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We give a general arithmetic dimension formula for spaces of
vector-valued Siegel cusp forms of degree two. Then, using this
formula, we derive explicit dimension formulas for arithmetic
subgroups of any level for each Q-form of Sp(2;R). Tsushima
has already given the dimension formulas for some congruence
subgroups of the split Q-form in Tsushima (1983, 1997) [32,33].
We obtain an alternative proof for his results by using the Selberg
trace formula and the theory of prehomogeneous vector spaces. As
for the non-split Q-forms, our results are new. We generalize the
results and proofs given in Arakawa (1981) [1], Christian (1969,
1975, 1977) [5,6], Hashimoto (1983, 1984) [12,13], Morita (1974)
[25] for the scalar-valued case to the vector-valued case using the
Selberg trace formula.
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1. Introduction

In this paper, we give explicit dimension formulas for spaces of vector-valued Siegel cusp forms
of degree two with respect to the full modular groups Γ (1) and Γ ∗(1) and the principal congruence
subgroups Γ (N) and Γ ∗(N) of all Q-forms of Sp(2;R) and the congruence subgroup Γ0(p) of the
split Q-form. The dimension formulas for the scalar-valued case are already known. Tsushima has
already given the dimension formulas for the vector-valued case for such congruence subgroups of
the split Q-form by using the Riemann–Roch theorem in [32,33]. We obtain an alternative proof for
his results by using the Selberg trace formula and the theory of prehomogeneous vector spaces. As
for the non-split Q-forms, our results are new.
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We generalize the results and proofs obtained by Christian [5,6], Morita [25], Arakawa [1], and
Hashimoto [12,13] for the scalar-valued case to the vector-valued case using the Selberg trace formula.
In particular, we obtain a general arithmetic dimension formula (Theorem 3.1), which is a generaliza-
tion of [12, Theorem 5-1]. There are two problems associated with the generalization of the proofs of
these theorems. First, we must prove the convergence of some infinite series, in order to transform
the Godement formula into the infinite sum of the orbital integrals with dumping factors, e.g., we
have to interchange the integral and the infinite sum. Next, we must explicitly calculate the orbital
integrals with dumping factors. The explicit forms for the semisimple orbital integrals have been ob-
tained by Langlands [24]. He used the limit formula for the semisimple orbital integrals. We also use
the limit formula for the unipotent orbital integrals (cf. [26,3]). Furthermore, we have to carry out
some calculations similar to those in [25] and [12], since we cannot directly apply the limit formula
to the unipotent or quasi-unipotent orbital integrals with dumping factors.

We give a formula (Theorem 5.7) for unipotent contributions, which are concerned with zeta
functions associated to symmetric matrices, by using the theory of prehomogeneous vector spaces.
Then, we obtain an alternative proof using this formula for such unipotent contributions in dimension
formulas. First, Morita has explicitly calculated the unipotent contributions. After that, Shintani has
simplified the proof by using the theory of prehomogeneous vector spaces and obtained a formula
that expresses such unipotent contributions for general degree by special values of zeta functions
associated to symmetric matrices. Special values of the zeta functions have been determined by Shin-
tani [28], Sato [27] (degree two, split case), Arakawa [1] (degree two, non-split case), and Ibukiyama
and Saito [20] (general degree, split case). We generalize Shintani’s formula to the vector-valued case
for degree two. In order to generalize his formula, we have to prove the convergence of the zeta
integrals of prehomogeneous vector spaces and explicitly calculate the integral of a certain function,
which is related to the Fourier transform of the trace of irreducible rational representations. The in-
tegral is well known in the scalar-valued case, but it is nontrivial in the vector-valued case. We can
calculate the integral by using the Fourier transform which was given by Godement [8].

Note that our dimension formulas are concrete. We can get concrete numerical values of dimen-
sions by using our dimension formulas. We give some numerical tables of dimensions in Sections 6
and 7.

Our motivations are as follows. First, we use our main result for a concrete study of the Jacquet–
Langlands–Ihara correspondence for Sp(2;R). Actually Hashimoto and Ibukiyama obtained good global
dimensional relations between automorphic forms of Sp(2;R) and its compact twist in 1984 by us-
ing dimension formulas (cf. [18,15]). We generalize the dimension formula [18, Theorem 4] for the
paramodular groups K (p) to the vector-valued case by using our formula. Furthermore, we obtain
the correspondence for the vector-valued case by comparing the dimensions. Second, we investigate
dimensions of vector-valued Siegel modular forms of low weights and the surjectivity of the Witt
operator by using the dimension formula for Γe(1) given in [21], where Γe(1) is the index two nor-
mal subgroup of Sp(2;Z). We have explicitly calculated the dimension formula for Γe(1) by using
our formula (for the scalar-valued case, the dimension formula has been given by Igusa [22]). Third,
we study the Shimura correspondence between Siegel cusp forms. Ibukiyama has given a conjecture
for the Shimura correspondence between vector-valued Siegel cusp forms of degree two of integral
weights and half-integral weights (cf. [19]); in this case, it is essential to consider vector-valued forms.
Although we do not consider these topics in this paper, we study the traces of the trivial actions of
the Hecke operators as the first step, which are the dimensions of spaces.

This paper is organized as follows. In Section 2, we review arithmetic groups, Siegel cusp forms,
and the conjugacy classes of Sp(2;R). In Section 3, we give the general arithmetic dimension formula
(Theorem 3.1), which is one of our main results. We also give another formula (Theorem 3.2) that
is a modified form of Theorem 3.1. We need it to derive the dimension formulas for the congruence
subgroups Γ (N), Γ ∗(N) (N � 2), and Γ0(p). In Section 4, we prove Theorem 3.1. In Section 5, we give
the formula (Theorem 5.7) for unipotent contributions, which are concerned with zeta functions asso-
ciated to symmetric matrices. In Sections 6 and 7, we give explicit dimension formulas, which are our
main results, and some numerical tables of dimensions. In Appendix A, we review non-cusp forms.
In Appendix B, we review a formula for elliptic contributions, which is required for the calculation of
explicit dimension formulas.
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2. Preliminaries

2.1. Notation

Let Z denote the ring of rational integer, Q, R, and C denote the field of rational, real, and complex
numbers, respectively, and i denote the complex number

√−1. For z = x + iy ∈ C, |z| is the absolute
value of z, given by

√
x2 + y2, and z is the complex conjugate of z, given by x − iy. For a ring R , we

denote the ring of matrices of degree n over R by M(n; R). Let GL(n; R) denote the group of invertible
matrices in M(n; R), and SL(n; R) denote the subgroup of matrices with determinant one in GL(n; R).
Further, we denote the unit matrix of M(n; R) by In . For a matrix x, t x is the transpose of x. Let
SM(n; R) denote the totality of symmetric matrices in M(n; R). If G is an algebraic group over Q, let
G(Z), G(Q), G(R), and G(C) denote the group of Z-valued, Q-valued, R-valued, and C-valued points
of G , respectively. For a subgroup C of GL(n;R), we put C = {±In} · C/{±In}. If H is a subgroup of a
group G , let {g}H denote the H-conjugacy class represented by g ∈ G . Let diag(a1,a2, . . . ,an) denote
the diagonal matrix whose entries are given by a1,a2, . . . ,an . If X is a positive (resp. negative) definite
symmetric matrix over R, then we write X > 0 (resp. X < 0). We denote the gamma function by Γ (s).

