural
generalization of his results. Langlands [34] has given a quite general
philosophy on correspondence of automorphic forms of any reductive
algebraic groups, but we understand that his philosophy does not give
very detailed formulation at present for such typical and explicit cases as
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treated in this paper, and we believe that the above conjectures have its
own interest. In Section 2, we state our Main Theorems, which assert
that the first conjecture is true also for n=2. The proof consists of
explicit calculation of dimensions. Such explicit dimension formulae,
given in Section 3, Theorems 3.2, 3.3, 3,4, 3.5, have their own value. Our
Main Theorems are corollary to the results in Section 3 and [16], [19], [24].
The proofs of the formulae in Section 3 start from Section 4, where the
computation of the dimensions of our spaces of automorphic forms are
reduced to the detailed study of conjugacy classes in the arithmetic sub-
groups. We shall give in Section 4 an expository review on the results in
[15], [16], and [19], for the convenience of the readers. There we shall
also give some new remarks: (i) a formula for the number of semi-simple
conjugacy classes in the arithmetic subgroup, and (ii) a relation of orbital
integrals for semi-simple elements of G and G’. They will play an im-
portant role in the studies to extend the results of this paper for higher
rank groups. In Section 5 and Section 6, we list up explicitly all data
that we need for the calculation of the dimensions. In Section 7, we shall
give a brief survey on some related topics.

The authors would like to express their hearty thanks to professors
1. Satake and Y. Morita who gave them an opportunity to write a paper
for this volume, in spite of the fact that they did not attend this Sym-

posium.
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§1. Conjectures

Let G and ' be two different reductive algebraic groups over
algebraic number fields. For some good choice of G and G’, sometimes
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we know that there exists a correspondence between automorphic repre-
sentations 7=, 7, of G, and »'= &), ), of G, which preserves L-func-
tions, where G, or G is the adelization of G or G’. Langlands [34] has
given a general philosophy on such problems: he defined so called L-
groups “G or G’, and he conjectured that, if G is quasi split, and if there
exists an L-homomorphism u: 2G’—ZG, then there should exist a “good”
correspondence of automorphic representations. (As for more precise
contents of this conjecture, see Langlands [34], or Borel [3].) For example,
if G’ is an inner twist of G, then Z{G=*G’, and we can expect a good
correspondence. One of the reason of this conjecture seems to be the fact
that there exists a good character relations between 7., and =7, (cf. (4.50)).

The basic example is GL(2). The first typical results on the relation
between GL(2) and division quaternion algebras were due to Eichler [10],
[11], and later completed by many mathematicians, notably, Shimizu [43],
Jacquet-Langlands [29]. One obvious direction of generalizations of the
GL(2)-case is GL(n), which has been studied also by various mathemati-
cians. v

Now, another direction is' the symplectic groups, because we can
regard GL(2) as the symplectic group of size two with similitudes. Let
Sp(n, R) be the symplectic group of size 2n, and Sp(n) be its compact
twist: Sp(m)={g e M (H); g'g=1,}, where H is the division quaternion
algebra over R and - is the canonical involution. When n=2, for pairs
of O-forms of Sp(2, R) and Sp(2), Thara [28] raised a conjectural problem
on an existence of correspondence of automorphic forms (independent
from and older than Langlands [34]). He clarified, among others, what
should be the correspondence of weights (ile. representations at infinity)
of those forms by showing some character relations (unpublished). (As
for some other works by him, see [28] or § 7.) Later, Hina and Masumoto
[20] gave character relations between some admissible representations of
GSp(2, F) (size four) and its inner twist, when F is a non archimedean
local field. But, there was no global result, and any global example had not
been known before [21]. 'We would like to have some global (and rather
classical) approach to this problem, and aim a generalization of the typical
results of Eichler. Even if we restriét ourselves to such typical cases, the
precise formulation had not been known before [21], [23]. Besides, such
typical cases have their own fruitful structures. Our aim of this paper is
to give good global dimensional relations in such cases. This can be
regarded as the first step to the proof of such correspondence of automor-
phic forms.

Now, we explain our problem more precisely. Put

G=GSp(n, Q)={g & M,.(Q); g/ g=n(g)J, n(g) e 0},
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where J= <(1)" —(1)") and 1, is the unit matrix of size n. On the other

hand, let D be the definite quaternion algebra over Q with prime discri-
minant p. (We fix a prime number p.) Put

G'={g e M (D); g'g=n(g)l,, n(g) € Q*}.

Then, G’ is an inner twist of G. Let G, (resp. G%) be the adelization of
G (resp. G'), and for any place v of Q, let G, (resp. G,) be the v-adic
component of G, (tesp. G%). We have G.=GSp(n, R) and G, =GSp(n)
(i.e. the group of symplectic similitudes). We note that

G,=G,=GSp(n, Q,), if v#p, oo,

We consider subgroups U, (resp. U’) of G, (resp. G%) of the following
forms:

1.1 U,=G.P [] GSp(n, Z,) (resp.
qFp

(1.2) U,=G.P' [] GSp(n, Z)),
qaFp

where P (resp. P’) is an open compact subgroup of G, (resp. G;), and, for
any prime ¢,

GSp(n’ Zq):{g € GSP(”: Qq), g g-x € MZn(Zq)}'

We define automorphic forms and Hecke operators. Let §, be the Siegel
upper half space of degree n:

$.={X+iY¥; X, Ye M,(R), ‘X=X, Y=Y, Y>>0, ie.
Y is positive definite}.

An element g=<‘é g) € GSp(n, R)* acts on , by:

Z+—>(AZ +B)(CZ + D).
Put
GSp(n, Q)*={ge G; n(g)>0} and U=U,NGSp(rn, Q).

Then, U acts on H, discontinuously and vol (U\9,) is finite. The space
S (U) of cusp forms of weight k& with respect to U is defined by:

S(U)= {holomorphic functions f on &, such that
(1) fZ)=f(Z) det (CZ-+D)* for all r=(‘é g) U,

@) f(Z)(det Y)*" is bounded on @}
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For any natural integer m (ptm), the action of the Hecke operator T'(m)
on Sy(U) is defined as follows: Put T(m)=|{J, UgU, where g runs
through elements of

4,={g e GNM,,(Z); gJ'g=mJ}.

We take a coset decomposition T(m)=[]¢, Ug, (disjoint). For any
fe S(U), we define ] T(m) by:

(1T Z)=mrE-nenr iZ:f(&Z) det (C.Z+D,)"",

4, B,
Ci D’l ’

On the other hand, let (p, V) be an irreducible representation of G..
We regard p as a representation of G, by composing it with projection:
p: Gi—GL—GL(V). The space M,(U’) of automorphic forms on G, of
weight p with respect to U/, is defined by:

where gi=<

M (UD={f: G~ V; fluga)=p(u)f(g) for all a e G, u & U’, and g & G}

As well known, we can realize V in a space of some spherical functions.

The strong approximation theorem does not hold for G’ and the ‘class

number’ of U/ is not one in general. A ‘classical’ interpretation of

M,(UY) is given as follows: Take a double coset decomposition G',=
¥.1 Ug:G’ (disjoint), and put

(1.3) I'i=g;'U4g,NG".
Put
Vi={ve V;p(rjv=vforall7 e I'}.

Then, we have
13

(1.4) M(UD=B VT,
i=1

where the isomorphism is given by}’—»(p(g;‘) f(€))ic1..n.. Let p, be the
representation of Sp(n) which corresponds with the Young diagram

l...y

n. We extend it by putting p,(al,)=a™ for ae R*, a>0.

.,,‘

We write MM, (UY=M(U)). If —1eU!, then M(U’)=0, unless




36 K. Hashimoto and T. Ibukiyama
(—D»=1. We put T"(m)=\_, U,gU’ (pfm), where g runs through
elements of
4,={g=(g.,) € Gi; g, € M,(Z,) and n(g,) € mZy
for all finite v=£p, g, € P}.

Take a coset decomposition
T'(m):ﬁ g/U,  (disjoint).
For any f e MU, f|T'(m) is deﬁned by: .
1T o0 =5, eledfigt o) ¢ G

The (abstract) Hecke algebra spanned by T'(m) (pym) is isomorphic to the

one spanned by T/(m) (pym). We sometimes denote 77(m) by T(m). For

a common eigen form f e S(U) or M(U)) of all the Hecke operators

T(m) (p4m), the L-function of f'is defined (up to the p-Euler factors) by:
L(s, F)=the denominator of 3, A(m)m=°, where T(m)f=i(m)f.

plm

Now, we review a typical case of Eichler’s results on GL(2). Let O be.a
maximal order of D and O, be its p-adic completion. Put P/=0; in
(1.2). On the other hand, put :

p={g=(¢ 2)eore.2); e=0modp).

In the usual notation, U=1I"y(p) in this case, We write U%=07 in this
case.

Theorem 1.5 (Eichler {10], [11]). If we denote by SYI'(p)) the space
of new forms of S (I'(p)), then for k=2, we have: M, _(0F) =Sy '«(P))
(®DC, if k=2), as modules over Hecke algebras (i.e. this isomorphism
preserves L-functions).

The new forms SY(I'y(p)) are actually defined as the orthogonal
complement of S(SLAZ)DS(pSLLZ)p™") in S,(I'(p)) with respect to

the Petersson inner product, where p= (g *(1)> So, we get

Corollary 1.6 (Eichler, loc. cit.). For k=2, we have dim I, _,(0,)=

dim ST "y(p)—2 dim S(SL(Z))+3, where =1, if k=2, and §=0,

otherwise.
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This Corollary 1.6 will be extended for n=2 in this paper. But,
before we state our Main Theorem, we would like to propose general
formulations and conjectures. If we want to generalize such simple and
beautiful typical results, several natural questions arise:

(1) What are the corresponding weights in the general case?

(2) What kmd of Uor U/ should be taken instead of I'y(p) and

0,4?

(3) What are new forms? :

The answer to the question (1) for n=2 was given by Ihara. The general
case seems more or less known: If we take Siegel cusp forms of degree
with weight k>n-1, the corresponding weight of automorphic forms on
G’ should be p,_,_, (cf. (4.50)). To questions (2) and (3), a hypothetical
answer has been given in Ibukiyama [21], 23], [24]: First of all, as far as
we take U, or U/ as in (1.1) or (1.2), this question is a local problem how
to choose P or P’. Secondly, it is known that every reductive algebraic
group over a non archimedean local field has the unique minimal parahoric
subgroup up to conjugation (Tits {46]). Roughly speaking, the minimal
parahoric subgroup is a group such that its reduction mod p is the Borel
subgroup. For example, P or P’ chosen in Theorem 1.5 is minimal para-
horic. So, it is natural to choose the minimal parahoric subgroup B of G,

or B’ of G, as the first candidate for P or P/, respectively. (As for another
kinds of candldates, see [23], [24].) To obtain new forms, we should sub-
tract automorphic forms belonging to U, or U’ with P2 B or P2 B,
To explain more precisely,, we review briefly the Bruhat-Tits theory. The
extended Dynkin diagram of G, is the Coxeter graph of the affine Weyl
group W of G,, and the set S of vertices of this graph can be regarded as
a set of generators of W as a Coxeter system. We fix a minimal parahoric
subgroup B of G,. By the Bruhat decomposition, there is a one to one
correspondence between the set of all subsets § of S and the set of all
subgroups of G, containing B. More precisely, for each w ¢ W, there is
a good representative of w in Gp, which we denote also by w. For a
subset 4 of S, put

= {the group generated by all double cosets BwB such that w ¢ 6}.

Such groups are called standard parahoric subgroups. Then, we have
P,> B, and Py=P,., if and only if §=¢. Besides, every group P which
contains B is obtained in this way. For example, P,=B and Py=G,.
For 6 S, we put

U p)a=G.P, I;{ GSp(n, Z,), and
qFp

U(p)=GSp(n, @)* N Us(p).

(1.7
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The above theory is completely the same also for G4, and we denote by
S’ the set of generators of the affine Weyl group of G,. We denote by P’
the standard parahoric subgroup defined by ' S’. We put

(1.8) Ui pa=GLPy I;L GSp(n, Z,).
4

We often omit the suffix 4 in this case, because we do not treat ‘global’
discrete subgroups. We put U,(p)=B(p) and Uj(p)=B’(p). The second
author gave the following conjectures ([21], [23]):

Conjecture 1.9. For any integer n, v==1, we should have:

(1.10) . 3 (=1 dim S, (U(p)) = 2, (=1 dim MU (D))-

’

@
ty

<
<5
If v=0, we should add one to the right hand side.

We define the space SYUB(p)) of new forms of S.(B(p)) as the
orthogonal complement of > 4.1 Si(Us(p)) (summation as C-vector
8cS

spaces) in S,(B(p)) with respect to the Petersson inner product. We define
MY(B’(p)) completely in the same way. These definitions mean that the
p-adic admissible representation attached to a new form is the special
representation (cf. [4])™.

Conjecture 1.11.  For any integer n=1 and v=1, we have:
(1.12) 83 s B(P)=IMYB'(p)),
as modules over the Hecke algebra spanned by T(m) (pym).

For n=1, these conjectures are nothing but Theorem 1.5 and Corol-
lary 1.6 by Eichler. For n=2, Conjecture 1.9 is true (at least) for v=2
and p==3. This is our Main Theorem. For n=2 and p=2, there have
been given some explicit examples f e S%,,(B(p)) and f” e MYB'(p)) in
Ibukiyama [21] such that Euler 3-factors of L(s,f) and L(s,f”) coincide
with each other and satisfy the Ramanujan Conjecture at 3 (i.e. these can-
not be obtained as ‘liftings’ of one dimensional automorphic forms). For
general n, the both sides of (1.10) are expressed as a sum of contributions
of conjugacy classes of elements of G or G’. For some conjugacy classes,
we can show the equality of contributions. For example, the main terms

#  For v1, dim §%,.1(B(p)) (resp. dim MI(B’(P))) is equal to the left (resp.
right) hand side of (1.10).

Prof. W. Casselman proved this fact, answering to the question by one of the
authors.
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(i.e. the contribution of the unit elements) of both sides of (1.10) coincide
with each other and given by:

20+ D+2). - - (v+n) wti+j [[7:¢20)
n! isisjgn {4j  Qr)r*h
X(p=D(Z—1)- - (2~ —1).
As for this kind of relations for other algebraic groups which are not

symplectic, see Ibukiyama [23]. We have some results also for some kind
of unipotents elements of G or G,

§2. Main Theorem

In this section, we explain our Main Theorem Imore in detail. For
n=2, the extended Dynkin diagrams of G, and G, are given as follows:

G » O—=0=—=0,
So Sy 8z
G, Q0
5 53

where {s;, 5, 5;} or {57, 57} is the set of generators of the affine Weyl group
W or W’ of G, or G,, respectively. We can take the minimal parahoric
subgroup B of G, as follows:

-y

*® * % *
_ y23 * % *
B=Gsp, zy)n|bx * v k),
px px x %

where *’s run through all the p-adic integers. We can fix representatives
of 5; (=0, 1, 2) in G, as follows:

10‘

0 0 —p- 0 1 0 0 100 0
s=|0 1 0 ol (1000 [0 0 0 —1
“lp 0 0 of ."Tlo.0 0o 1) %=lo 0 1 of

00 0 1 0010 010 0
Put

00 0—1
o 0o-1 o
=lo p o of

p 0 0 O

Then, it is easy to show that
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P y=BU Bs,B= {(C D) e GSp(2, Z,): C=0mod p},

ES * ok *
% * % *®
P{sz}zBUBSZB—:GSP(z:Zp)n ;* px % pxp
Dx E *
* ox Pk %
k% ® 0k
Py =BU Bs,B=pPy,p7'=GSp2, @) N 5* px = pxf
px % ox

x* % plx

* * * *’
?)(so,sz} = GSP(2= Qp) m i* px *  px )
Dx * * ES

Pio=GSp(2, Z), and Py, .,,=poGSp(2, Z )p~’,

where * runs through all the p-adic integers. For the sake of simplicity, we
write Py =Py, Py sn =P, €tc. The relations of the standard parahoric
subgroups of G, are illustrated as follows:

Py
Py Py

Py P1 Py

which means that every face is the intersection of its boundaries and every
vertex is spanned by simplexes containing it. For example, P,=P, N P,
and P,, is generated by P, and P, etc. To explain the parahoric subgroups
of G}, it is convenient to take another model. Put D,=D®),Q, and

0 I\ 01
Gr={ge M@ e(] o)z=n)] () neree;}
Then, G¥ =G,. We fix such an isomorphism once and for all. Let = be

a prime element of 0,=0®zZ, We can take a minimal parahoric
subgroup B’ of G as follows:

0, 0,
B'Z(ﬁoz OZ) nGs.

We can put
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Then,
-l
P5=P(%,=(ngf’ 0, )m G¥, and P{=P,,=GL0,)N Gx.
. ? )

We can illustrate these groups as follows:

Pjo ol 24

B’

We define Uy(p) or Ui(p) as in (1.1), and put Uy(p)=U,,(p), etc. In
the notation of [21], [23], [24], U(p)=TI'W(p), UAp) =Tip), Up)=
I'{(p), and Uy(p)=K(p). You can get an expression of Uy(p) or B(p),
if you replace p-adic integers or numbers by rational integers or numbers
in the expression of P or B, and take n(g) to be one. We have no standard
global expression of U;(p) or B'(p), partly because the ‘class number’ of
G’ isnot one. You can find some explicit examples of I"; defined in (1.3)

in [21]}, [26].

Main Theorem 1. For n=2, any integer k=5, and any prime p+3,
the conjecture 1.9 is true, i.e., we have the following equality: ‘

@.1)
dim Sy(B(p))—dim S, (U(p))—dim S(U(p))—dim S(UYp))
+2 dim Sy(Sp(2, Z))+dim S (U(p))
=dim M,_y(B/(p))—dim WM, _(U{(p))—dim I, _(U(p)).

As we shall explain in Section 4, dimension formulae are expressed
as summations over the contributions of conjugacy classes of elements
(with n(g)=1) of G or G’ of various types. Any elements of G’ (with
n(g)=1) are semi-simple, because they are embedded into the compact
group Sp(2). We have GRC=G'QC=GSp(2, C). Let-C be a conjugacy
class of some semi-simple elements of GSp(2, C). Itis well known that
C is determined only by the principal polynomial f(x) of all elements of
C. Let T(f) (resp. H(f )) be the set of all G-(resp. G’-) conjugacy classes
contained in C.

Main Theorem II.  The contribution of non-elliptic (i.e. non torsion)
conjugacy classes to the left hand side of (2.1) is zero. For any polynomial
f(x) which is the principal polynomial of some elements of G or G’ of finite
order, the contribution of T(f) to the left hand side of (2.1) is equal to the
contribution of H(f) to the right hand side.

Remark 2.2. This Main Theorem II can be regarded as an evidence
for the philosophy by Langlands [36] on stable conjugacy classes.
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Remark 2.3. The proof of the Main Theorem consists of an explicit
calculation of each dimension. Some of the above mentioned dimensions
have been already known: dim S,(Sp(2, Z)) by Igusa [27] (cf. also [16]),
dim S (U(p)) by Hashimoto [16], dim S, (Uy(p)) by Ibukiyama [24],

and dim M,_(Uip)) ((=0,1) by Hashimoto and Ibukiyama [19]. So,"

we shall calculate dim S.(B(p)), dim SJ(U(p)) (=dim S, (Uy(p))), and
dim $M,(B’(p)) explicitly in the following sections. We note that (2.1) has
been known for p=2 with k=3, although we must add one to the right
hand side, if k=3 (cf. [24]). For general p, we need the trace formula,
but it does not work well at present, unless k=5. We assumed p=3,
because it sometimes makes computation easier. By virtue of the above
mentijoned results, we can also assume that p+2 in the following con-
siderations.

§ 3. Explicit dimension formulae

In this section, we give explicit formulaec for the dimensions of
SA(B(p)), S{ULp)), and M(B'(p)). The proof will be found in the
following sections. First, we treat B(p) and U,(p). The dimensions are
expressed as sums of contributions of B(p)- or Uyp)-conjugacy classes.
But, by definition, we have B(p), U(p)CSp(2, Z). So, it is convenient
to group together those B(p)- or U,(p)-conjugacy classes that are contained
in a Sp(2, Z)-conjugacy class. Representatives of the Sp(2, Z)-conjugacy
classes of elements of finite order were given by «; (i=0, ..-,22), §;
(i=1,..-,6),1,(i=1,2,3),0r §; (i=1, 2), up to sign, according to the
notation of [16]. The non-semi-simple Sp(2, Z)-conjugacy classes are
divided into various types as in [16], and those which have a contribution
to the dimension formulae are of type =+f(n) (i=1, .-+, 10), 5,(m, n)
(=1, ---,4), £86m (=1,2),7m (=1, ---,4), £7.n) (=5,6,7), or
+eS) (i=1, ..., 4), according to the notation in [16]. We use above
notations to denote the set of conjugacy classes of that “type”. For
example, «, (tesp. §,) denotes the set of Sp(2, Z)-conjugacy classes which
contain @, or —e; (resp. B,(n) or — fy(n) for some n € Z, n0). For U=
B(p), or U(p), and a set C of some Sp(2, Z)-conjugacy classes, we denote
by t(U, C, k) the total sum of the contributions to dim S, (U) of U-con-
jugacy classes contained in C. We sometimes omit U and denote it by
t(C, k), if no confusion is likely. The principal polynomial of the above
Sp(2, Z)-conjugacy classes are given as follows:

G.1)
ﬁ(x):(x—— 1)4> orf,(—x) for oy, te; (l=1> s 4):
fz(x)=(x" 1)2(x+ 1)2 for 672 (l=19 2)’ 31: (1=1, St 4), iéi (l=1’ 2)’
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@) =(x—1Y(x"+1), or fi(—x) for +5,(i=5,6), £5 (=17, ---,10),

fix)=(x—1(x*+x-+1), or fi(—x)
fOI' iﬁz (l:l’ 2)’ iﬁ’l (1233 trty 6):

SX)=x—1Y(x*—x+1), or fi(—x) for +pB;(i=3,4), +§ (i=1,2),
[(xX)=(x*+1) for o, 7. (=1,2,70G=1,...-,4),
FX)=+x+10 or f(—x) for e, (i=2,3), +7,(i=5,6,7),
Ji@) =+ D +x+1), or fi(—x) for £e, (=19, 20,21,22),

[ =0 +x+D(x*—x+1) for ,(i=7,8), a, ((=09, 10, 11, 12),
Ju@)=x*"+x"+x*+x+1, or fi(—x) for Lea,((=15,16,17,18),
Ju)=x*+1 for a,(i=4,5), *a,

fo)=x*—x*+1 for o, (i=13,14). -

Theorem 3.2. For a natural integer k;S ‘and a prime p+2, 3,
dim S.(B(p)) is given by the suramation of the following quantities:

(@ B)=(p+ 10+ 1) (2K — 2)(2k — 3) (2K — /235,

e k)=(p+1)(1+(§;1))(—1)'°/26,
(et K)+ (et K)=— (p+ 1)(1+(Zp§)>/2-33x[0, 1, —1; 3],
1.--if p=1mod 8§,

6
t 9k:17070:_1;4
21 D=1 ]{O---ifpsélmod&

2 4 -3
2 e B=511,0,0,—1,0,0:6)(1+(=2)),
i=7 9 P

1.--if p=1 mod 12,

He, B+ ey, )= 200, 1, —1: 3
(0‘13 )+ (0514 ) 3[ : ]{0-~-otherwise,

] 8.-.if p=1modS5,
18 .
Zz(ozi,k)=—;-[1,0, 0, —1,0; 51 - -if p=5,
1=15
0- - -otherwise,

i=19 P p
X[19 0, 05 1, 1? 1’ 1, O) 05 17 1: 1; 12]!

180 )+ 1(Bo k>=<p+1>(1+(%§))[2k—3, k1, k423 32,
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(B )+ 1(Bus )= (p+ 1)(1 + (?}7—3)) / 23
_ X[—1, —k+1, —k+2,k—1, k—2; 6],
—1
(G B+ 16, =+ D(1+(=7))
k=2, —k41, —k42, k—1; 41/243,
170 K+ 1T ) =5(p+1)(1+(:1))(2k—3)/263,
p
-3 .
170 )= (p+ 1)(1 + (7))<2k~3)/3 :
180 K)+ 1(8 K)=T(p+ 1H(— D)2k — (2K — 4)/2°3,

1B K)+ (B k)=(1+(§))[o, 1,1,0, — 1, —1; 6]/3,
18 K+ 1(Bus )= — (1 + (:pé))[z —1, —1; 3%,
1o 1)+ 1B k)=~%(1+(“71))[1, —1,0;3],

1 )+ 1B k)=—(1+(~;}))[1, —1, —1,1; 4/4,

1o )+ 1B k)=—(1+(-—1))[1, —1, —1, 1; 414,

r
1, )+ 105, B)=(—1)*/2,

1By, K)+1( k) = (3_ (:p_l)) / »,

(61, D) +1(6, )= — (p+1)(— D*(2k—3)/2'3,
(e, K)=(p+1)/6,
t(e,, K)=0,
(e, k)= —(p+1)/2°3,
t(e,, k)= —(p-+1)"(2k—3)/2*3",
. , , . -1 ,
1o K+ 1Py ) =1(Foy )+ £(F s )= (1 +<_p-)) / 2,

1o )+ 1(F oK)+ 1P, K= —%(1 + ('73»

where (i) is the Legendre symbol and [t,, ---,t,_y; r] means that we
P
take the value t, if k=imod r.
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Theorem 3.3. For a natural integer k=5 and a prime number p=£2, 3,
dim S (U(p))=dim S,(U,(p)) is given by the summation of the following
quantities:

et K= (p-+ 1)+ 1) (2 —2) (2K — 3) (2K —4)/2°3°5,
— —~1 1\t /7
(s, k)—(p+1>(1+(7))< 142,

t(os R+t )= — (o 1)(1 +(“73))[o, 1, —1;3)2%,

1 1-.-if p=1 mod 8§,
t(a, k)=-=[1,0,0, —1;4] .
2 0. - -otherwise,

[
2
=4
12 -3
2%t =2(1+(=2) ). 0.0, —1,0,0: 6%,
1=7 p
1 : 1-..if p=1mod 12,
tlay,, k) +t(ay, K)=—[0,1, —1;3 .
(0513 )+ (au ) 3[ ]{0 . - otherwise,
4...if p=1mod 5,
18
> #(as k)=—i_—[1,0, 0, —1,0: 51 - -if p=5,
i=15 .
: 0- . .otherwise,

22 ‘ ___1 __3
5 e = (2+(5)+(5)))
7=19 p p
x[1,0,0, -1, —1, —1, —1,0,0, 1, 1, 15 12}/2°3,

(B B+ (B k)=(p+2+(:p—3))[2k—3, kb1, —k2; 327,

16, R+ 180 )= (2 +2+<:;3)>

 X[=1, —k+1, —k+2, Lk—1,k—2;6]/2°3%,
1(Be, )+ 1(Bs, k)':<p+2+<%1)>[k~2, k1, —k+2, k—1; 4]/253,
(1 )+ 170 ) =5(p+ 1)(1 + (%))(ﬂc— 3)/273,

—3 .
(rn D=(r+ n(1+ (7))(2k—3)/2-3 ,
(81 B) 13y )= T(p-+ 1)(— 1)*(2h—2)(2h— 825",
1B )+ (B k)=(3+(“73))[0, 1,1,0, —1, —1; 6]/23,
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1B )+ (B )= — (3+(‘73))[2, —1, —1; 323,

—4[1, —1,0; 3}//3* ---if p=1 mod 3

t({BSa k)+t(ﬁsa k):{_[z’ _1, '—‘l; 3]/32 . lf pE2 mOd 3’

1 )+ 1B k)=—(3+(”71))[1, —1,—1,1; 42,

N A _ :;1 . . "
1o B+ 1By B) = (3+(p))[1, 1, 1, 1, 4772,
105y, k) +1 (B, k) =(—1)%/22,

G, R)+18, b = (3_ (_‘]_)1)) / %,

(5, K)+1 (5, k)= — (p+3)(— 1)*(2k —3)/23,
(e, B)=(p+1)/2'3,

t(e, k)=0,

(e, k)= —(p+3)/23,

(e, K)=—(p+1)"(2k—3)/2°3,

1y K+ 1(F o K)=1(Fy, k) + 1(F s K) = — (1 + (‘71» / 2,

1oy )+ 1 (Foy K) 4 £(Fry K) = — (1 + (:p§)> / 3,

where the notations are same as in Theorem 3.2.

Numerical examples of dim S, (B(p)) and dim S (U p)) for small k
and p.

In the following tables, we write dim S,(B(p)) in the second row, and
dim Sy(U,(p)) in the third row.

(i) p=5
k 5 6 7 8 9 10 11 12 13 14 15 16
B(p) 2 15 10 43 27 90 64 166 116 267 203 412

Ua(p) 1 2 2 6 6 15 13 27 20 42 37 68
(i) p=7

B(p) 11 45 43 125 123 277 263 505 471 825 791 1281

Usp) 2 5 7 15 17 34 37 63 61 100 104 160
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(ii) p=11
k 5 6 7 8 g 10 1 12 13 14 15 16
B(p) 66 202 283 603 756 1340 1581 2501 2854 4190 4679 6503
Uy(p) 5 12 21 4 60 103 130 198 229 331 338 528

@iv) p=13

k 5 6 7 8 9 16 11 1213 14 15 16

B(p) 141 387 578 1140 1507 2521 3120 4710 5557 7855 9094 12236

Us(p) 1227 45 80 113 180 232 337 403 556 662 875

Theorem 3.4. For a natural integer k=5 and p=£2, 3, we have
dim S,(B(p))—dim Sy(Uy(p))—dim S(Uy(p))—dim S,(U(p))
12
+dim Sy (Up(p))+2 dim S,(Sp(2, Z))= Z—; T,
where T, is the contribution of semi-simple conjugacy classes whose principal
polynomial is f(x) or f(—x) in (3.1). Non-elliptic conjugacy classes (i.e. of

infinite order) has no contribution. T, (i=1, ---,21) are given explicitly
as follows:

Ty=(p—1)(p*— 1)k —2)(2k — 3)(2k — 4)/2°35,
T,=7(p— D (= D*k—1)(k—2)/2'3,

T,= —(p—-l)<1—<—71)>[k——2, k1, —k42, k—1; 4253,

T4=——(p—1)(1—<_73)>[2k——3‘, k1, —k42; 3)/23,

T5=—(p—1)(1——(‘—3).)[—1, k1, —k42, 1, k—1, k—2; 6)/2°F,
p L . N

T5=(p—1)<1——(_71)>[—k+1, — k2 2283,

n=(p—1)(1—(”‘—3))[—2k+3, C2k42, —2k-4; 323,
p

n=(-C0-)

x[1,0,0, —1, —1, —1,—1,0,0, 1, 1; 12]/223,
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:O_(;)Ymom,_hamﬂﬁa

1...if p=5
2...if p=2,3 mod 5,
4...if p=4 mod 5,
0---if p=1mod 5,
T,,z—l—[l,O, 0, —1; 4]{ .o eif pE'/' mod 8,

2 0- - -otherwise,

1 1...if p=11 mod 12,
Ta=<I1,0,0, 1,2, —2; 6] 0

1
=—-[1,0,0,~1,0;5
=1 1

- -otherwise,
where the notations are same as in Theorem 3.2.

Proof. One can get this Theorem 3.4, by straightforward calcula-
tion, using Theorems 3.2, 3.3 in this paper, Theorems 6.2, 7.1 in [16], and
Theorem 4 in [24]. q.e.d.

Next, we treat B’(p). In this case, every element of G’ is semi-simple,
and if it is of finite order, then its principal polynomial is one of f,(x) or
f{—x)in (3.1). For any open compact subgroup U of G, we denote by
H,(U) the contribution to dim M(U) of elements of G’ whose principal
polynomial is fi(x) or f;(—x). For g e Sp(2), it is well known that tr p,(g)
depends only on the principal polynomial of g and that trp(g)=
tr p,(—g). We fix an element g, ¢ Sp(2) whose principal polynomial is
fi(x). Now, we state our results.

Theorem 3.5, For any U as above and any integer v=0, we have
12
dim M (D)=} H(U) tr o8-
i=1

For any prime p#2, 3, and U=U{(p), Ui p), or B'(p), H(U) is given as
follows:

H\(B'(p))=(p*—1)/2°3’5,

H(Ui(p)=(p—D(p*+1)/2°35,

H(U{p)=(p"—1)/2°3%,

Hy(B'(p))=H(Uyp)=0,

H(U(p)="T(p—1)/2°%,

H{(B'(p)=H{U(p))=0,
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HU)= (-1 —(_—)) /73,

H(B'(p))=HUyp)=0,

HU)=(p—D(1- (:;)) /73,

Hy(B'(p)=H(U(p))=0,

B =(r—1(1- (ﬁ)) /23,

HG(B'(p)>=(p+1)(1—(—)) [+ S(p—l)(1+( b)) /2.