2.2. Q-forms of Sp(2;R)

Let Sp(2;R) be the real symplectic group of degree two, i.e.,

Sp(2;R) =
{

g ∈ GL(4;R); g

(
0 I2

−I2 0

)
t g =

(
0 I2

−I2 0

)}
.

Let B be an indefinite quaternion algebra over Q (B ⊗Q R ∼= M(2;R)), a �→ aι (a ∈ B) the canonical
involution of B. We set

G(Q) = U (2;B) =
{(

a b
c d

)
∈ M(2;B);

(
a b
c d

)(
0 1
1 0

)(
aι cι

bι dι

)
=

(
0 1
1 0

)}
.

We know that the isomorphism φ : G(R) → Sp(2;R) is given by

φ(g) =
⎛
⎜⎝

a1 a2 b2 −b1
a3 a4 b4 −b3
c3 c4 d4 −d3

−c1 −c2 −d2 d1

⎞
⎟⎠ , g =

(
A B
C D

)
∈ G(R),

where A = ( a1 a2
a3 a4

)
, B = ( b1 b2

b3 b4

)
, C = ( c1 c2

c3 c4

)
, D = ( d1 d2

d3 d4

) ∈ B ⊗Q R. By using the isomorphism φ, we
identify G(R) with Sp(2;R). The realization Sp(2;R) is used when the matrices are written down. For
each subgroup H in G(R), we identify H with φ(H). The Q-rank of G(Q) is one or two, depending
on whether B is a division algebra or not. If B = M(2;Q), then φ(G(Q)) = Sp(2;Q). It is known that
for each Q-form of Sp(2;R), there exists an indefinite quaternion algebra B such that the Q-form is
isomorphic to U (2;B).
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2.3. Arithmetic subgroups

Consider an indefinite quaternion algebra B. Let Γ be an arithmetic subgroup of G(Q), i.e., Γ (⊂
G(Q)) is commensurable with G(Z). It is known that G(Z) is commensurable with U (2;B)L = {g ∈
U (2;B); L · g = L} for any lattice L in B2. Let O be a maximal order of B. We put G(O) = U (2;O).
If L = O2, we have G(O) = U (2;B)L . We can fix a maximal order O without loss of generality up to
isomorphisms, because B only has a maximal order up to inner automorphisms. When B = M(2;Q),
we fix O = M(2;Z). Then, we have φ(G(O)) = Sp(2;Z).

Next, we make an assumption for the arithmetic subgroup Γ . Let P0(Q) = {( ∗ ∗
0 ∗

) ∈ G(Q)},

M0(Q) = {( ∗ 0
0 ∗

) ∈ G(Q)}, and N0(Q) = {( 1 ∗
0 1

) ∈ G(Q)}. We have P0(Q) = M0(Q) · N0(Q). Let G(Q) =⋃v0
m=1 Γ hm P0(Q) (disjoint union) (hm ∈ G(Q), h1 = I2). If Γ = G(O), then v0 = 1. We need the follow-

ing assumption to explicitly calculate the unipotent contributions of Γ (cf. (e) Unipotent in Section 3).

Assumption 2.1. There exist h1,h2, . . . ,hv0 such that the equality P0(Q) ∩ (h−1
m Γ hm) = (M0(Q) ∩

(h−1
m Γ hm)) · (N0(Q) ∩ (h−1

m Γ hm)) holds for each m (1 � m � v0).

2.4. Siegel cusp forms

Let ρk, j : GL(2;C) → GL( j + 1;C) be the irreducible rational representation of the signature
( j + k,k) ( j,k ∈ Z�0), i.e., ρk, j = detk ⊗ Sym j , where Sym j is the symmetric j-tensor representation
of GL(2;C). Let H2 be the Siegel upper half-space of degree two, i.e., H2 = {Z ∈ M(2;C); t Z = Z ,

Im(Z) is positive definite}. The group Sp(2;R) acts on H2 as g · Z := (A Z + B)(C Z + D)−1 for
Z ∈ H2, g = ( A B

C D

) ∈ Sp(2;R). Let χ be a one-dimensional unitary representation of Γ such that
[Γ : ker(χ)] < ∞. Let Sk, j(Γ,χ) be the space of Siegel cusp forms of type (ρk, j,χ,Γ ), i.e., the space
of holomorphic functions f : H2 → C j+1 satisfying (i) f (γ · Z) = ρk, j(C Z + D) f (Z)χ(γ ) for all γ =( A B

C D

) ∈ Γ , Z ∈ H2, and (ii) |ρk, j(Im(Z)1/2) f (Z)|C j+1 is bounded on H2, where Im(Z)1/2 ∈ SM(2;R)

and (Im(Z)1/2)2 = Im(Z). We call ρk, j the weight of the Siegel cusp forms of Sk, j(Γ,χ). If χ is
trivial, Sk, j(Γ,χ) is simply denoted by Sk, j(Γ ). It is known that dimC Sk, j(Γ ) (k � 3) is equal to
the multiplicity of the holomorphic discrete series representation of the Harish-Chandra parameter
( j + k − 1,k − 2) in the discrete spectrum of L2(Γ \G(R)) (cf. Wallach [35]). Our aim is to obtain
explicit formulas for dimC Sk, j(Γ,χ). Note that dimC Sk, j(Γ,χ) = 0 if −I4 ∈ Γ , χ(−I4) = 1, and j is
odd.

2.5. Conjugacy classes

The representative elements of G(R)-conjugacy classes for G(R) have been described concretely in
[25] and [12]. Here, we give a list of these elements. Let

α(θ1, θ2) =
⎛
⎜⎝

cos θ1 0 sin θ1 0
0 cos θ2 0 sin θ2

− sin θ1 0 cos θ1 0
0 − sin θ2 0 cos θ2

⎞
⎟⎠ , k(θ) =

(
cos θ sin θ

− sin θ cos θ

)
,

β(a,b) =
⎛
⎜⎝

a 0 0 0
0 b 0 0
0 0 a−1 0
0 0 0 b−1

⎞
⎟⎠ , δ

(
u, u′) =

⎛
⎜⎝

1 0 u 0
0 1 0 u′
0 0 1 0
0 0 0 1

⎞
⎟⎠ , �1 =

⎛
⎜⎝

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎠ ,

�2 =
(

Υ 0
0 tΥ −1

)
, where Υ

(∈ GL(2;R)
)

satisfies Υ

(
1 0
0 −1

)
tΥ =

(
0 1
1 0

)
.