H(Up)=5(p—D/23+(1 —(:‘p—)) /7,

He(Us(p))=(p+1)(1—(‘71)) / 26+5(p—\1)(1+(“71)) /7,

49

H, B'(p>)=(p+1)(1—(§)) /2532+<p_1)(1+(:pé)) /23,

HUp)=(p—1)2-3+ (1 - (:pé)) /2,

H7<Us(p))=<p+1>(1—(—)) / 2332+(p—1)(1+( ) /23

H(B'(p)=HU{p)=0,
o= ()o-(59)/
Hy(B'(p)=HyUyp)=0,

=)

1fp5

Hy(B'(p) = --» otherwise,

- - otherwise,

--if = 5,
H(Uyp))= 2/5- -if p=2,3 mod 5,
- - otherwise,

if p=5
Hw(Uﬁ(p))——{4/5- --if p=4mod 5,
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#E e =(1-(2)) /2

-«if p=1mod §,

H(Ui(p)=:1/4-..if p=3,5mod 8§,
-«if p=7 mod §,

(

i
miei~(-(2))
{

o

H(B'(p) = 1/3...if p=5 mod 12,
AP 0 - ..otherwise,

--if p=5mod 6,
12(U1(P)) .
- -otherwise,
«-if p=5 mod 12,

. «otherwise.

H(Up)= { s

Remark. The above results for U(p) and U(p) have been already
given in [19], including the case where p= 2, 3. We reproduced them
here for the convenience of the readers. The Weyl character formula
gives explicit values of tr p,(g,), which has been calculated in [19] (I) Theo-
rem 3 (p. 596).

Theorem 3.6. For any integer v=0, put k=v+3. For any prime
P#2, 3, and for the above k, define T,(i=1, ---,12) as in Theorem 3.4
(, although k might be 3 or 4). Then, we get

(H{B ,(P)) —H,(UI(p)—HUp)) tr pg)=T,
foralli=1, ..., 12.
Proof. This is obtained by straightforward calculation. q.e.d.

We see very easily that IR (U p) N M (Ui(p))=0, unless v=0, and
dim (R(Ui() N MLU(pN))=1, if v==0, so the dimensions of new forms
belonging to B’(p) is given by:

dim IR(B'(p))=dim I, (B'(p)) —dim M,(U{(p))—dim M(U(p))+3,

where §=0, if v=£0, and =1, if y=0.
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Numerical examples of dimensions of IR,(B'(p)), M(Up)) (=0, 1),
and new forms MYB’(p)).

(1) p=5
v 0 1 2 3 4 5 6 7 8 9 10 11 12 13
B 2 1 5 8§ 15 22 34 47 67 87 115 146 184 225
Uiy 2 6 3 0 6 0 14 3 23 6 33 10 53 21
Uvdpy 1 0 1 1 2 2 3 3 5 5 7 8 10 11
new
fomms 01 1 7 7.20 17 4 39 76 75 128 121 193
(i) p=7

v 0 1 2 3 4 5 6 7 8 9 10 11 12 13

B'(p) 2 14 28 50 80 122 176 244 328~ 430 550 692 856

6
Ugp). 2 0 5 0 16 3 °29 8 55 21 8 37 133 67

Ugp) 1 1 1t 2 3 4 5 6 8 10 13 15 . 18 22

new

forms 0 5 8 26 31 73 88 162 181 297 332 498 541 767
(i) p=11
v 0 1 2 3 4~ 5 6 7 8 9 10 11 12 13

B(p) 7 27 74 156 285 467 718 1044 1457 1965 2582 3314 4175 5171

Up) 5 1 16 .3 45 16 99 48 186 106 296 182 474 318

Ugp) 1 1 2 3 5 6 9 12 16 20 26 32 40 48

;’gr“;’ns 2 25 56 150 235 445 610 984 1255 1839 2260 3100 3661 4805

i

Gv) p=13

v 0 1 2 3 405 67 8 9 1 1 12 13

B'(p) 13 53 144 304 555 911 1400 2036 2841 3833 5036 6464 8143 10087

Up) 4 023 7 70 32 154 88 288 184 483 333 750 546

Up) 2 2 3 5 8 10 14 18 24 30 39 47 58 70

?ggns 8 51118 292 477 869 1232 1930 2529 3619 4514 6084 7335 9471
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§4. Arithmetic general formulae for dimensions™®

4-0. This section is mostly an exposition of [15], [16], and [19].
Our purpose is to describe the general “arithmetic” formulae for the
dimensions of our space S,(I"), M, (U,) or automorphic forms for arithmetic
subgroups of Sp(n, R), and Sp(n). Here n is an arbitrary positive integer.
These formulae, Theorem A in Section 4-2 and Theorem B in Section 44,
enable us to compute explicitly the dimensions of S.(I"), M,(U,) for the
special groups considered in Sections 1, 2, and 3, as we shall carry out in
Sections 3, 6, which lead us to our main results in this paper.

In the split case (i.e. for Sp(n, R)), our formula is based on Selberg’s
trace formula; and the derivation of our formula from Selberg’s formula
consists of two main parts i.e.,

(i) evaluation of certain integrals (analytic part), and

(ii) classification of conjugacy classes in I and their centralizers
(arithmetic part)

(i) (bis) when the conjugacy classes in question are semi-simple,

we need only G,-conjugacy classes instead of I'-conjugacy classes, and
certain G-Maf (see Theorem (4.31)).
On the other hand, in the compact case (i.e. for Sp(n)), our formula can
be obtained in quite elementary way as a special case of the trace formula
for the Brandt matrices B,(n) (c.f. [15]), which generalizes the method of
Eichler [9, 10] and Shimizu [43]. Here the analytic part (i) is quite simple;
it is nothing but the character computation of the finite dimensional
representation p, which is now a classical result of H. Weyl [50]. There-
fore, the essential part of the derivation of our formula consists of only
(ii) (bis), although explicit computations are not so easy.

Moreover, as we shall see, the arithmetic part (i) (bis) can be handled
in a unified manner in both Sp(n, R) and Sp(n) cases. So we first describe
this part in the following paragraph, where a certain arithmetic invariant
H(g, U,) will be defined for a semisimple conjugacy class of G, a Q-form
of either Sp(n, R) or Sp(n), and a closed formula for it will be given. It
would be convenient, however, to describe here the motivation to introd-
ucing such a invariant by sketching the special meaning of it in the com-
pact case.

In the compact case, our space I, (U,) of automorphic forms is
isomorphic to @, V7 (c.f. § 1), so we have

- * In this section, G will denote either one of the groups G or G’ of Section 1,
Section 2, unless otherwise stated.
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dim MUY =3" dim VT

i=1

@) =315 5, e

H
=3 tr (o) 3y ALAUD
I i=1 #F 1

where the first sum is extended over the set of principal polynomials
S=f(x) of torsion elements of G (or Gy=Sp(n)), and [f] denotes the
set of elements g which belong to f(x). Note that, tr (o,(g)) depends only
on f to which g belongs, and that the inner sum does not involve p,.
Thus the computation of dim M, (U,) reduces to that of:

42 & 4N
@2) Hf, U= F U

In general, the set [f] in G, consists of infinitely many G,-conjugacy
classes, while obviously only a finite number of them make nontrivial
contributions to dim M (U,). This leads to the following

Definition 4.3. A conjugacy class {g}GQ in Gy is called “locally
integral” (with respect to U)) if I':N{gle,# ¢ for some i (1<i<H).
For each G,-conjugacy class {g}¢ o Ve define an invariant similar as (4.2):

H
4.4) H(g, Uy:=3 N &gl

=t #;
Clearly, {g}s, is locally integral if and only if H(g, U,)s0. Note also
that this implies g is of finite order,

4-1. A formula for H(g, U,). Let D be a quaternion algebra over
Q (definite or indefinite), and let the group G, be defined by

G,:= the group, of similitudes of the hermitian space (D", F),
4.5) Fx, )=x91+ i+ +%, 0,
={g € GL.(D); g'g=n(g)-1., n(g) € @3},

where for g=(g,,), we write ‘g=(g,), a—a being the canonical involution
of D. We may regard it as Q-rational points of an algebraic group G
defined over Q. G is reductive. We denote its semi-simple part by
G':= {ge G;n(g)=1}. In G, we consider an open subgroup U, which,
as we assume throughout this paper, is of the form

UA:Eii( N GA
=GeX [l U, (U,=R;NG,)
P

(4.6)
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for some Z-order R of the Q-algebra M, (D). Then G, is decomposed
into a disjoint union of finite number of U,— G, double cosets:

P
@7 Gu=[] U.gGo.
By an “arithmetic subgroup I of G,, or Gp, we mean a system of sub-
groups (I")Z,, where
(4.8) I''=GoNgi'U.g: (=GNgi UL

It is this system of groups (I";)¥, with respect to which our spaces of
automorphic forms are defined. If D is definite, then I'; are all finite
groups, since they are contained in the discrete subgroup Gp and the
compact group G4YNg7U,g,. On the other hand, if D is indefinite, we
have a natural isomorphism

~ 4 B
Gp—>5p(n, R), g=(gij)*——>(c' D),

8= (aij bij): A=(a,), B=(b,) etc.

Cij Gy

(4.9)

where we identify Dy =D®), R and M,(R); and I';’s are arithmetic discrete
subgroups of Sp(n, R), which act on the Siegel upper half plane 9,
properly discontinuously in the usual manner. In this case, if R is suffi-
ciently large, we have H=1 by the strong approximation theorem (c.f.
Kneser [32]), which is the case for all arithmetic subgroups of GSp(2, Q)
=G, treated in this paper. However, to treat uniformly two cases
(D =definite, or indefinite), we do not assume that H=1.

We take and fix, once for all, an open subgroup U, and a semi-
simple conjugacy class {g}e, contained in Gp. Put

Z(g):= commutor algebra of g in M, (D)
={z e M(D); zg=¢gz},
ZH(g)=Z(g)* NG, (=the centralizer of g in Gp).

Then Z(g) is a semi-simple algebra over Q, and Z;(g) is an algebraic
group, reductive, over 0. In the set {4} of Z-orders of Z(g), we define
two equivalence relations
A~ A, &= A, =ala™ for some a e Zy(g) -
A=A = dy=atia™:= () (apllxpa;lﬂz(g))

¥4

for some a=(a,) € Zs(g),

(4.10)
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An equivalence class in the second relation is usually called a G-genus,
which we denote by Ly(4) if it contains A; it consists of finitely many
classes with respect to the first equivalence relation. We have a disjoint
decomposition of I'; N {g}s, for each i:

where we put
C(g, 4, 1) :={x""gx; x € Gy, Z(g) N xR, x""~ 4},

(4.12)
gi:ggl_lggi :=Q (g_pl__.pgu: m Mn(D))

and the union is extended over the (actually a finite) set of Z-orders A of
Z(g), modulo the equivalence ~. Note that the set C(g, 4, 1) is stable
under the conjugation by I',, and it consists of a finite number of I,
conjugacy classes. Now we define our arithmetic invariants

H(g, 4, Uyi=3; HC(e, 4 DT 5],
H(g, U= 33 vol (4% N GR\Gh N Zo(&)a) H(z, 4, U

4.13)

Remark 4.14. Note that these are invariants of the G,-conjugacy
class {g}e,- Since H(g, 4, U0 for only a finite number of classes of
4, the last sum is actually a finite sum. Here the volume of -the quotient
A*NGH\GR N Z(g)g is measured by a suitably normalized (fixed) Haar
measure of G N Zs(g)g. ~In the case Gr=Sp(n) (i.e. D=definite), we may
take the measure so normalized that vol (G Zs(g)z)=1. Then we see
that our invariant H(g, U,) coincides with the one given by (4.4), since
we have the following

Lemma 4.15. (D=definite or indefinite)
Ifae C(g, A, DN T, then we have

Cla; I') ;=centralizer of ain I',
=A*NGy (=independent of a, i}).
For the proof, see [15], Lemmra 4. ' Thus we see that our invariant
H(g, U,) is the weighted average of the number of elements in I"; which
are conjugate in Gy, to g; and H(g, 4, U,) is a refinement of it. We want

to (indeed we should) give them some expressions which do not involve
H, the class number of U,. For this purpose, we put

Mg, I'yy, M)={x e Gy; x'gxel';, Z(g) N xR x" '~ 4},
4.16) M (g U, D={xeG,;x'gxelU, Z(g)NxRx~4},
Mg, U, H={xeG,; x'gxU,, Z(g),NxR,x"'~4,}.
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Then we obviously have the following

Lemma 4.17. The map x~'gxw>x induces the following bijection for
each i (1<i<H):

Clg, A, YNy 3 —">Z(gN\M (g, ', DT,
(c.f. [15], Lemma 3).

The next lemma plays a key role in our problem, since it enables us
to get rid of H from H(g, U,):

Lemma 4.18. For each double coset Gyg7'U, in (4.7), we have a
bijection induced from the map a g;'u—a (a e Gy, ue Uy):

Z(g\Mg, Uy HNGogi ' U JU—>Z(e\M (g, I, N
(loc. cit., Lemma 5).

Corollary 4.19, We have

H(g, 4, U)=3; $Zo)\M(g, T'w DT

= #[ZG(g)\MA(g9 UA: A)/ UA]‘
To proceed further, we note that M,(g, U,, 4) is not stable under
the action of Z;(g), from the left, and therefore put
(4.20) Mi(g Uy A= | Mg Uy 4).
A'€ Le(4)

Now consider the natural projection:
¢: Z(e\M (g, Uy DU ——>Z(g)\M5(g, U DU,
)
I;I [ZG(g)p\Mp(g5 Up’ Ap)/Up .
Lemma 4.21. The map ¢ above is h(A; G)-to-one, where hA; G) is

the two-sided G-class number of A defined by the following formula
h(4; G) :=$[Z(e\Zs(8) - I(DNAL NG
IMN={z € Z(g)s; 24z '=1}.

(loc. cit. (18)).

Definition. Let Z;(g), be decomposed into a disjoint union

(4.22)

423 Zu(8)a=[1, Zu(eW( 41 NG,
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and put
AJ 3=y1Ay;l=Q (yijpyJTz} NZ(g).

(i) The number h=h(4; G) of cosets in (4.23) is called the G-class
number of 4, or Ly(4) (note that it depends only on the G-genus L(A4)).
(ii) ‘The invariant of Lg(4) defined by

(429) Mo(4) =33 vol (45 N GA\G N Ze(e)a)

is called the “G-MaB (or G-measure)” of A, or Ly(A).
Note that these invariants do not depend on the choice of (y,) in the
decomposition (4.23). It is not difficult to prove the following

Lemma 4.25. We have
A:Gy= 3,  hf(A®;G)

AE e La(A)/~

My D= 3. (AP G) vol (A" N Gp\GrN Zs(2)x)

AW LG/~
(loc. cit., Lemma 7).

Combining these results, we finally get the following expression of our
invariant H(g, U,)

Theorem 4.26. We have
(4'26) H(g, UA): MG(A) H Cp(g9 Up’ A;p)a

Lg(4)

where
(& Uy 4)=$Zs(8),\M (g, Uy, 4,)/U,].
Proof. By (4.19), g4.21), we have
H(g,lU)= 23 (45 6) vol (4N Go\GR N Zu(8)z)

XHZo()AM (R, Uy HIU]
=3 3 (5 6)vol (X NGR\GRN Zo(2)r)

Lo(4) A€ Latd)/~

X l;[ #[Zﬁ(g)p\Mp(gs Up, AP)/UP .

Here we used the fact that M ¥(g, U,, A) depends only on the G-genus
Ls(A). The assertion now follows from Lemma 4.25. q.ed.

We note that the sum in (4.26), which is seemingly extended over
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all G-genera of Z-orders in Z(g), is actually a finite sum (c.f. Remark
(4.14)). Moreover, the products are always finite; thus we have
(i) If 4is fixed, ¢, (g, U,, 4,)=0, or 1 for all but finitely many p.
(i) For a given p, c,(g, U,, 4,)5=0 only for finitely many classes
A,/ ~ ; moreover such a 4,/ ~ is unique for all but finitely many p.

Remark 4.27. The G-MaBl M;(1) can be evaluated in a well-known
manner by using theory of Tamagawa numbers (c.f. Weil [49], see also
(19}, @, § 3). '

It would be worth noting that, in the same way as Theorem 4.26,
we can combine (4.11), (4.13), (4.19) and (4.21) to obtain a closed
formula for the sum of the number of I',-conjugacy classes in I',N {gleg
(<Ki<H):

Theorem 4.28. Notations being as above, we have, for a semi-simple
element g e Gy:

2 AT N gl 7= 35, 13 §) T] (s, Uy 4)

If, in particular, G} is not compact, then we have H=1 and this
gives a formula for the number of semi-simple conjugacy calsses in the
arithmetic subgroup I" of Sp(xn, R). In general, it is known that the set
of semi-simple conjugacy classes in the classical groups over fields are
parametrized by the isomorphism classes of various kinds of hermitian
forms. Moreover, the centralizers of them are the unitary groups of the
corresponding hermitian forms. Thus, the above theorem may be viewed
as an integral version of this fact, since the essential part A(4; G) in the
formula is nothing but the class number of the unitary group Z,(g), with
respect to the genus Ly(4) (c.f. [19], § 2, and see also Remark 5.45).

4-2. General Dimension Formula (Compact Case). Assume that D
is definite. Then our space I, (U,) of automorphic forms of weight p
for an open subgroup U, of G, is defined as in Section 1. Combining
the results in the preceeding paragraph and (4.1), we immediately have
the following general formula for dim I, (U,) (a special case c=1, e=1
of [15]):

Theorem A. For a finite dimensional representation p of Sp(n), we
have

@#30) dimMU)=2 > tr(o(@) 2 Mo(d)[] ex(e, Uy, 4y),
& a4 CP

where the first sum is extended over the set of polynomials f(x) of degree 2n
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which are products of some cyclotomic polynomials, and the second is over
the set of locally integral Gy-conjugacy classes belonging to f(x), and the
third is over the G-genera of Z-orders Li(A) of Z(g) for each represent-
ative g of [ f ]

4-3.  Parametrization of semi-simple Conjugacy Classes. In the
actual calculation of dimensions using (4.30), or (4.40) in the next para-
graph, a fundamental role is played by the following

Theorem 4.31. (Hasse Principle for conjugacy classes in G, Gb).
Two elements g, g, of Gy, (resp. Gp) are Gy- (resp. Gy~ ) conjugate if and
only if they are conjugate in G, (resp. G3) for all p.

(c.f. Asai[2], and [19], § 2).

For each monic polynomial f(x)e Q[x] of degree 2n such that
X f(x=")= f(x), we denote by G[f] the set of semi-simple elements of G*
whose principal polynomial is f(x). Then the above theorem means that
the following natural map induced by the inclusion map is injective:

(4.32) ' LY g5 =—>G.lfV 7

This reduces. our problem to classify the G,-conjugacy classes to those for
G,-conjugacy classes, if we can determine the image of this map. The
latters are much easier than the former, because there are only finitely
many (<4, if n=2) G,-conjugacy classes in each G,[f], and we can choose
a representative of classé€s in G,[f] to have a very simple form which
enable us to compute ¢, (g, U,, 4,).

If the map (4.32) is surjective (hence bijective), we need nothing more
than just putting local data together. However, this is not always the
case; so we shall describe here the image of this map, under the following
conditions: n=2, f(x)=f(x) (1<i<12) are as in Section 3 (for details
as well as the general case, see [19], Section 2). .

Proposition 4.33.

(1) I f(x) is either one of fi(£x), fi(£X), fi(£x), f(£x), fs(ix):
fi(£x), or fi( £ x), then (4.32) is surjective.

(i) If f(xX)=fi(x) or f(ZXx), then the cenzralzzer of each element g
G,lf] is expressed as

(4.34) Z8)=0(2)*-Z|(g)*,

where Z(g) is a quaternion algebra over Q such that

Z(2) ®o F=D QoF (F=Qlxl/YT@=0(g)),
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and the product formula [, inv, (Z(g))=1 for the invariants of (Z,g),)
determines the image of (4.32) which has index 2 in G,[f]/ .

(i) Iff(X)=fx), [u(x) or fi(X), then for each element g e G[f], g°
belongs to either f(x) or f{X£Xx), and the image of (4.32) is determined by
Z(g") as in (ii) above, which has also index 2 in G [ f]] & .

4-4. General Dimension Formula (Split Case). Let I" be an arithmetic
subgroup of Gy=Sp(n, Q), or a Q-form of Sp(n, R). The dimension of
S(I') is first expressed by Godement [13] as an integral of an infinite series

. _a, k) .
4.35) dim S,(IN= 520 Jre er H(Z)dZ,

where fc>2n’, and

~ 1 "=t I(k—(n— D2+ j]2)
an(k)_ 27;(2”)1L(n+1)/2 ]I;[o F(k—n+]/2) ’

H(Z)= det (Z—;TZ-)% det (CZ+D)~* det (Y)* (T=(é ﬁ)),

and dZ={(det Y) " *dxdy (Z=X+iY) is an invariant measure on 9,;
Z(I") :=center of I.

Our purpose here is to sketch briefly how one reforms it to a more
manageable formula, suitable for an explicit computation. This has been
done in the case n=2 by Christian [6], Morita [39], and Arakawa [I]
(Q-rank one case), for the special case of principal congruence subgroups
I'=T(N), N>3, and by the first named author for arbitrary I" ([16], (I)).

The main idea of the reformulation is well-known and a routine; we
should exchange the integral and infinite sum in (4.35) and then combine
the integrals in each conjugacy classes of I, to get a closed expression as
a sum extended over the set of conjugacy classes of I". But this is allowed
only if I'\$,, is compact, which never occurs in our case with n>2, since
the Q-rank of G} is n or [n/2], according as D= M,(Q) or not, while I'\$,
is compact if and only if Q-rank of G, is 0. However, we can overcome
this difficulty by introducing certain dumping factors and replacing H(Z)
by H(Z;s)=H/(Z) X (a dumping factor in 5). In order to justify this
argument we have to choose dumping factors and make estimations of
sums of H(Z:s) to apply Lebesgue’s theorem for various subsets of I'.
Substantial part of these estimations has been established by Christian [5].
We omit the details and refer to [16], Section 2, where the case n=2 was
discussed using results of [5]. The second difficulty is the fact that C(r; I),
the centralizer of 7 in I, is not always a lattice of C(r; G}) (see Example
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4.37). This means that vol (C(r; P\C(7; G%)) is not always finite. To
overcome this point, we first observe:

Proposition 4.36. For any 7 € I, there exists a connected closed sub-
group C(1; GY) of C(r; GY) which is characterized, modulo a compact semi-
direct factor, by the following properties

(i) Cyr; Dy=:Cyr; GLNT is a lattice of C(¥; G%)

() [CO; 1) Cr; M< co.

Example 4.37. Let I'=Sp(2, Z) and r=((1) S ) T with S='Se
MLZ). Then C(I;GR)=0O(S)X R and C(r; ") is a lattice of C(7: G%)
if and only if O,(S)={4 € GL(Z); AS‘A=S} is alattice of O(S); itis
easy to see that this is equivalent to that either S is definite, or —det (S)
¢ (0*)". Thus we have, removing the compact factor O(S) if S is definite.

C(r; G%) if S is indefinite, —det (S) ¢ (%)%,

C(r; G)= {((1) IIY

Definition 4.38. Two elements 7,, 7, of I" are said to belong to the
same “family”, if (1) Cyy; Gk)=C\(7,; G%) and (ii) 7,,=T7,,, where 7,=
TsTiw (E=1,2) is the Jordan decomposition.

Now we divide the set I" into disjoint union of three subsets I'¢?,
'™ and '™

(i) I'® consists of” elliptic elements and 1. (An element =41
of G% is called elliptic, if it has a fixed point in §,; or equivalently (under
the condition 7 € I), it is of finite order.)

(ii) '™ consists of those elements 7 ¢ I” which are of “hyperbolic”
type i.e., 7 has a real eigenvalue =+ 1.

(iii) I'® consists of “p-unipotent (or parabolic)” elements of I i.e.,
those elements ¥ e I'— 1" whose semi-simple factors 7, belong to '®;
equivalently, 7 is p-unipotent if and only if some power of 7 is unipotent,
from which the name comes.

We denote the contributions.to (4.35) of each of these subsets by
T, T (™), and T (I"?) respectively.

); X:-‘X} if § is definite, or —det (S) € (QX)-

Proposition 4.39. For any semi-simple element ¥ of I', C(r;I") is
always a lattice of C(1; G%). Moreover, for the subset I''®, the termwise
integrability is valid without dumping factors.

Note that, in the case 7 ¢ I'®, the integral I(7)=I(7, 5)|;-, defined
by (4.40) depends only on the conjugacy class {g}GR; and this has been
evaluated by Langlands [33] in a more general context (see § 4-5 and
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Remark (4.55)). After these remarks, we can immediately apply results
of Section 4-1 to obtain the following

Theorem B (Elliptic Contributions). With the notations of Section
4-1, we have for k>2n

(440)  TL(IYy=37 > tlg) 2 M ] clg, U, 4,),
s ge[f]/ébf Lg(4) »

where we put
t(g)=ay(k)-1(g)
—a (k) f H(Z)dZ.

Clgi6RN\Gn

Note that above formula for T,(I"¢®) is completely analogous to the
dimension formula (4.30) in Theorem A. In both cases, the factors
tr(p(g)) and #,(g), being invariants of Gg-conjugacy classes {g},,, may
be regarded as an “‘archimedean local factor c.(g, U.., 4.)”, with U, =
Gg, 4.=C(g, Gp)=Z;(g)r. As for the explicit formulae for them, see
Section 4-5.

Let us next consider I'™ and I"®:

Theorem B, For I'™, we have T, (I"'"™)=0, since for any 7 ¢ I'®,

(4.41) 1(; 5) :=f H(Z; $)dZ =O.

Coltri G\ 6n

This is known in general as the “‘Selberg’s Principle” (c.f. Warner [48]).

Theorem B*’ (Parabolic Contributions). For I'®, we have

(4.42) T ()=

1 . .
72 2. u(F) lim £(s: F),

where the sum is extended over a complete set of I'-conjugacy classes of
families FSI'®, and v(F)=vol (C(7; PI\C\(7; G})) for 7 € F. The zeta-
Sfunction {(s; F) attached to the family F is given by

o a,(K)- 1T 5)
439 = B TG ) =G T

with I¥, s) as in (4.41).

Remark 4.44. From the finiteness of the number of cusps of [, it
follows that the set of non-conjugate families in I® is finite, so that the
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sum in (4.42) is a finite sum. Roughly speaking, {(s; F) is a zetafunction cor-
responding to F which is (a part of) a lattice, not necessarily homogeneous,
in a vector space contained in the unipotent radical of a parabolic sub-
group. The typical cases (i.e., purely unipotent elements) have been
treated by Shintani [45]. In general, however, it is not easy to evaluate
lim; o &(s; F).

4-5.  Formulae for tr p(g), t,(g) and their Relations. Here we shall
describe the explicit formulae for “oco-factors” tr p,(g) and #,(g) of our
dimension formulae (4.30), (4.40), for a semi-simple (elliptic) element g. In
our group G =Sp(n) or Sp(n, R), we take the standard compact Cartan
subgroup

’eto,
i8g
H={g(6)= e € Sp(n); 6,y -+, 0, € R
.eiﬂn
(4.45)
cos 8, sin 6, )
‘cos 0, 'sin 0,
H={g(0)= e Sp(n, R); 6;¢ R }.
—sin §, cos 4,
L " _sin a, 'cos b,

Here in Sp(n), we identify C with the subalgebra of H=R+ Ri+Rj+ Rij
by ¥ —I+si. Note that any (resp. elliptic) element of Sp(n) (resp. Sp(n, R))
is conjugate to an element of H. We first assume that g=g(6) is regular
i.e., C(g; Gg)=H; equivalently, 6,0, ¢ 2zZ for any i, j. 'Then we have

Theorem (Wely [50)). The irreducible character of Sp(n) which cor-
responds to the Young diagram

Telal.h.

X

112)--- k%

takes the following value at the regular element g=g(6):

_ det[sin(k+n+1—7)4,]
¢49 e O = i (1 1= 79
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Its degree is given by

o QkA2n42—i—))
(4.47) d=]1 N

We note the relation:

dn(k) =Cp an(k+ n-+ 1)5
(4.48) 1 o
cnzm z];[J Qn+-2—i—j).
_ Theorem (Langlands [33], see also Harish-Chandra [14]). Assume
that k>2n, and g=g(6) € Sp(n, R) has an isolated fixed point on H,,, which
is the case for a regular element. Then the integral t,(g)=a,(k)-1(g) in
(4.40) is given by

N H?=le—ikaj Y
(4.49) WEO) =y (=YD

Here, in the integral (4.40), we are taking the measure of C(g; G%k)
such that its volume is equal to 1. (Note that the condition on the
isolated fixed point implies that C(g; G%) is compact.)

Assuming that g is regular, we note that there are 2" conjugacy
classes in Sp(n, R), each represented by g(46,, - - -, =8,), which are con-
jugate to g in Sp(n, C), the complexification of Sp(n, R), while in Sp(n),
all g(+4,, ---, +6,) are conjugate to g. By comparing the above two
formulae, it is easy to observe the following

Theorem (Character Relation; regular case)™.
(450)  trpug@s -, 0D =(=D"""" 2, fvnia(glls - -5 ea)).

This kind of character relations seem to be more or less well-known
to the experts in more general context, as long as regular elements are
concerned. It seems less known, however, that a similar relation remains
to hold also for singular elliptic elements, under a suitable formulation,
e.g., normalization of Haar measures. In fact, the relation (4.48) may be
viewed as giving such a relation in the extremely singular case g==1.

Here we note that the relation (4.50), which has been noticed (as well
as (4.49)) in the case n=2 by Y. Ihara around 1962, was one of the moti-

#) If g is regular, #x(g) is in fact a character of a representation belonging to a
discrete series (cf. [14]).
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vations to his conjectural question in [28], which is our main problem in
this paper.

For singular elements g, we need much more involved notations to
state the formulae for tr p,(g) and #,(g); therefore we shall only give them
in the case n=2 below. As for the character relation, we content ourselves
with the following description.

Theorem (Character Relation; general case). Under a suitable nor-
malization of the Haar measures, the following relation holds for arbitrary
elliptic element g(6):

(4.51) tr (g @)= (=D "7 31 (=101, . (g (D)),
where e==(¢,) runs over all possible values in (< 1)" so that

g(Eﬁ) = g(elals Y Enen)

are all non-conjugate, and b(ef)) denotes the complex dimension of the fixed
points set of g(¢6) in §,,.

Remark 4.52. It is easy to see that b(6) is given by
bO)=4#{G.]); 1<i<j<n, 6,46, ¢ 2xZ}.

Moreover, from Langlands’ formula for #(g) in [33], it is observed that
t.(g(®) is a polynomial of k of degree b(6), modulo some factors e2=t%/™
(m e Z). This observation is used to get asymptotic formulae for dim Sy
as a function of &k (c.f. [17]).

Now assume n=2. The Weyl’s formula for tr p,{g(8)) for a singular
element is derived from the formula (4.46) by taking limits; we have

_+ (k+2) sin (k4 10— (k+1) sin (k+2)¢
r 080, ) © 2sin (1 —cos 6) ’
[(k+1) cos (k4 1)8 sin (k-+2)6
@53)  trpua(d, 6)= —(k+2) cos (k+2)F sin (k- 1)4]
2 sin*d ’

tr (20, n>)=L‘—21—l'i(k+ 1)(k+2).

The basic idea is similar also in the split case; here, however, the limits
should be taken as distributions (i.e., the limit formula of Harish-
Chandra, see [33], [14]). . The results are as follows:
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i[(k—— D e-z(k_m__(k__z) e~ itk-10]

(80, 6)= 257% sin 6(1 —cos 8) )
o (k=3
(4.54) t.(g(6, =) s
(0, my)— (— D=2k —4).

2t

Remark 4.55. In [16], the first author has computed the integral
t.(g) by a completely elementary method and obtained the above
results. The constants in the denominators are due to the usual nor-
malization of the Haar measure of C(g; G%), which will be cancelled by
multiplying vol (C(g; P'\C(g; G%)) (g e I'). Also, we note that the above
result for £,(g(0, 7)) does not agree with Langlands’ formula ([33], (2), p.
101); this is because the factor e’ is missing in the denominator of (2),
[33].

4-6. P-unipotent (parabolic) contributions (n=2). We assume n=2,
and describe briefly the zetafunction ¢(s; F) attached to each family F of
p-unipotent elements of I'. There are seven cases to be distinguished
according as the types of their zetafunction.