Let C(γ ; G(R)) denote the centralizer of γ in G(R). The representative elements are as follows:
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(a) Central. γ = ±I4, C(γ ; G(R)) = G(R).
(b) Elliptic.

(b-1) (regular) γ = α(μ,ν) (k(μ)2,k(ν)2,k(μ)k(ν) 
= I2, k(μ) 
= k(ν)), C(γ ; G(R)) ∼= SO(2;R) ×
SO(2;R).

(b-2) γ = α(μ,μ) (k(μ)2 
= I2), C(γ ; G(R)) ∼= U (2).
(b-3) γ = α(μ,−μ) (k(μ)2 
= I2), C(γ ; G(R)) ∼= U (1,1).
(b-4) γ = α(μ,0) (k(μ)2 
= I2), C(γ ; G(R)) ∼= SO(2;R) × SL(2;R).
(b-5) γ = α(0,π), C(γ ; G(R)) ∼= SL(2;R) × SL(2;R).

(c) Hyperbolic.
(c-1) (regular) γ = β(a,b) (a2,b2,ab 
= 1, a 
= b), C(γ ; G(R)) ∼= R× × R× .
(c-2) γ = β(a,a) (a2 
= 1), C(γ ; G(R)) ∼= GL(2;R).
(c-3) γ = ±β(a,1) (a2 
= 1), C(γ ; G(R)) ∼= R× × SL(2;R).

(d) Elliptic–hyperbolic.
(d-1) (regular) γ = α(μ,0)β(1,a) (k(μ)2 
= I2, a2 
= 1), C(γ ; G(R)) ∼= R× × SO(2;R).
(d-2) (regular) γ = �1�2α(μ,−μ)�−1

2 �−1
1 β(a,a) (k(μ)2 
= I2, a2 
= 1), C(γ ; G(R)) ∼= R×+ ×

SO(2;R).
(e) Unipotent.

(e-1) (principal) γ = ±δ(u,0)�1�2δ(1,−1)�−1
2 �−1

1 (u = ±1), C(γ ; G(R)) ∼= {±1} × R2.
(e-2) (subregular) γ = ±δ(u, u) (u = ±1), C(γ ; G(R)) ∼= O (2;R) � SM(2;R).
(e-3) (subregular) γ = ±δ(1,−1), C(γ ; G(R)) ∼= O (1,1;R) � SM(2;R).
(e-4) (minimal) γ = ±δ(0,±1), C(γ ; G(R)) ∼= {±1} × (SL(2;R) � (R � R2)).

(f) Quasi-unipotent.
(f-1) γ = ±α(0,π)δ(0, u) (u = ±1), C(γ ; G(R)) ∼= {±1} × R × SL(2;R).
(f-2) γ = ±α(0,π)δ(1, u) (u = ±1), C(γ ; G(R)) ∼= {±1} × {±1} × R2.
(f-3) γ = �1�2α(μ,−μ)�−1

2 �−1
1 δ(u, u) (k(μ)2 
= I2, u = ±1), C(γ ; G(R)) ∼= R × SO(2;R).

(f-4) γ = ±α(μ,0)δ(0, u) (k(μ)2 
= I2, u = ±1), C(γ ; G(R)) ∼= {±1} × R × SO(2;R).
(g) Hyperbolic-unipotent.

(g-1) γ = ±β(a,1)δ(0, u) (a2 
= 1, u = ±1), C(γ ; G(R)) ∼= {±1} × R× × R.
(g-2) γ = β(a,a−1)�2δ(u,−u)�−1

2 (a2 
= 1, u = ±1), C(γ ; G(R)) ∼= R× × R.

3. General arithmetic formula

In Section 3.1, we give the general arithmetic dimension formula (Theorem 3.1) for dimC Sk, j(Γ ).
In Section 3.2, we give a formula (Theorem 3.2) that is a modified form of Theorem 3.1. We use
Theorem 3.2 to derive explicit dimension formulas for Γ ∗(N), Γ (N) (N � 2), and Γ0(p) in Sections 6
and 7.

3.1. General arithmetic formula for dimC Sk, j(Γ )

We explain some notations used in Theorem 3.1. Let {γ }Γ denote the Γ -conjugacy class repre-
sented by γ . Let C(γ ;Γ ) = C(γ ; G(R)) ∩ Γ . Let γ be an element of Γ , which is G(R)-conjugate to
one of (a) central, (b) elliptic, (f) quasi-unipotent, and (e) unipotent elements, except for the princi-
pal unipotent elements and the elements G(Q)-conjugate to ±( I2 S

0 I2

)
, det(S) < 0, −det(S) /∈ (Q×)2.

The contributions of such γ s appear in the dimension formula. For each γ , we will later define a
closed connected normal subgroup C0(γ ; G(R)) of C(γ ; G(R)) and a certain integral J0(γ ; s) with
a parameter s. We set C0(γ ;Γ ) = C0(γ ; G(R)) ∩ Γ and J0(γ ) = J0(γ ;0). We will later fix a Haar
measure on C0(γ ; G(R)) for each γ . The subgroup C0(γ ; G(R)) has the following three properties:
(i) C0(γ ; G(R)) does not have compact semi-direct factors, (ii) vol(C0(γ ;Γ )\C0(γ ; G(R))) < +∞, and
(iii) [C(γ ;Γ ) : C0(γ ;Γ )] < +∞. For each γ , we set

[γ ]Γ = {
γ ′ ∈ Γ ; γs = γ ′

s , C0
(
γ ′; G(R)

) = C0
(
γ ; G(R)

)
, and C

(
γ ′; G(R)

) ∼= C
(
γ ; G(R)

)}
,

where γs (resp. γ ′
s ) is the semisimple factor of the Jordan decomposition of γ (resp. γ ′). We call

the set [γ ]Γ the family represented by γ . Note that C0(γ
′;Γ ) = C0(γ ;Γ ) for any γ ′ ∈ [γ ]Γ . Let ∼
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denote the equivalence relation defined by Γ -conjugations for each family [γ ]Γ of (e). Let [γ ]Γ /∼
be a complete system of representative elements of the equivalence classes in [γ ]Γ . We set ck, j =
2−6π−3(k − 2)( j + k − 1)( j + 2k − 3). Let Z(Γ ) be the center of Γ and �(Z(Γ )) the order of Z(Γ ).
For a subgroup C of Sp(2;R), we set C = {±I4} · C/{±I4}.