(1) elliptic/parabolic. After normalizing by Gg-conjugation simul-
taneously, we may assume that

cosf@ 0 sinf O
5 0 1 t .
@se)  r=0.0=|_.0, 8 O, 4] Ginoxo, 20,
0 0 0 1

and the family F=F(7) is given by
F)=1{80, a+n);ne Z, a+n+0} (0<a<l).
We have C,(7; G;);{ﬁ(o, u); u e R}
Theorem P-1 ([16], Theorem I-5). Under these notations, we have

—1(k—3/2)6

3 F =_—¢ 7"
S = rmon |
4.57) X [emime g (s 4 1, a)+eix(s+l)/2c(s_[_ 1, 1—a)],
. 1 3 . 3
lim ¢(s; F =—--——[ (k——)ﬁ g (k———-)ﬂ].
e S F) 2% sin 6 sin 6/2 o8 2 teot(za) sin 2

Here, {(s, a)=> 5., (n+a)~* is the Hurwitz zetafunction, and
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, cot(x) if x¢ Zn,
cot"(x):{ ) . ¢
0 if xeZn.

(ii) paraelliptic. The normalized form of an element of this type is
cosd sin § tcosf fsin
@s8)  r=70,n=| "0 B s b teosO) s,
0 0 —sin § cosd
and the family is given by
F(N={/6,a+n);ne Z at+n0} (0<La<]).
we have Cy(7; GR)=1{7(0, u); u ¢ R}.

Theorem P-2 (loc. cit. Theorem 1-6).  Under these notations, we have

&(s; F)—_—,z;;_im_za[e—i‘mu/z)c(zs_l_ 1, @)+ et g5 41, 1—a)]
(4.59) . )

it s Fy==———__(1+1i cot*(za)).

51?;1 L(s; F) > s (1+1i cot*(za))

(iii)  S-parabolic (nondegenerate case)

~ [0 5 0\
0 -1 0 g

ng(sl, SZ): 0 0 1 0 (Sls Szio):
(4.60) 0 00 —1I

F(N={8 (m+-c, am+bn+ac); m, n € Z, m+c, am+bn-+ac+0}
@ beZ (@ b)=1,b>0,0<c< 1),

We have »
1°0 # 0
Co(nG}z).:» 8 é ? (t)2§t1,tzER-
0 0 0 1

Theroem P-3 (loc. cit. Theorem I-7). Under these notations, we have
. 1\E b-1 :
oo )= 5 oo (51, 1€)

2'r°h* i=o
+eix(3+1)/zc(s+l’ b—"]—C )]
: b
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(4.61) % [eiﬂ(s+l)/2C(s+1’ a(j+c))-l—e_”(“lmC(S—I—l, b—-a(j—{—c))]
b b

151?21 &s; F):—(g%z)ijz;: [1 +i cot*(i.“;ﬂ.)] [1 —i cot*( a(j—l})—c)n )]

(iv) -parabolic (degenerate case)
(4.62)  7=68(:,0), (t%0,5;asin (4.60)), F()={3(n,0);ne Z}.
We have

C7; Gr)= iu,a,b,c,de R, ad—be=1,.

o oao
O~ Or

0
b
0
d

OO O

Theorem P-4 (loc. cit. Theorem I-8). Under the above notation, we
have

o (= DHEk—3) 541
o3 )= 52D g4 1) cos ( t )n,

(=1*@k—3)

287*

(4.63)
lim &(s; F)=—
540

(v) To describe the purely unipotent contributions, we need some
preparations. We note first that, if Z,(7, 5) 0 for a unioptent element of
I, then 7 is conjugate in G, to an element of the following form

(4.64) T:T(S)=((1) f) S=18,

with either (i) det S=0, (i) —det S e (Q%)%, or S=0 ie., S=definite.
This, in particular, means that such ¥ belongs to the unipotent radical Py

of a parabolic Q-subgroup P of G4 which corresponds to a point cusp that .

7 fixes. If det S0, we can associate in this way a lattice L=P, NI,
which we also regard as a lattice of SMy(R), the 2X2 symmetric real
matrices via a fixed isomorphism Py(R)=SM,(R). We have an action of
a Levi subgroup P, of P on P,, which may be assumed as

T—>AT'A (T € SM(R), 4 € GL(R))

under an isomorphism P,(R)=GLy(R). Moreover, for simplicity, we
assume that

(4.65) PN =@y NI)-(PyNI).
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We denote by (P, N I), the image of P, NI in GL(R), and put
PuNDYf =Py NTYNSLAR).
Also put, for 7= g7(S)g " as above,
(4.66) O/S)={d & (PN T),; AS‘A=5}.
If Sis as in (ii), (4.64), the family F represented by 7 is given by
F(N)=g {1(S); 8’ ¢ L, —det (S’) € (Q*Y or S=0} g-".

We divide F into two parts F* and F* according as S’ satisfies S’=0, or

—det (S7) e (@)

Theorem P-5 (loc. cit. Theorem 1-9). = Notations being as above, we
have

sFey=_2_ IS S
C(S ) 27 ser+ m(;}’ynl‘)o #OF(S)(det S)s+3/2
(4.67) (L={Se L; 5>0)
lim ¢(s; F*)=—L vol (PuNI)N\) _
st 2z [(PuNT): (Py N3] vol (L\SM,(R))

Theorem P-6 (loc. cit. Theorem I-10).

1 ¢ 1
s F)=— L 1
2zt ;gl SeL;ZmodB, |det S|E+2

1 ¢ Cy
73 S a

(4.68)

lim &(s; F*)=—
s10
Here notations are as follows: let B, - - -, B, be the set of nonequivalent
cusp of (Py NI in O, Take V & SL{Q) such that V{f,>= oo, and put
t
L= V‘l(z 8) V-'NL. B; is the parabolic subgroup of (PxNI);
which stabilizes 8;. The module VL'V has a unigue basis of the form

1 0) (z;’ﬁ dj)
, s d,>0, tO>10]>0,
(o of \g o) 40 07212120

and c; is defined by

B;= V"{-_!: ((1) (tﬁj)vcf{ 240z )} V.

Finally in the case (i) det §=0, the family F represented by 7=
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g7(S)g~* may be assumed to be given by

1 0 dn O | L
0 - -1
F(N=g g (1) (1) 0 ;ne Z—{0} gI_C_g<0 1>g :
0 00 1/ (deQY)

and we have Cy(7; G%)=C(; G&)-

Theorem P-7 (loc. cit. Theorem I-11). Notations being as above, we
have

(k=3 & 1

C(S; F) = 2rt n=-e W’
o 2k=3
lim &(s; F) =~ ez~

§5. Conjugacy classes of Uy(p) (=I"(p)) and B(p)
(Proof of Theorem 3-2, 3-3).

5.1. In this section, we shall use the usual notation:
U(p)=T«(p), Up)=T"y(p), and  U,(p)=5p(2, Z).

We shall describe the conjugacy classes in I’ {,(pj) ar'ld B(p) 'of those/ ele-
ments (or families) which make nontrivial cpntnbu’uons to dim S(I°y( 1}7))1’;
dim S(B(p)), in such a form that is suﬁimer‘lt to work out the' exph1c1

formulae for them, as presented in Section 3, if we p'ut all ,data given here
to our general formulae (4.30), (4.40), and (4.42). Smce Iy ;{) (resp. f?( )
is a subgroup of Sp(2, Z) (resp. I'((p)), and t_he list of conjugacy ¢ gss?s
of the latter group has been given in [16], Sections 6, 7, we nfaed not egui
at the beginning. So, we mainly apply the global method (ie., argtum;nt
on I'-conjugacy classes) also for semi-simple elemf:nts. ) of course, 1r:e)t aj

case we can replace it by the local method described in Theorem.B , as
executed in [24] for Uy(p) (=K(p)), and in [16], (IN) for other arithmetic

s in Q-rank one case.

SUbngiuI;enerﬁ, for two lattices I'y, I', of Gy such that I, 21, [y Tl
< vo, we have a bijection in the same way as “.17)

5.1 {T}Fxﬂ]"z/?;—:#C(T; ry/M@, Iy, T,

Iy={xel;x'Txely}. Let
for any 7 e ',, where we put MG, I,y

T oo a (ar_—_1 d(ry=$[C@; TO\M (T, ', T')H/T)] be a completi set .of
representatives of I',-conjugacy classes in {7} nN T, We define “relative
Maf3” of v with respect to I, by
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(52 m(f; DT =33 [CG 3 T: € Tl

Then the elliptic contributions to dim S(I";) (i=1, 2) are related as
follows: namely for 7 e I"{®

(5.3 T NTEy=m(r; I'/T)Tu{1} 1)

Thus to compute the elliptic contributions for I',=1I"(p), B(p), it suffices
to calculate the relative Maf3’s for each conjugacy class {7},, of I',=

Sp@2, Z), I'(p). On the other hand, the p-unipotent (parabolic) contribu-
tions require more careful treatment.

Lemma S5.4. As a complete set of representatives of the coset space
SpQ2, Z)[I'{(p) (resp. I'y(p)/B(p)), we can take the following
[SP(2, Z): I'i(2)=(p+1)(P*+1) (resp. [['(p): B(p)l=p+1)
elements: ‘
(i) Sp(2, Z)/T'y(p):
1

00 0 010 0
10
sosoreft 183 wanfl 839
¢c 0 O 1 b a1 0O
0 —a —1 0 00 0—1
_fo 1-00 o o—-1 o
X@:={1 o o o) =g 1 o of
a2 0 0 1 10 0 0
(i) I'(p)/B(p):
100 0 0100
10 o {1000
Z=1g o 1 —1) Zi=lg o 0 1
0 00 1 0010

Here a, b, c, and t run over the integers modulo p.

By using this Jemma and the list of conjugacy classes of Sp(2, Z),
I'(p) given in [16], we can find a complete set of representatives x,, - - -, x,
of the double cosets of (5.1), where x, are taken from the above set of
representatives. This can be done in a completely elementary way, and we
omit the details of the calculations. In the following, we describe only

® If I, I’y are defined by U, 4, U,y respectively as’ in (4.8), we have the fol-
lowing relation:

H(r; Usgy=m(y; I'y/Ty)-H(t; Ura).
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the list of these x,’s with the invariants attached to each conjugacy classes
such as m(7; I',/I",), which are necessary to obtain explicit formulae for
dim S(I"y(p)), and dim S{(B(p)).

5-2. Conjugacy classes of I't(p). (p=prime, %2, 3). We use the
notations of [16], Theorem 6-1. However, for the convenience of readers,
we reproduce here the matrix representatives of each conjugacy classes of
Sp(2, Z), and those of Sp(2, R) taken in the standard Cartan subgroup H
as in (4.45) for elliptic elements. The symbol 4-7 means that —7 should
be added, though we write -7 alone.

(5.5 T=xa, o=1~g(0,0), d=1, X=X1(0’ 0, 0),
m(r; Sp2, Z) [T p)=ISp(2, Z): I'{p)l=(p+1D(P*+1).

0 0 1 0
0 0 0 1

(5.6) IT="da= -1 0 0 0 ~g(#/2, n[2),
0—-1 0 O

_ —1

d(ry=(p+ 1)(1 +(7 )

x=2X{a, b, ab), X,0,5b,0) with 5+1=0 (mod p),
. ’ _ —1

m(r; SpQ, Z)/TYp)=(p+ 1)(1 + (7))

0 0 1 0
6 r=za=|_9 0 _0 §l~zus 23); and a=as

0
0 —1 —1

1
d(r)=<p+1>(1+(rp—3)),
x=Xya, b, ab), X,0,b,0) with b*-+b-+1=0 (mod p),
m(r; Sp(2 Z)THP)=(p+D(1+ (—73-))

0 0 0 —1
1
(5.8) r=a,=|, (1) g 8 ~g(—nx/4,37/4); and a;=0d.
0 01 O
4 if p=1 (mod B),

0 otherwise,

a~{

x=X(a, &), —a") with a*4-1=0 (mod p),
m(7'; Sp2, Z)/T'(p))=4d().
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Here, and throughout the following, we are confusing the integers mod p
with elements of the finite field F,, writing ™' the integer x (mod p) such
that ax=1 (mod p).

0~—~1—1 0
-1 1 0 -1
(5.9) T=ia5= 1 —1 —1 0 ~g(7z:/4, 37:/4):
0 1 0 0
4 if p=1 d 8),
d(T)={ P .(mo )
0 otherwise,
1—b —(1—b)2> . .
=X( )b:- — 1) =
x=2X, 3513 F—3513 with (b—1)*+1=0 (mod p),
m(7: Sp(2, Z)/ Ty p)=4d(7).
0 0—-1 0
0 0 —1 —1 .
(10)  T=xa=|] _{ o o]~&(=a/3, =213,
0O 1 0 0o

d(T):Z(l + (:3»
p
x=Xa,a, —1), X(a, —a 1) with a®—a41=0 (mod p),

m(r Sp(2, Z)/Tip)=2(1+ (“73))

0 0-—1 0
(GAD)  T=da= (1) _(1) (1) "(1) ~g(—2x/3, —x/3),
0 1 0 0

0={1+(3)

i

x=X,0,5,0), X,0,5) with b*+b+1=0 (mod p),
. ',-. A -3
m(r; S, Z)Iie)=2(1+ (7))

0
612 r=a=|] ~gQx/3, —x/3); and ay=—ag.
0

SO0
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(5.13)

(5.14)

(5.15)
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{X,(a, a4, 1) -..with @*+a+1=0

d p),
Xia, & —1). - .with &®—a+1=0 (mod p)

m(r; Sp2, Z)IT(p) =z(1 + (—73))

-1 0
0

T=an=| (1)

0 —1

i0-51+(32)
x=X,0,5,0), X,0,5) with B*--b-1=0 (mod p),
m(r'; Sp2, z>/rs<p))=2(1 +(—;—3))

1 0 .
0 ol-e(=2a3, 73); and a,=ag,
0 0

0 0 0 —1
r=an=|g | o 1|~&(=x/6 52/6); and a—agz,
0 01 o0
4 if p=1 (mod 12),
A= P .( )
0 otherwise,

x=X{a, —a’%, —a~?) with ¢*—a’*+1=0 (mod p),
m(7'; Sp(2, Z)/I'((p))=4d(T).

T=a,= ~8(Q2x/5, —4n/5);

— OO0

11 1
0 1 0
0 0 1
0 0 —1
and ap=ak, ap=0ak, az=ak,

4 if p=1 (mod 5),
d(ry=<1 p=>5

0 otherwise,
If p=35, x=X(2,2,2),
if p=1(mod5), x=X{a b,¢) with a*+a—1=0,

b=14+(14+a), c*4c+ 12§O(modp),
a

m(1'; SpQ2, Z)IT{(p)=d (D).

(5.16)

(5.17)

(5.18)

(5.19)
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1 0—-1 O
98 8 Tol|~e=2m —m;.
01 0-0

-1 7 5
and ap=ay', ap=oa,  Cp=a,

s0-2+(5)+(z2).

X(0,56,0) with ¥*+5+1=0, and
T X(0,6)  with B*+1=0 (mod p),

m(r'; Sp2, Z)Tp)= z+( )+(-‘;§)

10
Y O]~&(=2r/3,0); and p=pr,
0 1

~g(—nf3,0); and =5,

0 -1 0
0 -0 0
1 1 0
0 0 1

0
1
0
0
d(r>=2+( )=m(r Sp2, Z)ITYp)s
d

x=2X,0,0) and X,(0,5,0) with b*+b+1=0 (mod p),
0 0—10
r=2p=| 1 9 Ol~g(-n20); and p=g7,
00 01
any=2+(=2) =m(r; $pC, 2)TUP),
x=X,(0,0) and X,(0,5,0) with 5*+1=0 (mod p)
0—1 0 0
r=r=(d 00 O, —ap),
0 01 0
0—-11 0
r=ty= (1) 0 ~l~e@ —mp),
0 10
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x=X(a, 0,0) with &*+1=0 (mod p),

m(r; Sp(2, Z)/ T p)=(p+ 1)(1 + ("71))

0 0 0
(520)  T=27,=|] 0 9
0 1 0
-3
dn=1 +(_p—),
x=X{a, 0, 0) with a*—a+1=0 (mod p)
m(r; Sp@, )TN =(p+D(1+(22)).
p

O= OO

I 0 10

G2 r=d=|g O and a=(g T
0 -1 0 0

=2, '

x=X,(0,0,0), X0,0),

m(7'; Sp(2, Z) Ti(p)=2p+1).

P-ynipotent classes. We first note that I'{(p) has two point cusps and
three one dimensional cusps, corresponding to the following parabolic sub-

~ g(Q2r/3, —2x/3),

[ ]

—1

0
0 Ng(()’ W)9
-1

groups:
Point cusps:
Pp=x(§ D) =l %=X(010).
One dimensional cusps:
x 0 % x
; alx % ox %
PP:xii* 0 % =
0 0 0 =x

x=1,, x=X/(00 —1), x=X40,0).

Each family of p-unipotent elements belongs to (at least) one of these
parabolic subgroups, up to I'y(p)-conjugation. In the following, we give
a typical element of each family of Sp(2, Z) listed in [16}, Theorem 6-1,
and describe the decomposition of it into I'{(p)-conjugacy classes.

put, for each class x~'7x of I'(p),

io(x) :=[Co(x""7x; Sp(2, Z)): Colx~*rx; T'y(p)]-

We

(5.22)

(5.23)

(5.24)

(5.25)
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0 01 0
5 010 3
T=i,81(n): —1 0 1 7(; N.B(n'/3: n);
0 0 0 1

d(r)=3+(“p3),

and ~ B(m)=pr(—n), neZ—{0},

X,(0,0), X,(0,5,0) with b*+5+1=0 (mod p),

x= - n: arbitrary,
X, - n=0 (mod p),
ix)=1 for each x.
0 0—-1 0
r=xhm=|9 o _] §|~semsm;
00 01

d<r>=3+(“73),

and /§4(n)=/§;‘(;n), neZ—{0},

X,0,0), X,(0,5,0) with b*+-b-+1=0 (mod p),

X= - n: arbitrary,
X, - n=0 (mod p),
i(x)=1 for each x. ,
-1 0 1 1,
r=xbm=|T] ¢ o o]~Aersn=1/3;
0 0 0 1

d<r>:3+(;,3),

X==
Xx(o’ - 1: 3)

and S =p(—n), neZ

X0, 0), X(a,5,0) with 5*—b+1=0, a=(2—b)"",

- m: arbitrary,
- 31—1=0 (mod p),

i(x)=1 for each x.

T== ﬁ,(}'l) =

O OO

Nﬁ(_ﬂ/z: I’l);

i =

—1
0
0
0.

OO~ O

and B(m=F(—n), neZ—{0},
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an=3+(=1),
14
X,00,0), X,0,b5,0) with b*+1=0 (mod p),
X= -+ - n: arbitrary,
X, -« n=0 (mod p),
i(x)=1 for each x.
1 —1
(520 r=xf0=|_1 o o g|~B@Rn—12;
0 1

and f)=fi(—n), nez

an=3+(=1),
p
X,(0, 0), X,(Z;L_bl, b, 0) with B+ 1=0 (mod p),
x= . n: arbitrary,
x.00, —1, —2) <+ 2n—1=0 (mod p),
ix)=1 for each x.
0 -1 0 —n
. 1 0 n 0} .
627 r={n= 0 0 0 —1 ~7(—=z/2,n), neZ-—{0},
0 01 0O

()= 2(1 +<fp—1))

Xy(a, 0,0) with @*-+1=0, n: arbitrary, i(x)=1,
= X{a, —a, 1) with @®4-1=0, n=0 (mod p), (x)=p,

0 -1 0 -—=mn
1 0 a»nt+l1 O

(528 =M=l o o0 _i ~H(—=2,n+1/2), nelZ,

0 0 1 0

A= 2(1 + ("71))

Xa, 0, 0) with a*+1=0, n: arbitrary, i(x)=1,
X0, =2, ¢)  with ¢?4-4=0, 2n+1=0 (mod p), i(x)=p,

0 —1 1 —n
1 0 n —1
0 0 0 —1
0 01 0O

(5.29)  T=Fm)= ~H(—/2,n), neZ—{0},
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)

. X(a,0,0) with a*4-1=0, n: arbitrary, i,(x)=1,
‘{Xl(o, b, 1) with B*+1=0, n=0 (mod p), i,(x)=p.
0 —1 1 —n

o oM TN i—rpnt1, nez,
0 0 1 0

)

{Xl(a, 0,0) with &*+1=0, n: arbitrary, i,(x)=1,
X,(1/2,5,1) with B*+1=0, 2n+1=0 (mod p), i(x)=p.

(530) T=7m=

0 —1 —n —2n
631 r=xtm=|L "L P T 20e3,m), nez—{0)
E0=lg o -1 —1 : 7> ;

0 0 1 0

0-2(1+(3),

. {X,(a, 0,0) with a*—a+1=0, n: arbitrary, i(x)=1,
Xi(a, —a, 1) with &*—a+1=0, n=0 (mod p), i,(x)=p,
0 -1 —n —2n
632 r=xim=p "o " TU|~fQepav1), nez,
0 0 1 0

i0-2(1+(3).

e {Xl(a, 0,0y with &®—a+1=0, n: arbitrary, i,(x)=1,
"~ X2, 3b,3)  with 8*+b+1=0, 3n+1=0 (mod p),

io(x)zl,
0 —1 —n —2n
(633 r=xi=|) T2 M) oms i), nez
0 0 1 0

()= 2(1 + (‘_3))
14
{Xl(a, 0,0) with @®*—a-+1=0, n: arbitrary, i,(x)=1,

X =
X(2,3b/2,3/2) with b*+b+1=0, 3n+2=0 (mod p),
' io(x) =D,
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(5.34)

(5.35) -

(5.36)

(5.37)
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1 0m O
7=8,(m, n)= g _(1) (1) g m,ne Z—{0},
0 0 0 —1
din=4,
£(0,0,0) } m, n: arbitrary, (x)=1,
X0, 0)

*=1%(0,1,0)- - -m=0 (mod p), i(x)=ps
X0,1) ---n=0(modp), i(x)=p.

1 0 m~—1 ’
s e N g R
0 0 0 —1
ain =4,
X0, 0, 0) } m, n: arbitrary, i(x)=1,
X0, 0)

= X,(2,0) ---m=0(modp), ix)=p,
X,0,0,2)---n=0(mod p), ifx)=p.
1 0 2m m+2
T=b6,(m, n)= 0 0 T 1 m,neZ, m,2n—m%0,

ar =4,
X,(0,0,0)
_|x0,0

=1x2,0) ---m=0(modp), iX)=p,
X40,0,2)---n=0 (mod p), L(X)=p,

} m, n: arbitrary, i(x)=1,

1 0 2m—1 m
2 —1 -1 n
T:B.,(m,n): (1) 0 ml 1 m,nEZ:
0o 0 0 —1
d(n =4,
%(0,0,0) } m, n: arbitrary, i(x)=1,
X0, 0)

= X(0,2,0) --.2m—1=0{(mod p), i(x)=p,
X,0,2, —4)- - -4n—2m-+1= 0 (mod p), i(x)=p.
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1 0m O
538 r==x40m=|9 ~} 0 0 mez—,
0 0 0 —1
d(n)=3,
X,(0,0,0) - - - m: arbitrary, i(x)=1,
x={X,0,0) ... m:arbitrary, W(X)=p+1,
X.0,1,0) - - - m=0 (mod p), i(x)=p.
1 0 m-—1
(539  r=xbm=|3 "5 1 0 mez—q,
0 0 0 —1
dry=3,
X,(0, 0, 0) - - . m: arbitrary, hx)=1,
x=4X,0,0) ... m:arbitrary, io(x5:p+1,
X,0,2) ---m=0(modp), i(x)=p.

1 0 5 s,

(40 r=xe()e®)={g o 7 ¥ | s=(5 ), derso,
00

a(n=2, _
X.(0,0,0) - -- S: arbitrary; L=SM/(Z),
PxNIW=GI(p),
¥=4X,0,1,0) --- s, 5,,= 0 (mod p);

1=(22 P2)NSM(Z), (PuND)=GTH(p).

where

GFo(p):{(? i 2) e: QLZ(Z); ¢=0 (mod p)},

GT#(p)= {(“ 2,) & GL(Z): b=0 (mod p)}.

c

Note that GI"y(p), GI'§(p) both have two cusps 0, ico. The invariants
described in (4.68) are given as follows:

(i) For x=X,(0,0,0)=1,,

ﬁ:ioo:Lﬁ=<§§ pOZ)ﬂSMz(Z), Bﬁ=.4_-<(1) f);(c,d)=(2, D,
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0 pZ 1 0

5=0: L= (0, PZ)NSMA2Z), B==(,y 9): =0
(i) For x=X,0,1,0),

‘B:iOOZ Lp':‘—(gg pg)nSMz(Z): B5=i((1)

0 pZ 1 0
s=0: L= 7Z)NSML2), 5,=x(y §) D=0

Remark. In the case (ii) above, the Levi-component Py should be
chosen carefully, so that (4.65) holds: namely

Pemn{(f 15y A OL@) x=(g 1)-%01.0:

PZ): (e )=Cp. 2,

1 0 00
(Al T=xe()= 0 L0 Rl mez—oh
0 0 0 1
ar=3,
X,(0,0,0) --- n: arbitrary, iL(x)=p(p+1,
x={X,0,0 ~---nt arbitrary, i(x)=1,
X, ... n=0 (mod p), (x)=p.

prime =2, 3). We first recall,

5.3, Conjugacy classes of B(p) (p=
pace Sp(2, Z)/T'(p) has

for the convenience of readers, that the coset s
the following complete set of representatives:

!

¢ —b—10 —b a 0 -1
0 1 00 100 O
vah={0 L 5| lerri@n=| o ° % ol
b 0 01 0 b1 0
@ b —1 0 100 0
b c 01 0 a 0 -1
Y@bo=\1 o o of Y@= 0 1 of
010 0

o1 0 O ,

V=1, (Sp@. 2): T{pl=(p+ D+
where a, b, ¢ Tun OVer the set of integers modulo p. We shall make full
use of the results of [16], Section 7 where the decomposition of Sp(2, Z)-
conjugacy classes into I'y(p)-conjugacy classes is described. In the fol-

lowing list, d,(V) is the number of B(p)-conjugacy classes contained in
the set {7V} row N B(p), where y is as above; and d(7) denotes the sum

of d (1.

[P B
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(5.42) T=zay: di)=1, x=Z(0) (y=7.),
m(r; Sp(2, Z)|B(p))=(p+ 1)*(p*+1),

In the next two CaSCS, 6 anOteS the lnthEI mOd p, Whlch generates

F.
(543) T=+a
A:.{ﬁf; 1<jc?=l ;1
= 4 a]#T}/Na u~U@(uv)4=1
) d
p (mod 8) de) -+ x cg;tfgﬁ(;£r
in B(p)
(p—9)/8 --- Zy(t), te A 4
| ; 1 N AUl 8
Y2(13 O, l) 1 o Zx(l) ) 8
o 1 - Z0) 16
Y(—i, 0, —7) (p—35)/8 ---Z(t), te 4
i = Q@D 5 1 - Z(D » .
1
8
1 ... 2Z0) 16
3,7 0
Y5, 0, —i Ls T2 -z 2
: ) 3,7 0 O 2 '
2 (a=0) (Zl(t): 8
1 2 (a=1) (bt—l—a)z-i-lEO) 8
Ya,b, —a) 2 (otherwise; there are
-t ( p—9)/8 such pairs (g, b)) 4
b0 2(@=0) Z):
a+b4+1=0 5 (6 af +1=0 8
2 (otherwise; there are
(p—5)/8 such pairs (a, b)) 4
3,7 0 }

From this table, we get (see also Remark 5.45):

m(r; S, 2)/B(e)=2p+D(1+(=1)).
y4
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(GA44) r=+a,

B:{ﬂf;lgjgig—l,j¢%l}/~. U~ vy =1

’ P order of
y da) -+ x centralizer
| (mod 12) v n B(r)
(p—13)/12 - .. Z,t), t e B 6
. 1 ...z 12
1 e ZU(D 12
Y B 0’ !
(. 0,0) (RN 20)] 36
and
Y@, 0, @) (p=DN2 .- Z(1), teB 6
= BP-V/6 7 1 - Z(D 12
1 N A0) 36
5,11 0
. 1,7 . 2 < Zy0), Z, 36
Y;(CD’ 0? 0)) 5’, 11 0
2 (a=0) (Zl(t): bt* - ) 12
. 2(@=-2 \Qa+)—b=0/| 12
Y(a, b, —1—a) 2 (otherwise; there are 6
with (p—13)/12 such pairs (a, b))
b=£0 2 (a=—2) 12
a+a+1+4p 7 2 (otherwise; there are p
=0 (p—T)/12 such pairs (a, b))
5,11 0

From this table, we get (see also Remark 5.45):
-3
m(r Sp(2, 2)/B(p)=2(p+ {1+ (7))

Remark 5.45. The above lists for B(p)-conjugacy classes belonging
to @, a, and a, are obtained after somewhat complicated calculations.
We gave these lists in order to make our description consistent. Indeed,
it is worth noting that the relative MaB of oy (resp. a,, a,) coincides with
that of 7y, 7, (resp. 7,), for which the calculation is quite easy. This fact
can be proved without computing the former, by the method described in

|
|

S——
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Section 4-1 (see footnote to (5.3)). Of course a similar observation can be
made for the group I'y(p). The complicated situation for 7=, o, and «a,
comes from the fact that the quaternion algebras Z,(7) attached to their
centralizers are definite, so that the class numbers h(4; G) of their Z-
orders are big (c.f. Theorem 4.28), while for r=7,, 7, Vs, Z,(7) are indefi-

nite, and we have h(4; G)=1 by the strong approximation theorem
[32].

(5.46)  rT=q, a
2 if p=1 (mod 8),
dw(r) = . ( )
0 otherwise,
x_{Z’(t) - '+a=0 for y=7Y,(c,q, a): a*+1=0,
Zt) -+ 24+bt—1=0 for y=Y,(—1,b,1): b»+2=0,
8 if p=1(mod 8),
m(r'; Sp(2, Z)/B(p))= . ( )
1 otherwise, .
547 r=rtra,

2 if p=1 (mod 8),
d,N=
/0 {0 otherwise,

Z(@t) - 12yt t a—T—l =0 for y=Y,2a+1, a, 2a+1):

3a*4-2a41=0,

b—1
2

X =

Z(t) - PGl
P+1=0,
8 if p=1 (mod 8),
m(r: $p(2, Z)/B<p»={ p=1(mod 8
0 otherwise.
(548) T=+aq
a(n=1+(=3),
P
N {Z,(l), Z(=1) - “for y=Y,0,8): B*+b+1=0,
Z(t) -« P+1+1=0 for y=Y,(2a, a, 24): 38 +1=0,.
s Spe, 2)Be)=(1+(=2)).
(5.49) I=4a,
V4

=0 for y="Y,(5, b, D:
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(5.50)

(5.51)

(5.52)

(5.53)
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x=2Z(0), Z, for y=Yy(a,0,¢): a®+a+1=c*+c+1=0,

m(rs SpC2, 2)/B(o)=(1+ (‘73))

T=ay ay

d,(N=1 +(‘73),

Z(t) -+ at*—1=0 for y=7Yya,0,0): a*+a+1=0,
TFVZ@) - t=(—b+1)2 for y=Y(—2, b, 1): B+3=0,

m(r; Sp2, 2)/B()=(1+ (:pi))

=0y,
-3
D
x=2Z(0), Z, for y=Y,a,0,¢): *+a+1=c*+c+1=0,
—3\\?
m(r; Sp(2, Z)/B(p) =1 +(7)) .
T=a,, ay

2 if p=1 (mod 12),
d 3
v {0 otherwise,

{Zl(t) ces tZEL for y=Y,(a, 0, a): &+a+1=0,
X= a

Z(t) - P4+bt —1=0 for y=Y,(—1,5,0): b*41=0,

m(r; Sp(2, z>/B<p»=2(1 + (:pl))(l +(;3)).‘

p
T=Hay, -, ap
’ 2 if p=1(mod 5), orp=>5,
dy(r): .
0 otherwise,
x=2Z() - t2+—a—t+a50 for y=Yya, b, ¢):
a+1
4 3 2 _ _ -1 _—1
ad+add+at+a+-1=0, b=—"-, c=—7,
a+1 a

8 if p=1 (mod 5),
m(7; Sp(2, Z)/B(p))=41 if p=5,
0 otherwise.