Theorem 3.1. If k � 5 and Γ satisfies Assumption 2.1, then we have

dimC Sk, j(Γ )

= ck, j

�(Z(Γ ))

∑
{γ }Γ

vol(C 0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] J0(γ )

+ ck, j

�(Z(Γ ))

∑
[γ ]Γ

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

)

+ ck, j

�(Z(Γ ))

∑
[γ ]Γ

vol
(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
lim

s→+0

∑
γ ′∈[γ ]Γ /∼

J0(γ
′; s)

[C(γ ′;Γ ) : C0(γ ′;Γ )] ,

where in the first term, {γ }Γ runs over the set of Γ -conjugacy classes of (a) central and (b) elliptic elements
in Γ ; in the second term, [γ ]Γ runs over a complete system of representative elements of Γ -conjugacy classes
of families of (f) quasi-unipotent elements; and in the third term, [γ ]Γ runs over a complete system of rep-
resentative elements of Γ -conjugacy classes of families of (e) unipotent elements, except for the principal
unipotent elements and the elements G(Q)-conjugate to ±( I2 S

0 I2

)
, det(S) < 0, −det(S) /∈ (Q×)2 .

Next, we provide the definitions and evaluations for C0(γ ; G(R)), J0(γ ; s), and the limits in The-
orem 3.1. We set

Hk, j
γ (Z) = tr

[
ρk, j(C Z + D)−1ρk, j

(
γ · Z − Z

2i

)−1

ρk, j(Y )

]
,

Z =
(

z1 z12
z12 z2

)
, X =

(
x1 x12
x12 x2

)
, Y =

(
y1 y12
y12 y2

)
,

dZ = det(Y )−3 dX dY , dX = dx1 dx12 dx2, dY = dy1 dy12 dy2,

for Z = X + iY ∈ H2, γ = ( A B
C D

) ∈ G(R), where dx∗ and dy∗ are the Lebesgue measures on R. The

function Hk, j
g (i I2) (g ∈ G(R)) is called the spherical trace function (cf. [36, Chapter 6]). We define the

integral J0(γ ; s) as

J0(γ ; s) =
∫

C0(γ ;G(R))\H2

Hk, j
γ ( Ẑ)v(γ ; Ẑ , s)dẐ ,

where dẐ is an invariant measure on C0(γ ; G(R))\H2 induced from dZ and a Haar measure on
C0(γ ; G(R)). We will later define the function v(γ ; Z , s) (Z ∈ H2, s ∈ R>0), which is invariant under
the actions of C0(γ ; G(R)) on Z ∈ H2, for each family [γ ]Γ . The function v(γ ; Z , s) is called the
dumping factor. For all γ of (a) central or (b) elliptic elements, we set v(γ ; Z , s) = 1. Hence, in these
cases, J0(γ ; s) is a constant with respect to s, which we denote simply by J0(γ ). We note that

Hk, j
−γ (Z) = (−1) j Hk, j

γ (Z) and J0(−γ ; s) = (−1) j J0(γ ; s).
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(a) Central. C0(±α(0,0); G(R)) = G(R).

J0
(
α(0,0)

) = c−1
k, j × 2−6π−3 × ( j + 1)(k − 2)( j + k − 1)( j + 2k − 3).

(b) Elliptic. Let γ be an elliptic element in Γ . There exists an element g ∈ G(R) such that g−1γ g =
α(μ,ν). We give an explicit form of J0(α(μ,ν)). If we change γ → γ −1 (μ → −μ, ν → −ν), then
our descriptions will be the same as those in [24] and [12]. Let −π < μ,ν � π .

(b-1) μ 
= ±ν . μ,ν 
= 0,π . C0(α(μ,ν); G(R)) = {I4}.

J0
(
α(μ,ν)

)
= c−1

k, j × ei(k−2)μei( j+k−1)ν − ei( j+k−1)μei(k−2)ν

(eiμ − e−iμ)(eiν − e−iν)(ei(μ+ν)/2 − e−i(μ+ν)/2)(ei(μ−ν)/2 − e−i(μ−ν)/2)
.

(b-2) μ = ν . μ,ν 
= 0,π . C0(α(μ,μ); G(R)) = {I4}.

J0
(
α(μ,μ)

) = c−1
k, j × −( j + 1)ei( j+2k−3)μ

(eiμ − e−iμ)3
.

(b-3) μ = −ν . μ,ν 
= 0,π . We set α′(μ,−μ) = �1�2α(μ,−μ)�−1
2 �−1

1 .

C0
(
α′(μ,−μ); G(R)

) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎞
⎟⎠ ; ad − bc = 1

⎫⎪⎬
⎪⎭ ∼= SL(2;R).

For α = ( a b
c d

) = ( 1 u
0 1

)( v 0
0 v−1

)( cos θ sin θ

− sin θ cos θ

) ∈ SL(2;R), we take the Haar measure dα =
2v−3 du dv dθ on C0(α

′(μ,−μ); G(R)).

J0
(
α′(μ,−μ)

) = c−1
k, j × −( j + 2k − 3)(ei( j+1)μ − e−i( j+1)μ)

22π2(eiμ − e−iμ)3
.

(b-4) ν = 0. μ 
= 0,π .

C0
(
α(μ,0); G(R)

) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

⎞
⎟⎠ ; ad − bc = 1

⎫⎪⎬
⎪⎭ ∼= SL(2;R).

We take the measure dα on C0(α(μ,0); G(R)) (cf. (b-3)).

J0
(
α(μ,0)

) = c−1
k, j × −( j + k − 1)ei(k−2)μ + (k − 2)ei( j+k−1)μ

23π2(eiμ − e−iμ)(eiμ/2 − e−iμ/2)2
.

(b-5) ν = 0. μ = π .

C0
(
α(π,0); G(R)

) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a 0 b 0
0 a′ 0 b′
c 0 d 0

′ ′

⎞
⎟⎠ ; ad − bc = 1

a′d′ − b′c′ = 1

⎫⎪⎬
⎪⎭ ∼= SL(2;R) × SL(2;R).
0 c 0 d
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We take the measure on C0(α(π,0); G(R)) by the direct product of dα (cf. (b-3)).

J0
(
α(π,0)

) = c−1
k, j × (−1)k( j + k − 1)(k − 2){1 + (−1) j}

27π4
.

(e) Unipotent. The notations P0(Q), M0(Q), N0(Q), and hm have been defined in Section 2.3. Let
γ (∈ Γ ) be an element that is G(Q)-conjugate to δ(S) = ( I2 S

0 I2

)
, where S is a non-degenerate sym-

metric matrix over Q. We easily observe that {γ }Γ has a non-empty intersection with hm N0(Q)h−1
m

for a certain m. Here, we replace hm with g . Let L be a lattice in SM(2;R), which satisfies

{
δ(T ); T ∈ L

} = N0(R) ∩ g−1Γ g.

The lattice L has a Q-structure. We have g P0(Q)g−1 = (gM0(Q)g−1) · (gN0(Q)g−1), gM0(R)g−1 ∼=
GL(2;R), and gN0(R)g−1 ∼= SM(2;R). By Assumption 2.1, the equality g P0(Q)g−1 ∩ Γ =
(gM0(Q)g−1 ∩ Γ ) · (gN0(Q)g−1 ∩ Γ ) holds.