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

Dimensions of Automorphic Forms (1) 87

T=Hay -, oy

2 if p=1 (mod 12),
dv(r) = .
0 otherwise,
x=2Z0), Z, for y=7Y,(a,0,c): a*+a+1=c’+1=0,

m(r; Sp(2, Z)/B(p)=2(1 +(‘-;1))(1 +(_}3))
T=fu o, b

d,(n=1 +(”73),

x=Z,0), Z, for y=7Yi(a,0): a*+a+1=0,
m(r; Sp(2, Z)/B(2)=2(p+D(1+ (:pi))

V=48, b
dv(T): I+ (_71),
x=2Z0), Z, for y=7Y(a,0): a*+1=0,

A _ —1
m(r Sp(2, Z)/B(p)=2p+D(1+ (7))
7=T, (resp. 7’2)"‘

14 (%) for y=7%,,

1 for y=Y7(0, b) (resp. Y (b, b)): b*+1=0,
_{Zl(t) «o- 1'41=0 for y=7Y,
Z(0)--- for y=Y{(0,b) (resp, Yi(b, b)),

m(r: 50(2, 2)/B()=2(p+ 11 +(:;1))

dw(r) = {

T==T, .
{1+(_—3> for y=7Y,,
d,(nN= p
1 for y=Y/(0, b): b*+b-+1=0,
x:{Z‘(t) s =1 4-1=0 for y=7Y,
Z0) -.. for y=Y0, b),

m(r; $pC2. Z)/B()=2p+ D1+ (-";?))
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(5.59)  T=36, 5
d,N=2 for y=Y,
x=2Z(0), Z,,
m(r: Sp2, Z)/B(p))=2(p+1)".
P-unipotent classes. The group B(p) has four point cusps and four

one-dimensional cusps; the parabolic subgroups corresponding to these
cusps are given as follows:

Point cusps:

x=Y, X,= Y2(0> 0, 0): X3= Yl(os 0)3 and Xy= YS(O) 'ZZ'

One dimensional cusps:

X5

o
*
OSO% O
O % % %
¥ ¥ ¥ %

X =Y, %=7Y,0,0,0), x,=Z, and x,= ¥,0, 0, 0)-Z,.
We put, for each element 7’ of B(p),
o=k =[C1"; Sp(2, Z)): C(T"; B(p)].
(5.60)  T==p(m), fn)
a,0=1+(=2); =1,
p

X‘:‘ZI(O), ZZ for Y= Yl(("’ O)’ Yz(a, 09 0):
&—atl=ct—c+1=0,

m(r; Sp(2, 2)/B(p)=2(1+ (—73))

G6l)  T==A0), fl)
—3\. .
dy(r)=1+(7), h=1,

x=Z!(O)’ Zz for y= yvl(cs 0)3 Yz(a: O> 0):
&F—a+1=c*—c+1=0,

m(r; Sp2, Z)/B(p)=2(1+ (‘731))

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

Dimensions of Automorphic Forms (11) 89

7= i‘,és(n): ;és(n)
d = ;3 s =1,
() 1+( : ) 1

x-—{zl< c-;—l ), Z, for y=Y(c, 0): c*—c-+1=0,
Z(0), Z,(—3) for y=Y,(3a—1, a, 0): 3a>—3a+1=0.

m(r; Sp(2, Z)/B(p))=2(1 5 (-}31))2

r= i'BY(n)’ Bs(n)
— —1\. . _
dy(r>—1+(7), =1,
x=2Z(0), Z, for y=Yc,0), Ya, 0,0): ¢*+1=a*+1=0,
. _ -1\
m(r; Sp(2, Z)/B() =2(1+ (7)) .
= "—'Bs(”)s Blo(n)
— —~1\. . _
dzl(T)— 1+<—p—)’ f=1,

2

x——{Zl( etl ),zz for y=TY(c, 0): ¢*+1=0,
Z(0), Z(2) for y=Ya,0,0): &*-+1=0,

m(r; Sp(2, 2)/B(p) =2(1+ (‘71))

T=7,(n)
a,n=1+(=1),
p
Z(t) with 2+1=0 for y=7Y,, ¥,0,0, 0): i,=1,
' n: arbitrary,

X =
Z0) for y=Yi(0,b): b*+1=0, =1, n: arbitrary,
Z(1) for y=Y{0, b): iy=p, n= 0 (mod p),

=7

d,(r)= 1+(; b,
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(5.67)

(5.68)

(5.69)

(5.70)

(5.71)
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Z(t) with #41=0 for y=Y,, Y,0,0,1/2); i,=1,
n: arbitrary,
- Z,(0) for y=Y{(—1/2,b): b*+1=0, i{j=1, n:arbitrary,
Z() for y=Yi(—1/2,b): i,=p, 2n-+1=0 (mod p).
T="Fn)

dy<r>=1+(-;;1),

Z(t) with 24-1=0 for y=7Y,, Y,(0,1/2,0), i,=1,
n: arbitrary,
= Z(0) for y=Yib,b): B*+1=0, [;==1, n: arbitrary,
Z(1) for y=Y{(b,b): i=p, n=0 (mod p).
T="4n) '

4,0 =1+(=1),
P
Z,(t) with 1*41=0 for y=7,, Y0, 1/2, 1/2), i,=1,
x={Z,(0) for y=Y{(b—1/2,b): B*+1=0, i,=1, n: arbitrary,
Z() for y=Y{b—1/2,b): i,=p, 2n+1=0 (mod p),
7= x7yn)

d,(")= 1+(;3),

Z() with t*—¢t+1=0 for y=7Y, i,=1, n: arbitrary,
Z(t) with £24-t41=0 for y=7Y,0,0,0), i,=1,

X= n: arbitrary,
Z(0) for y=Yi(0,b); b*+b+1=0, i,==1, n: arbitrary,
Z,(1) for y=Y{(0,d), i,=p, n=0 (mod p).

T=Tn)

dycr)=1+(;3),

Z(t) with *—t+1=0 for y=Y,, i,=1, n: arbitrary,
Z() with £?*4t+1=0 for y=Y,(—1/3,0,1/3), =1,
n: arbitrary.

*=070) for y=Y§(ﬁ, b): Bb1=0, i=1,
n: arbitrary,

X

(5.71)

(5.72)
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—b
2b+1

2b

) b), i,=p, 3n= T (mod p).

LZ,(I) for y== Y;(
T=%7(n)
d,(n=1+ (‘73)

Z(t) with t*—¢t4+1=0 for y=7Y,, =1, n: arbitrary,
Z(t) with t*+1t-+1=0 for y=1Y,(—2/3,0,2/3), i,=1,

n: arbitrary,

=120 for y=T( 2;2_1’1 8): BB 10, =1,
n: arbitrary,
Zl(l) for y= Yl(m—: b)5 Iy= 1; 3715—%?‘ (mod p)

7=26,(m, n) (resp. Sy(m, m))
d, =2 for y=7, Y0,0,0), ¥,0), ¥Yi0,0),

(resp. Y,, Y,(0, 1/2, 0}, Y,(0), Y{(0, 0)),
x=2Z,(0), Z, (resp. Z,(0), Z,(2)), i,=1,

condition on (m, n):

Y, Y.(0,0,0), Y0, £, 0) Y,(0) Y10, 0)

arbitrary m=n=0 (mod p) n=0 m=0

(5.73)

7=8,(m, n) (tesp. 8,(m, n))
d,(r)=2 for y=Y,, ¥42,0,0), Y0, 0), Y50, —2),

_ (resp. ¥, ¥,(1/2,0,0), Y{(0,0), (0, —2)),
x=2Z,(0), Z,(—1) (tesp: Z,(0), Z(—4), f,=1,

condition on (m, n):

Y,

Y2(27 0: 0’): Yz(%, 0’ O) Y{(O’ 0) Y;(O’ _2)

arbitrary m=n=0 (mod p)

m=0 m=2n
resp. 2m=1 | resp. 2m—4n=1

(5.74)

7= 8,(n) (resp. 8,(n)
dv(‘r)zz fOr y= },4? YZ(O: Oa 0) (resp' Y&; Y{(Os 0)),
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o {ZI(O)’ Zz for Yv YZ(O, 0, O); io: 1,
1z, Z2) for Y{(0,0), i=1,

Y, 10, 0,0), ¥3(0,0)

n: arbitrary n=0 (mod p)

(575 T=%e(S), alS)
a}(?’):{l for y=7Y,, Y40, 0),
2 for y=1Y,0),
_[Z0) for y=Y,, ¥(0,0)
{ZI(O), Z, for Y,(0)

¥ Y, 7,00, 0) 7,0) 7,(0)
x Z,(0) Z,0) Z,(0) Z0)
L (52 0% .2 R
o 1 r p r

For each family, the corresponding Levi-component is isomorphic to

P, N B(p)=GT{(p)= {(‘c’ f;) € GL(Z); ¢=0 (mod p)}.

Therefore we have the following invariants (¢, d) for each cusp of GI'y(p)
(c.f. Theorem P-6, (4.68)).

L (Z Z) <pZ pZ) Z Z VA pZ)

Z pZ pZ pZ
B=ico t,=1 P 1 1
1 t,=0 0 0 0
Bﬁ_<0 f) d=1 P 1 P
c=2 2 2 2
g=0 =1 P P p
1 o t,=0 0 0 0
Bﬁ—( . 1) d= p 1 p
p c=2p 2p 2 2p
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(5.76) T=Ze(m) .
d,(N=2 for y=7Y, Y.\0,0,0),

x=2Z,(0), Z,,
Y, Y,(0,0,0)
Z,(0) iy=p =1
! m: arbitrary m=0 (mod p)
Z =1 iy=p
2 m: arbitrary m=0 (mod p)

§6. Local data for B( 5}

In this section, we shall give local data which are necessary to
calculate dim M, (B’(p)). The local data for gs=p have been given in
[19], so we shall calculate c,(g; R,, 4,) and masses, where g is a torsion
element of G§ and

R =< 0, 0p>.
? z0, O,

Throughout this section, we assume that p=2, 3.

Proposition 6.1. Put g=((1) (1)>, or <“(1) _(1)) Then,

Le-eif 4,~R,,

0. . .otherwise.

cp(g> Rp, Ap)z{
Let A be the order of M(O) such that A,=R, and A4,=M\0,) (g+£p).
Then, ;
M (M)y=(p'—1)/2'3°5.

Proof. This is obvious, because [P}: B/l=p-1 (cf. [19] () Proposi-
tion 9).

Proposition 6.2. If the principal polynomial of ge G§f is fx) or
Ji(—x) for some i=2,3,4,5,8, or9, then c g, R,, 4,)=0 for all orders
of Z(g)y.

Proof. We assume p+2, 3, so it is known that
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o, n-10p> /1)
3 2 :0,
Cp(g (7‘:0 0.)

» P
for any above g and any A4, ([19], (II)). Thus, our Proposition is
obvious. q.e.d.

Next, we treat elements g ¢ GF such that f,(g)=0 or fi(zg)=0.
Put Z(2),=2Z(g) Qg @, Where Zy(g) is the quaternion algebra over Q
defined as in [19], I, (12) (p. 562). For A,CZ(g),, we define d,(4,) and
e,(4,) as in [19], (I), Proposition 12 (p. 572). Put F=Q[g] and 0=Z[g].

As we have assumed p=%2, 3, (£> 0, where <£> is the Legendre
p P

symbol. - By definition, we have Z(g), R, F=D,®, F, so (E): -1,
p

if Z,(g), is not division.
Proposition 6.3. If Z,(g), is split and <£> = —1, we get
p

. 0, 0\ __
2 4~ 7)=4
0- .. otherwise.

cp(g: Rp: Ap)z {

where 0,=0RzZ,. We have e (D=1 and d(DH=p+1.

Proof. If Z,(g), is split and (E): —1, then g is G¥-conjugate to
P .

((6 g), where o € O, is of order 3, 4, or 6. So, we put g=((8 2)) By
virtue of [19], (1), Proposition 2.5 (i), if x~'gx e B’C P}, then x¢
Zey(8)-Ps. Wecanput O,=Z,+Ze+Zn+Z,ze, where F,=F®,0,

=Q,lel, & € @F, o e QF, and er=—me. Then,

’ 1 - ’ 0 —7 \p,
P0=u(0 ”1“)3 U(n: g)B,

where a e Z,[e] runs through a set of complete representatives of
-1
ZJpZ e Ifxe ZG;(g)((l) " a)B’, then

1 —z%\ (1 ra\_(w, (o—&)r'a '
(6 T1%)sl )= “TITE) e

-1
soaepo, Thus, wegetxe Zg;(g)B' in this case. For x=<2 —g ),

-1
we get x"'gx="g e B’. Now, assume that (2 _8 >=/1k, where /e
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Zg(g)and ke B’. Then, he Zs(g)N ch(pzl’ ZP), which is a con-
Y4 22
tradiction, because we must have # ¢ B’. Thus, we get c,=2. We have

Z, ¢Z
Ay= (psZz EZ;) and we get d(A)=p-+1. g.e.d.

Proposition 6.4, If Z(g) is division, we get
G) if <£)= 1, then
4

2---if A, ~Z(8),NR,=4,
R, 4,)=
. (8 Ry 43) {0. -« otherwise,
and d(H=e,(H=1,

Gy if (%) =1, then

c(8 Ry, 4,)=0 for any 4,.
Proof. By virtue of Proposition 2.6, (ii) in [19], (III) (p. 398), the

above (ii) is obvious. So, assume that <£>=1. We can assume that
p

g= (g 2) € G¥, where 4, beQ, are different roots of fi{x)=0, f(x)
=0, or f(—x)=0. If x"'gx e B’, then x e Zg,(g)P’, by virtue of [19],
(I1D), Proposition 2.6, (). In the similar way as in the proof of Proposi-
- e

tion 6.3, we can show that x Z,,.;(g)B’ or ZG;(g)(g _g )B’, and these
two double cosets are disjoint. ‘q.e.d.

For g e G} such that f,(4g)=0 (i=10, 11, or 12), it is obvious that
¢(g R,, 4,)=0, unless 4,=Z,[Jg]. From now on, we put c,(g)=

c(g R, Z[g]). Forafixed i= 10, 11, or 12, denote by ¢ the number
of G-conjugacy classes in {g € G}; fi(g)=0}.

Proposition 6.5. Letge G;',‘;be of order 5 or 10.

(i) Ifp=S5, then c(g)=1, and t=1 for i=10.

(ii) Ifp+#S5, then c (g)=0.

Proof. By virtue of [19], (I), Proposition 19, (ii) and (III), Proposition
2.8, (i), the above (ii) is obvious. Assume p=35. Then, we can put
g= (591 _5)>, where o is an element of O, such that o*—0—1=0, and

€0, &=—3, co=a. If x"'gxe B, then x e Q. (g)P], by virtue of

[19], Proposition 19, (iv). It is easy to see x ¢ Qp(g)<__;5 (IJ)B’. g.e.d.
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Proposition 6.6. Let g be of order 8. Then,
(i) fp==+1mod'8, then c,(g)=0,
(ii) ifp=3,o0r S5mod38, then c(g)=4 and t =1.

Proposition 6.7. Let g be an element of G} such that f,(g)=0.
Then,

(i) ifp=-=+1mod 12, then ¢, (g)=0,

(ii) ifp=5mod 12, then c(g)=4, t=1, and Z(g*),=split,

(iii)y fp=7mod 12, then c(g)=4, t=1, and Z,(g"),=division.

Proof of Propositions 6.6 and 6.7. By virtue of [19], (I) Propositions
20, 21, and (III), Propositions 2.9, 2.10, the above (i) of Proposition 6.6
and 6.7 are obvious. If p=3, 5 mod 8 (resp. p=35, 7 mod 12), we can
write f;,(x) (resp. fi.(x)) as a product of quadratic polynomials in @, [x]:

f)=*+ax+b)(x*+ab'x+b"") (=11 or 12),
where b==1. We can take o € O, such that o*+aw+b=0. Putw,=w
and 0,=b"'0. Then, g is G}-conjugate to (‘8‘ 8) If x'gx e B’ for
2

some x € G}, then x ¢ Zg,(g)P; or ZG;(g)<g g)Pi, by virtue of [19], (D),

Proposition 21. We have

et Ol e

a

where a runs through a set of representatives of
{x e O, tr (x)=0}/{x e n0,; tr (x)=0}.
In the similar way as in the proof of Proposition 6.4, (ii), we have

x € Zg(g)y:B" (i=1,2,3,0r4),

where
0 01 0 =
y1:<(1) (1)), J’2:<g 7.[): ys=(1 0): and y4=(7r 0)-
These four double cosets are disjoint. q.e.d.

§7. Related topics

Here, we would like to take this opportunity to write briefly on some
related topics.
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(1) Ihara lifting For n=2, Thara [28] has shown that there exists
a kind of lifting of automorphic forms of S,,.,(I(7) to MAULD)),
where

I’o(p)z-—'{(z 2) € SL(Z); ¢c=0 mod p}.
(Actually, he did not assume that the discriminant of D is a prime. As
for this, see his paper.)

More exactly, we can take the representation space V, of p, (for
n=2) as follows: We identify H (the Hamilton quaternions) with R'.
V, is the set of real valued homogeneous polynomials f(x, ) on H*=R®
such that

1) flax, ay)=N(a)y'f(x, y)for all a e H*, and

2) 4f=0,
where N(a) is the reduced norm of a4 and 4 is the usual Laplacian. Sp(2)
acts on V, by :

S, )—f((x, ¥)g) for all g e Sp(2).

For the sake of simplicity, we assume here that the class number of U,(p}
is ome, ie. dim MM, (U(p))=1 for v=0, although, as Thara has kindly
shown us, his theory works completely in the same way without any such
restriction. Put I'=U,(p)NG’. Then, under the above assumption,
we get :

MUALN={f € V,; S, ) =1(x, y) for all 7 e ['}.

Let e MAU1(p)) be a common eigen form of all the Hecke operators
T(m). For such f, put

= 2x L (N (2)+ N{(y)r .
9= e L Ted

Then, 9,(c) € Sy (Ts(P)).

Theorem 7.1 (Thara [28)). Asswme that f(1, 0)£0. Then, 9, is also
a common eigen form (of the Hecke operators of I'y(p)), and we get

L(s, N)=Ls—v—Dls—v—2)L(s, 9,)
up to the Euler p-factors.

This Thara’s result was the first one among results on lifting
obtained later by many mathematicians. For example, the Saito-Kuro-
kawa lifting may be regarded as a similar version of Ihara lifting for the
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split group Sp(2, R). - The second author has extended Theorem 7.1 to
general n: under a similar condition on f as f(1, 0)£0 for n=2, he
expressed the eigen values of f by some group theoretical numbers and
coefficients of some one dimensional automorphic forms, and at least for
n=3, gave L(s, /) explicitly.

Some examples of Theorem 7.1 have been given by Ihara (loc. cit.).
We give here another example. We assume n=2., Putp=2 and v=2.
Then, dim IR, (U{(2))=1 and this space is spanned by:

0 ) =NEy—3NNGD)+NO)-

Then, by Theorem 7.1, we have
L(s, f)=8s—5)E(s—6)L(s, h),

up to Euler 2 factors, where £ is the unique normalized cusp form of
Si(l"(2)). On the other hand, MaaB [38] has shown that

L(s, F)={(s—5)}{(s—6)L(s, h),

for some F e Sy(I",(1)) (unique up to constant), where I",(1) is the unique
index two subgroup of Sp(2, Z) which contains the level two principal
congruence subgroup. So, (f, F) gives an example for the Langlands
philosophy. But, this example is less essential than the examples in [21],
because this is a relation through one dimensional forms and does not
satisfy the Ramanujan Conjecture. In our set-up in Conjecture 1.11,
there is no relation, at least apparently, between old forms and those
forms obtained from lifting. As for another aspect between lifting and
old forms, see [24].

(2) Construction of automorphic forms. For n=1, it is well-known
that we can construct the forms in S, (I"(p)) from M, _,(O,) through the
Weil representation: We can embed Sp(1)=SU(2) to SO(4), and roughly
speaking, we can get forms in S,(I"y(2)) through theta functions

W)= 2, P(me=e™r, e,
nezZ

where Q are quadratic forms of four variables and P are spherical func-
tions (i.e. automorphic forms of Sp(1)). In our case of n=2, the situa-
tion is fairly different. We can embed Sp(2) to SO(8) for example, and
get a Siegel modular form in a similar way, but the weight of this form
cannot be v+3. On the other hand, we have Sp(2)/+1=S0(5). By
using this isomorphism, it has been shown in [25], that we can construct

automorphic forms on Spf(z\,/ R) (the non-trivial double cover of Sp(2, R))
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from forms belonging to Sp(2), and that this construction preserves L-
functions. Let o(f},f,) be. the representation of Sp(2) whose Young

. f‘t
Then, p(f:,f,) factors through SO(5) If and only if £+ f,=even.
We assume this. Then, from any form ¢ e M, ;. ;»(UUP) (1=2), we

can construct a vector valued Siegel modular form ¢(p) of weight
det*=/2+9Q8ym (f,), where Sym (f;) is the symmetric tensor representa-

tion of GL(2) of degree f,, We can develop the Hecke theory on S;(Z\,/ R)
and define L-series. By some local theory similar to Yoshida [51], we
can show that L(s, ¢)=L(s, o(¢)) up to finitely many Euler factors. It is

diagram is

very plausible that there exists a similar mapping from forms of S;@/ R)
to those of Sp(2, R). So, the above results might be regarded as the first
half of an explicit mapping of forms of Sp(2) to those of Sp(2, R).

() A relation to supersingular abelian varieties. We have some
geometrical interpretation of dim MM(UYp)) (i=0,1) and the Hecke
operators. Let H, be the class number of the principal genus of the
definite quaternion hermitian space D™ with metric N(x,)+ - - - 4 N(x,) for
(X, -+ -, x,) € D*. Put

U=G. [] (GL(0,)NG).

Then, dim MM (U)=H,, so dim M(Ui(p))=H, (cf. Shimura [44]). For
n=1, it is known by Deuring [8] that H, is equal to the number of
isomorphism classes of super singular elliptic curves E over fields of
characteristic p. It is clear that the Brandt matrices defined by Eichler
[9] coincide with matrices which consists of numbers of isogenies between
supersingular elliptic curves. Now, we assume n=>2. We have a similar
(but slightly different) relation also for these cases: H, is equal to the
number of principal polalizations of E™ up to Aut (E") (cf. Ibukiyama-
Katsura-Oort [26], J-P. Serte-[42]). © Combining this fact for n=2 with
some geometrical consideration, the number of supersingular curves of
genus two with prescribed automorphism groups have been counted (Ibuki-
yama-Katsura-Oort. loc. cit.). This gives an example of explicit descrip-
tions of I, in (1.3) up to isomorphisms. Next, let C(i=1,. - -, H,) be the
complete set of representatives of the principal polarizations of E* up
to Aut (E™). For natural integers m, put

si(m)=4H{p € End (E,); ¢*(C)=mC}/Aut (E,, C),
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where = denotes the algebraic equivalence. Put S(m)=(s;;(m)). On the
other hand, denote by H(m)=(h,,(m)) the Brandt matrix, ie., the matrix
induced from the Hecke operator T'(m) on the right hand side of (1.4)
(c.f. [15], §1). Then, changing the numbering, if necessary, we get H(m)
=S(m). The class number Hj of the non-principal genus in D* is equal
to dim MUY 2)) (cf. Shimura [44]). It is known by Katsura-Oort [31]
that H, is equal to the number of irreducible components of the set of
principally polarized supersingular abelian surfaces in the coarse moduli

scheme 4,,.

References

[1]1 T. Arakawa, The dimension of the space of cusp forms on the Siegel upper
half plane of degree two related to a quaternion unitary groups, J. Math.
Soc. Japan, 33 (1981), 125-143. .

[2] T. Asai, The conjugacy classes in the unitary, symplectic, gnd orthogonal
groups over an algebraic number field, J. Math. Kyoto Univ., 16 (1976),
325-350.

[3] A. Borel, Automorphic L-functions, Proc. Symp. Pure Math., XXXII, part,
2 (1979), 27-62. . )

[4] W. Casselman, Introduction to the theory of admissible representations of
p-adic reductive groups, preprint. o ]

[5]1 U. Christian, Untersuchung einer Poincaréschen Reihe I, J. reine angew.
Math., 233 (1968), 37-88; II, J. reine angew. Math,, 237 (1969), 12-25.

, Berechnung des Ranges der Schar der Spitzenformen zur Moduigruppe
zweiten Grades und Stufe ¢ > 2, J. reine angew. Math, 277 (1975), 130-
154; Zur Berechnung des Ranges der Schar der Spitzenformen zur Modul-
gruppe zweiten Grades und Stufe ¢>2, I. reine angew. Math., 296 (1977),
108-118.

[71 P. Deligne and D. Kazhdan, On representations of local division algebras,
preprint (1982). . .

[8] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionen-
kérper, Abh. Math. Sem. Univ. Hamburg, 14 (1941), 197-272.

[91 M. Eichler, Zur Zahlentheorie der Quaternion-Algebren, Math. Z., 43 (1938},
127-151.

[61]

[10] , Uber die Darstellbarkeit von Moduiformen durch Thetareihen, J.
reine angew, Math., 195 (1956), 159-171. )
[11] , Quadratische Formen und Modulformen. Acta arith., 4 {1958), 217-

239.

{12] D. Flath, A comparison of the automorphic representations of GL (3) and
its twisted forms, Pacific J. Math., 97 (1982). .

[13] R. Godement, Généralités sur les formes modulaires I, II Exposé 7, 8,
Séminaire Cartan, 1957/1958.

[14] Harish-Chandra, Discrete series for semi-simple Lie groups I, Acta Math.,
116 (1966), 1-111. . )

[151 K. Hashimoto, On Brandt matrices associated with the positive definite
quaternion hermitian forms, J. Fac. Sci, Univ. Tokyo Sect. IA Math., 27
(1980), 227-245.

[16] ——, The dimension of the space of cusp forms on Siegel upper half plane
of degree two (I), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983),
403-488. (II), Math. Ann.,, 266 (1984), 539-559. .

[17] ——, On the first, second, and third asymptotic formulas for the dimension

[18]
[19]

[20]

[213

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

{311

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]
[41]

Dimensions of Automorphic Forms (11) 101

of the spaces of Siegel modular forms of degree n, Séminaire Théorie des

nombres de Paris, 1982-83, 103-113, Birkhiuser Boston, Inc.

, Class numbers of positive definite ternary quaternion hermitian forms,
Proc. Japan Acad., 59 Ser. A. no. 10 (1983), 490-493.

K. Hashimoto and T. Ibukiyama, On class numbers of positive definite binary
quaternion hermitian forms (I), J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
27 (1980), 549-601; (II); J. Fac, Sci. Univ. Tokyo Sect. IA Math., 28
(1982), 695-699; (I1I), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1983),
393-401. :

T. Hina and K. Masumoto, On representations of p-adic split and non split
symplectic groups, and their character relation, J. Fac. Sci. Univ. Tokyo.
Sect. JA Math.

T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ.
Tokyo Sect. A Math., 30 (1984) (Resumé was published in Proc. Japan
Acad. 57, Ser. A No. 5 (1981), 271-275). o

——, On the graded ring of Siegel modular forms of genus two belonging
to certain level two congruence subgroups, preprint.

——, On automorphic forms of Sp(2, R) and its compact form Sp(2),
Séminaire de Théorie des nombres de Paris, 1982-83 125134, Birkhiuser
Boston, Inc.

, On relations of dimensions between automorphic forms of Sp(2, R) and
its compact twist Sp(2) (I), (this volume),

~—, On construction of half integral weight Siegel modular forms of
Sp(2, R) from its compact twist Sp(2) to appear in J. reine angew. math.

T. Ibukiyama, T, Katsura and F. Qort, Supersingular curves of genus two
and class numbers, to appear in Compositio math.

J. Igusa, On Siegel modular forms of genus two (I), Amer. J. Math., 84
(1962), 175-200; (II) Amer, J. Math., 86 (1964), 392-412,

Y. Ihara, On certain arithmetical Dirichlet series, J. Math. Soc. Japan, 16

(1964), 214-225.

H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture
Notes in Math., Springer (1972).

H. Jacquet, 1. Piatetski-Shapiro and J. A. Shalika, Automorphic forms on
GL(3), Ann, of Math., 109 (1979) 169-258.

T. Katsura and F. Qort, Families of supersingular abelian surfaces, preprint.

M. Kneser, Strong .Approximation, Proc. Symp. Pure Math., IX (1966),
187-196.

R. P. Langlands, Dimension of spaces of automorphic forms, Amer. J.
Math., 85 (1963), 99~125; Proc. Symp. Pure Math., IX (1966) 253-257.

, Problems in the theory of automorphic forms, Lecture Notes in Math.

vol. 170, Springer, (1970), 18-86.

, Automorphic representations, Shimura varieties, and motives, Proc.
Symp. Pure Math., XXXIII, part 2 (1979), 205-246.

——, Stable conjugacy; definitions and lemmas, Canad. J. Math., 31 (1979),
700-725. T

, Les début d’une formule des trace stables, Publications Mathématiques
de l'université Paris VII (1983).

H. MaaB, Uber ein Analogon zur Vermutung von Saito-Kurokawa, Invent.
math., 60 (1980), 85-104.

Y. Morita, An explicit formula for the dimensions of spaces of Siegel modular
forms of degree two, J. Fac. Sci. Univ. Tokyo Sec. IA Math,, 21 (1974),
167-248.

J. Rogawski, Representations of GL(n) and division algebra over a p-adic
field, preprint (1981).

A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric
Riemannian spaces with application to Dirichlet series, J. Indian Math.




102

[42]
[43]
[44]
[45]
[46]
{471
[48]
[49]

[50]
(511

K. Hashimoto and T. Ibukiyama

Soc., 20 (19536), 47-87.

I-P. Serre, Nombres de points des courbes algébrique sur Fy, Séminaire de
théorie des nombres, Bordeaux, Année 19821983, exposé no. 22.
H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81

(1965), 166-193.

G. Shimura, Arithmetic of . alternating forms and quaternion hermitian
forms, J. Math. Soc. Japan, 15 (1963), 33-65.

T. Shintani, On zeta functions associated with the vector space of quadratic
forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22 (1975), 25-65.

T. Tits, Reductive groups over local fields, Proc, Symp. Pure Math., XXXIII,

part 1, (1979), 29-70.

M. F. Vigneras, Représentation des alge

N

bres central simples sur un corps

- local non archimedean, preprint (1982).
G. Warner, Harmonic analysis on semi-simple Lie groups (1), (ID),

Springer (1972).

A. Weil, Adeles and algebraic groups, Lecture Notes, Institute for advanced

study, Princeton (1959-60).

, Classical groups, Princeton Univ. Press 1939.

H. Yoshida, Siegel modular forms and the arithmetic of quadratic forms,

Invent. math., 60 (1980), 193-248.

Ki-ichiro Hashimoto
Department of Mathematics®
Faculty of Science

University of Tokyo

Hongo, Tokyo

113 Japan

and

Max-Planck Institut fiir Mathematik
Gottfried-Claren Str. 26

5300 Bonn 3,

B.R.D.

Tomoyoshi Ibukiyama
Department of Mathematics
College of General Education
Kyushu University
Ropponmatsu, Fukuoka

810 Japan

and

Max-Planck-Institut fiir Mathematik
Gottfried-Claren Str. 26-

5300 Bonn 3

B.R.D.

# Current address: Department of Mathematics, Waseda University Shin-
juku, Tokyo, 160 Japan

Advanced Studies in Pure Mathematics 7, 1985
Automorphic Forms and Number Theory
pp. 103-111

Moonshine for PSL:(Fr)

Masao Koike

. 0. In[1], Conway and Norton assigned a Thompson series of the
orm ‘

q_1+nZ=1'H7l(m)qn’ qzez’Eiz

to each element m of the Fischer-Griess group F, where H, are characters
of F, and they conjectured among others that Thompson series are gen-
erators of the modular function fields of genus zero for some modular
groups which contain I'y(N) for some N. In [6], Queen studied moonshine
for other simple groups, for example, Thompson’s group F,.

.In this paper, we consider these phenomena for PSL(F,) and its
relation to Conway-Norton’s monstrous moonshine.

L?t G=PSL(F;). G acts on F,U{co} as linear fractional trans-
formations, so G can be considered as the subgroup of S,. Then, each

'element of G is written by products of cycles and these are of the follow-
ing forms: -

15, 1.7, 12.3%, 24, 4,

For each product of cycles of length #,, m=(n)n)---(n), n,>---
=>n,2>1 335.,n,=8, in G, we associate following modular forms:

) Ul,m(z)_,:: iljl 77(37&2),
S —

where 5(2) is the Dedekind p-function. Then y, .(z) (tesp. 7,.(2)) is a
cusp form of weight 5/2 (resp. 35/2) on I'y(9nn,) (resp. Z’O(n;ns)) with
some character and is known to be a common eigenfunction of all Hecke
operators (cf. [4]). '

We shall prove
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