(e-2) Consider the element γ = gδ(S)g−1 ∈ Γ for the case where S > 0 or S < 0. Here, we write
S > 0 if S is positive definite and S < 0 if S is negative definite. We set

C0
(
γ ; G(R)

) = g
{
δ(X); X ∈ SM(2;R)

}
g−1

and v(γ ; Z , s) = det(Im(g−1 · Z))−s . As a coordinate of C0(g−1γ g; G(R))\H2, we fix {iY ∈
H2; Y > 0}. We take the Haar measure on C0(γ ; G(R)) such that dẐ is transformed to
(det Y )−3 dY by the g-conjugation. An evaluated form of J0(γ ; s) is given by

J0(γ ; s) =
{

c−1
k, j × ( j + 1)

23π2
+ o(s)

}
× e±π i(−3−2s)/2

(det S)s+3/2
,

where the sign is + (resp. −) if S < 0 (resp. S > 0), o(s) is a function such that o(s) → 0
(s → +0) and o(s) is independent of S . The family [γ ]Γ is given by

[γ ]Γ = g
{
δ(T ); T ∈ L, T > 0 or T < 0

}
g−1.

We identify gM0(R)g−1 with GL(2;R) under an isomorphism. Let Γ̃ = gM0(Q)g−1 ∩ Γ ,
GL+(2;R) = {g ∈ GL(2;R); det(g) > 0}, and Γ̃+ = Γ̃ ∩ GL+(2;R). From the argument given in
[25, p. 242], we obtain

lim
s→+0

∑
γ ′∈[γ ]Γ /∼

J0(γ
′; s)

[C(γ ′;Γ ) : C0(γ ′;Γ )] = c−1
k, j × ( j + 1)

22 · π × 1

[Γ̃ : Γ̃+] × vol(Γ̃+\H1)

vol(L)
,

where H1 is the upper half-plane {z ∈ C; Im(z) > 0}, the measure on H1 is given by y−2 dx dy
for z = x + iy, and vol(L) = ∫

L\SM(2;R)
dX . The value vol(Γ̃+\H1) comes from the residues of the

zeta functions associated to symmetric matrices of degree two (cf. Section 5). For the calcula-
tion of the residues, we refer to [28, Theorem 2], [1, Proposition 1], [12, Proposition 5-1], and
[27, Theorem 1].

(e-3) Consider the element γ = gδ(S)g−1 ∈ Γ for the case where S is indefinite and det(S) 
= 0. If
−det(S) /∈ (Q×)2, then the contribution of γ vanishes (cf. Section 4.13). Hence, we consider
only the case −det(S) ∈ (Q×)2. This case occurs only if G(Q) is split. Let −det(S) ∈ (Q×)2.
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Then, we set

C0
(
γ ; G(R)

) = g
{
δ(X); X ∈ SM(2;R)

}
g−1.

We set v(γ ; Z , s) = (y∗−1
1 det(Im(g−1 · Z)))−s for y∗

1 � y∗
2 and v(γ ; Z , s) = (y∗−1

2 det(Im(g−1 ·
Z)))−s for y∗

2 � y∗
1, where Im(g−1 · Z) = ( y∗

1 y∗
12

y∗
12 y∗

2

)
. As a coordinate of C0(g−1γ g; G(R))\H2, we

fix {iY ∈ H2; Y > 0}. We take the Haar measure on C0(γ ; G(R)) such that dẐ is transformed to
(det Y )−3 dY by the g-conjugation. An evaluated form of J0(γ ; s) is given by

J0(γ ; s) =
{
−c−1

k, j × ( j + 1)

23π2
+ o(s)

}
× 1

|det S|3/2
,

where o(s) is a function such that o(s) → 0 (s → +0) and o(s) is independent of S . We set
L′ = {T ∈ L; T is indefinite, −det(T ) ∈ (Q×)2}. The family [γ ]Γ is given by

[γ ]Γ = g
{
δ(T ); T ∈ L′}g−1.

Let βu (1 � u � t) be an element in SL(2;Q) such that {βu · ∞; 1 � u � t} is a complete system
of Γ̃+-inequivalent cusps for Γ̃+\H1. Let L′/∼′ denote a complete system of representative ele-
ments of Γ̃+-orbits in L′ . By [12, Lemma 5-2], there exist positive rational numbers cu and du

such that

L′/∼′ =
t⋃

u=1

{
βu

(
0 s12

s12 s2

)
tβu ∈ L′; s12 ∈ L1,u, s2 ∈ L2,u(s12)

}
(disjoint union),

where L1,u = {dun; n ∈ Z>0}, L2,u(s12) is a finite subset depending on s12 in Q, and
�(L2,u(dun)) = cun. Then, we have

lim
s→+0

∑
γ ′∈[γ ]Γ /∼

J0(γ
′; s)

[C(γ ′;Γ ) : C0(γ ′;Γ )] = −c−1
k, j × ( j + 1)

24 · 3
× 1

[Γ̃ : Γ̃+] ×
t∑

u=1

cu

d3
u
.

If Γ = Sp(2;Z), we have t = 1, du = 1, and cu = 2.
(e-4) Let γ be an element of Γ , which is G(R)-conjugate to δ(0,±1). This case occurs only if G(Q)

is split. There exist g ∈ G(Q) and λ ∈ Q (λ 
= 0) such that γ = gδ(0, λ)g−1. We set

C0
(
γ ; G(R)

) = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a′ 0 b′ 0
0 1 0 0
c′ 0 d′ 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 t
s 1 t u
0 0 1 −s
0 0 0 1

⎞
⎟⎠ ; a′d′ − b′c′ = 1

s, t, u ∈ R

⎫⎪⎬
⎪⎭ g−1

and v(γ ; Z , s) = 1. We take the Haar measure on C0(γ ; G(R)), which is transformed to
dα ds dt du by the g-conjugation, where dα is the Haar measure on SL(2;R) (cf. (b-3)). Then,
an explicit form of J0(γ ; s) is given by

J0(γ ; s) = −c−1
k, j × ( j + 1)( j + 2k − 3)

5 4
× 1

2
.

2 π |λ|
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The family [γ ]Γ is given by

[γ ]Γ = g
{
δ(0,n); n ∈ bZ, n 
= 0

}
g−1,

where b ∈ Q (b > 0). Hence, we have

lim
s→+0

∑
γ ′∈[γ ]Γ /∼

J0(γ
′; s)

[C(γ ;Γ ) : C0(γ ;Γ )] = −c−1
k, j × ( j + 1)( j + 2k − 3)

25 · 3 · π2
× 1

b2
.

(f) Quasi-unipotent.

(f-1) Let γ be an element of Γ , which is G(R)-conjugate to α(0,π)δ(0,±1). This case occurs only if
G(Q) is split. There exist g ∈ G(Q) and λ ∈ Q (λ 
= 0) such that

γ = g

⎛
⎜⎝

1 0 0 0
0 −1 0 λ

0 0 1 0
0 0 0 −1

⎞
⎟⎠ g−1.

We set

C0
(
γ ; G(R)

) = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a′ 0 b′ 0
0 1 0 u
c′ 0 d′ 0
0 0 0 1

⎞
⎟⎠ ; a′d′ − b′c′ = 1

u ∈ R

⎫⎪⎬
⎪⎭ g−1

and v(γ ; Z , s) = (y∗−1
1 det(Im(g−1 · Z)))−s , where Im(g−1 · Z) = ( y∗

1 y∗
12

y∗
12 y∗

2

)
. We take the Haar

measure on C0(γ ; G(R)), which is transformed to dα du by the g-conjugation, where dα is the
Haar measure on SL(2;R) (cf. (b-3)). Then, an evaluated form of J0(γ ; s) is given by

J0(γ ; s) =
{

c−1
k, j × (−1)k−2( j + k − 1) − (−1) j+k−1(k − 2)

26π3
+ o(s)

}
× esgn(λ)π i(s+1)/2

|λ|s+1
,

where o(s) is a function such that o(s) → 0 (s → +0) and o(s) is independent of λ. The family
[γ ]Γ is given by

[γ ]Γ = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 0 0
0 −1 0 b(n + a)

0 0 1 0
0 0 0 −1

⎞
⎟⎠ ; n ∈ Z,

n + a 
= 0

⎫⎪⎬
⎪⎭ g−1,

where a ∈ Q (0 � a < 1) and b ∈ Q (b > 0). From the argument given in [12, p. 442], we obtain

lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

) = c−1
k, j × (−1)k−2( j + k − 1) − (−1) j+k−1(k − 2)

26 · π2
× −1 + i · cot∗ πa

b
,

where cot∗ θ = cot θ (θ /∈ Zπ ), 0 (θ ∈ Zπ ).
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(f-2) Let γ be an element of Γ , which is G(R)-conjugate to α(0,π)δ(1,±1). This case occurs only if
G(Q) is split. There exist g ∈ G(Q) and λ1, λ2 ∈ Q (λ1, λ2 
= 0) such that

γ = g

⎛
⎜⎝

1 0 λ1 0
0 −1 0 λ2
0 0 1 0
0 0 0 −1

⎞
⎟⎠ g−1.

We set

C0
(
γ ; G(R)

) = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 u1 0
0 1 0 u2
0 0 1 0
0 0 0 1

⎞
⎟⎠ ; u1, u2 ∈ R

⎫⎪⎬
⎪⎭ g−1

and v(γ ; Z , s) = det(Im(g−1 · Z))−s . We take the Haar measure on C0(γ ; G(R)), which is trans-
formed to du1 du2 by the g-conjugation. Then, an evaluated form of J0(γ ; s) is given by

J0(γ ; s) =
{

c−1
k, j × (−1)k−2 − (−1) j+k−1

24π2
+ o(s)

}
× esgn(λ1)π i(s+1)/2

|λ1|s+1
× e−sgn(λ2)π i(s+1)/2

|λ2|s+1
,

where o(s) is a function such that o(s) → 0 (s → +0) and o(s) is independent of λ1 and λ2. The
family [γ ]Γ is given by

[γ ]Γ =
l⋃

t=1

g R(t)g−1 (disjoint union),

R(t) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 b1(n1 + a1,t) 0
0 −1 0 b2(n2 + a2,t)

0 0 1 0
0 0 0 −1

⎞
⎟⎠ ; n1,n2 ∈ Z,

n1 + a1,t,n2 + a2,t 
= 0

⎫⎪⎬
⎪⎭ ,

where a1,t,a2,t,b1,b2 ∈ Q (0 � a1,t,a2,t < 1, b1,b2 > 0). From the argument given in [12, p. 442],
we obtain

lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

) = c−1
k, j × (−1)k−2 − (−1) j+k−1

24
× 1

b1b2

×
l∑

t=1

(
1 − i · cot∗ πa1,t

)(
1 + i · cot∗ πa2,t

)
,

where cot∗ θ = cot θ (θ /∈ Zπ ), 0 (θ ∈ Zπ ).
(f-3) Let γ be an element of Γ , which is G(R)-conjugate to �1�2α(μ,−μ)�−1

2 �−1
1 δ(u, u)

(k(μ)2 
= I2, u = ±1). There exist g ∈ G(R) and λ ∈ Q (λ 
= 0) such that

γ = g

⎛
⎜⎝

cos θ sin θ λ cos θ λ sin θ

− sin θ cos θ −λ sin θ λ cos θ

0 0 cos θ sin θ

⎞
⎟⎠ g−1.
0 0 − sin θ cos θ
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We set

C0
(
γ ; G(R)

) = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1

⎞
⎟⎠ ; u ∈ R

⎫⎪⎬
⎪⎭ g−1

and v(γ ; Z , s) = det(Im(g−1 · Z))−s . We take the Haar measure on C0(γ ; G(R)), which is trans-
formed to du by the g-conjugation. Then, an evaluated form of J0(γ ; s) is given by

J0(γ ; s) =
{

c−1
k, j × −ei( j+1)θ + e−i( j+1)θ

2π(eiθ − e−iθ )3
+ o(s)

}
× esgn(λ)π i(2s+1)/2

|λ|2s+1
,

where o(s) is a function such that o(s) → 0 (s → +0) and o(s) is independent of λ. The family
[γ ]Γ is given by

[γ ]Γ = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

cos θ sin θ b(n + a) cos θ b(n + a) sin θ

− sin θ cos θ −b(n + a) sin θ b(n + a) cos θ

0 0 cos θ sin θ

0 0 − sin θ cos θ

⎞
⎟⎠ ; n ∈ Z, n + a 
= 0

⎫⎪⎬
⎪⎭ g−1,

where a ∈ Q (0 � a < 1) and b ∈ Q (b > 0). From the argument given in [12, p. 442], we obtain

lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

) = c−1
k, j × ei( j+1)θ − e−i( j+1)θ

2(eiθ − e−iθ )3
× 1 − i · cot∗ πa

b
,

where cot∗ θ = cot θ (θ /∈ Zπ ), 0 (θ ∈ Zπ ).
(f-4) Let γ be an element of Γ , which is G(R)-conjugate to α(μ,0)δ(0,±1) (k(μ)2 
= I2). This case

occurs only if G(Q) is split. There exist g ∈ G(R) and λ ∈ Q (λ 
= 0) such that

γ = g

⎛
⎜⎝

cos θ 0 sin θ 0
0 1 0 λ

− sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ g−1.

We set

C0
(
γ ; G(R)

) = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 0 0 0
0 1 0 u
0 0 1 0
0 0 0 1

⎞
⎟⎠ ; u ∈ R

⎫⎪⎬
⎪⎭ g−1

and v(γ ; Z , s) = (y∗−1
1 det(Im(g−1 · Z)))−s , where Im(g−1 · Z) = ( y∗

1 y∗
12

y∗
12 y∗

2

)
. We take the Haar

measure on C0(γ ; G(R)), which is transformed to du by the g-conjugation. Then, an evaluated
form of J0(γ ; s) is given by

J0(γ ; s) =
{

c−1
k, j × −ei(k−2)θ + ei( j+k−1)θ

2π(eiθ − e−iθ )(eiθ/2 − e−iθ/2)2
+ o(s)

}
× esgn(λ)π i(s+1)/2

|λ|s+1
,

where o(s) is a function such that o(s) → 0 (s → +0) and o(s) is independent of λ. The family
[γ ]Γ is given by
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[γ ]Γ = g

⎧⎪⎨
⎪⎩

⎛
⎜⎝

cos θ 0 sin θ 0
0 1 0 b(n + a)

− sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ ; n ∈ Z, n + a 
= 0

⎫⎪⎬
⎪⎭ g−1,

where a ∈ Q (0 � a < 1) and b ∈ Q (b > 0). From the argument given in [12, p. 442], we obtain

lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

) = c−1
k, j × ei(k−2)θ − ei( j+k−1)θ

2(eiθ − e−iθ )(eiθ/2 − e−iθ/2)2
× 1 − i · cot∗ πa

b
,

where cot∗ θ = cot θ (θ /∈ Zπ ), 0 (θ ∈ Zπ ).

3.2. Normal subgroups and unitary characters

Let Γ ′ be a normal subgroup of Γ such that [Γ : Γ ′] < +∞, and χ be a one-dimensional unitary
representation of Γ ′ such that [Γ ′ : ker(χ)] < ∞. Using Hk, j

g−1γ g
(Z) = Hk, j

γ (g · Z) for any γ , g in G(R)

and the Godement formula (Theorem 4.1), we can easily modify Theorem 3.1 under some conditions.

Theorem 3.2. We assume that χ(γ ) = 1 for every unipotent element γ ∈ Γ ′ and χ(δ−1γ δ) = χ(γ ) for any
γ ∈ Γ ′ , δ ∈ Γ . If k � 5 and Γ satisfies Assumption 2.1, then we have

dimC Sk, j
(
Γ ′,χ

)
= ck, j · [Γ : Γ ′]

�(Z(Γ ′))
∑
{γ }Γ

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] J0(γ )χ(γ )−1

+ ck, j · [Γ : Γ ′]
�(Z(Γ ′))

∑
[γ ]Γ ′

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] χ(γ )−1 lim
s→+0

∑
γ ′∈[γ ]Γ ′

J0
(
γ ′; s

)

+ ck, j · [Γ : Γ ′]
�(Z(Γ ′))

∑
[γ ]Γ ′

vol
(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
lim

s→+0

∑
γ ′∈[γ ]Γ ′/∼

J0(γ
′; s)

[C(γ ′;Γ ) : C0(γ ′;Γ )] ,

where in the first term, {γ }Γ runs over the set of Γ -conjugacy classes of (a) and (b) in Γ ′; in the second and
third terms, [γ ]Γ ′ runs over a complete system of representative elements of Γ -conjugacy classes of families
of Γ ′ , same as that in Theorem 3.1. The equivalence relation ∼ is defined by Γ -conjugations. In (e) Unipotent,
for g = hm of Γ , L is a lattice that satisfies {δ(T ); T ∈ L} = N0(R) ∩ g−1Γ ′ g and Γ̃ = gM0(Q)g−1 ∩ Γ .

Note that we can assume Γ ′ = Γ in this theorem. In the case of Γ ′ = Γ , for any character χ , it is
clear that χ(δ−1γ δ) = χ(γ ) for any γ , δ in Γ . On the other hand, there exist unitary characters χ
that do not satisfy χ(γ ) = 1 for every unipotent element γ ∈ Γ .

4. Proof of Theorem 3.1

4.1. Godement formula

For Z = X + iY ∈ H2 and γ = ( A B
C D

) ∈ Γ , we set

Hk, j,χ
γ (Z) = tr

[
ρk, j(C Z + D)−1ρk, j

(
γ · Z − Z

2i

)−1

ρk, j(Y )

]
χ(γ )−1.
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If χ is trivial, then we have Hk, j
γ (Z) = Hk, j,χ

γ (Z) (cf. Section 3). Let k � 5. It is known that the func-

tion Hk, j,χ
γ (Z) has the following three properties: (i) Hk, j

γ (g · Z) = Hk, j
g−1γ g

(Z) for any γ , g in G(R),

(ii) |∑γ ∈Γ Hk, j,χ
γ (Z)| is bounded on the fundamental domain of Γ , and (iii)

∑
γ ∈Γ |Hk, j,χ

γ (Z)| < +∞.

We note that
∫
Γ \H2

∑
γ ∈Γ |Hk, j,χ

γ (Z)|dZ = +∞ and
∫
Γ \H2

dZ < +∞ for any arithmetic subgroup Γ .

Godement obtained the following formula (cf. [8, Expose 10, Théorème 8]). In order to prove The-
orem 3.1, we calculate the right-hand side of this formula for the trivial character χ .

Theorem 4.1 (Godement). If k � 5, then we have

dimC Sk, j(Γ,χ) = ck, j

�(Z(Γ ))

∫
Γ \H2

∑
γ ∈Γ

Hk, j,χ
γ (Z)dZ .

4.2. Siegel sets

We set

P0(Q) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞
⎟⎠ ∈ G(Q)

⎫⎪⎬
⎪⎭ , P1(Q) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎠ ∈ G(Q)

⎫⎪⎬
⎪⎭ .

If G(Q) is Q-split, G(Q) has the maximal parabolic subgroups P0(Q) and P1(Q) and the Borel sub-
group P0(Q) ∩ P1(Q) up to G(Q)-conjugation. If G(Q) is not Q-split, G(Q) only has the parabolic
subgroup P0(Q) up to G(Q)-conjugation. We set G(Q) = ⋃v

n=1 Γ gn(P0(Q) ∩ P1(Q)) (disjoint union)
if G(Q) is Q-split, and G(Q) = ⋃v

n=1 Γ gn P0(Q) (disjoint union) if G(Q) is not Q-split.
It is well known that there exists a Siegel set Σ for Γ and {gn}v

n=1. We put Ω2 = {Y ∈
SM(2;R); Y > 0}. The Siegel set Σ of Γ is given by

Σ = {Z = X + iY ∈ H2; X ∈ W, Y ∈ R},

where W is a compact subset of SM(2;R), R = {( 1 0
y′

12 1

)( y′
1 0

0 y′
2

)( 1 y′
12

0 1

) ∈ Ω2; y′
12 ∈ W ′, α � β y′

1 �
y′

2} for certain positive constants α and β and a compact subset W ′ in R if G(Q) is Q-split, and
R = {a ∈ R; a > α′} × W ′′ for a certain positive constant α′ and a certain compact subset W ′′ in
{x ∈ Ω2; det(x) = 1} if G(Q) is not Q-split. We know that

⋃v
n=1 gnΣ is a fundamental set of Γ

and contains a fundamental domain F of Γ in H2. We can divide the fundamental domain into
F = ⋃v

n=1 Fn (disjoint union) such that g−1
n Fn ⊂ Σ .

4.3. Lemma for absolute values

By using Lemma 4.2, we can reduce the problems of absolute convergence to the scalar-valued
case.

Lemma 4.2. There exists a constant c′( j), which depends only on j, such that

∣∣Hk, j
γ (Z)

∣∣ < c′( j) × ∣∣Hk,0
γ (Z)

∣∣.
The constant c′( j) is independent of γ ∈ Γ and Z ∈ H2 .
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Proof. We set

K
(

g, g′) = J
(

g−1, i I2
)
ρk, j

(
g−1 · i I2 − g′−1 · i I2

2i

)−1
t J

(
g′−1, i I2

)
,

where J (g, Z) = ρk, j(C Z + D)−1 for g = ( A B
C D

) ∈ Sp(2;R), Z ∈ H2. We can easily observe that

tr(K (g−1γ −1 g, I4)) = tr(K (g−1γ −1, g−1)) = Hk, j
γ (g · i I2) (cf. [8,24]). By using the Cartan decom-

position, for any g ∈ G(R), we have g = hah′ , where h,h′ ∈ U (2) and a = diag(a1,a2,a−1
1 ,a−1

2 ),
(a1,a2 ∈ R×). Then, we have

∣∣tr(K
((

hah′)−1
, I4

))∣∣ = ∣∣tr( t J (h, i I2)−1 J
(
h′, i I2

)
ρk, j

(
diag

((
a1 + a−1

1

)
/2,

(
a2 + a−1

2

)
/2

))−1)∣∣.
From J (h, i I2), J (h′, i I2) ∈ U (2) and |a1 + a−1

1 |, |a2 + a−1
2 | � 2, we deduce

∣∣Hk, j
g (i I2)

∣∣ < c′( j) × ∣∣det
(
diag

((
a1 + a−1

1

)
/2,

(
a2 + a−1

2

)
/2

))−k∣∣ = c′( j) × ∣∣Hk,0
g (i I2)

∣∣,
where g = hah′ . Thus, we have proved this lemma. �
4.4. Estimates of infinite series

Let Γ 0∞ = Γ ∩ P0(Q) and Γ 1∞ = Γ ∩ P1(Q). If G(Q) is not Q-split, then we set P1(Q) = ∅
and Γ 1∞ = ∅. Let ΓM0 be the image of Γ ∩ P0(Q) under the natural projection P0(Q) → M0(Q) =
P0(Q)/N0(Q). Then, ΓM0 is an arithmetic subgroup of M0(Q). As a generalization of [5, Satz 1], [25,
Section 4], and [1, Proposition 6], we get the following.

Lemma 4.3. Let k � 5 and Z = X + iY ∈ Σ . We have the following inequalities:

∑
γ ∈Γ 0∞∩Γ 1∞

∣∣Hk, j
γ (Z)

∣∣ < Ck, j,Γ,1 × y1 y2
2, (4.1)

∑
γ ∈Γ 0∞−Γ 1∞

∣∣Hk, j
γ (Z)

∣∣ < Ck, j,Γ,2 × (y1 y2)
3/2, (4.2)

∑
γ ∈Γ 1∞−Γ 0∞

|Hk, j
γ (Z)| < Ck, j,Γ,3 × y−1

1 y2
2, (4.3)

∑
γ ∈Γ −(Γ 0∞∪Γ 1∞)

∣∣Hk, j
γ (Z)

∣∣ < Ck, j,Γ,4 ×
{

y−1
1 y3/2

2 , G(Q) is split,
1, G(Q) is not split,

(4.4)

where the positive constant Ck, j,Γ,l (l = 1,2,3,4) depends only on k, j, and Γ . If G(Q) is Q-split, then we have∫
Σ

ya1
1 ya2

2 dZ < +∞ for a1 + a2 < 3 and a2 < 2. If G(Q) is not Q-split, then we have
∫
Σ

(y1 y2)
3/2−s dZ <

+∞ for s > 0.

Proof. By Lemma 4.2 we may assume j = 0. By using the proof of [25, Proposition 23], we can eas-
ily prove (4.1) and (4.2) for any arithmetic subgroups. Hence, we consider (4.3) and (4.4). If G(Q)

is not split, then we can easily prove (4.4) for any arithmetic subgroups by using the proofs of
[1, Lemma 7 and Proposition 6]. Hence, we have only to consider the case when G(Q) is split. We set
S1 = {( A B ) ∈ Γ ; det(C) 
= 0}, and S2 = {( A B ) ∈ Γ ; rank(C) = 1}. We take a lattice L′′ in SM(2;R)
C D C D
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such that N ′′
0 = {δ(S); S ∈ L′′} and Γ 0∞ ⊂ N ′′

0 · ΓM0 . It follows from [5, Kapitel II] and [25, Proofs of
Propositions 21 and 22] that

∑
γ ∈Sr

∣∣Hk, j
γ (Z)

∣∣ < constant

×
∑

γ ∈(N ′′
0 ·ΓM0 )\Sr

∑
U∈ΓM0

∣∣det
(
Y + U Im(γ · Z) t U

)∣∣−k+3/2∣∣det(C Z + D)
∣∣−k

det(Y )k

for r = 1,2, where γ = ( A B
C D

)
. Using [5, Hilfssatz 2 and pp. 86–87] and the method proposed by

Braun [4], for S1, we see that
∑

γ ∈S1
|Hk, j

γ (Z)| < constant × det(Y )4−k . Furthermore, for S2, we
can use an argument similar to that in [5, pp. 70–86] and [5, pp. 13–18]. Therefore, we have∑

γ ∈S2
|Hk, j

γ (Z)| < constant × y3−k
1 y2

2 and
∑

γ ∈S2−Γ 1∞ |Hk, j
γ (Z)| < constant × y−k+7/2

1 y3/2
2 . �

If X − Y > 0 (X, Y ∈ Ω2), then we write X > Y . Let μ, ς1, and ς2 be arbitrary positive constants.
We set H2(μ,ς1, ς2) = {X + √−1Y ∈ H2; Y > μI2, y2 � ς1 y1 � ς2|y12|}. There exist μ, ς1, and ς2
such that Σ ⊂ H2(μ,ς1, ς2). (4.5) is a generalization of [25, Proposition 24].

Lemma 4.4. Let k � 5 and Z = X + iY ∈ H2(μ,ς1, ς2). Then, there exist constants C ′
j,k,μ,ς1,ς2,Γ

and

C ′′
j,k,μ,ς1,ς2,Γ

depending only on k, j, μ, ς1 , ς2 , and Γ such that

∑
γ2∈(N0(Q)∩Γ )\Γ 0∞

∣∣∣∣ ∑
γ1∈(N0(Q)∩Γ )

Hk, j
γ1γ2(Z)

∣∣∣∣ < C ′
k, j,μ,ς1,ς2,Γ , (4.5)

∑
γ2∈(N0(Q)∩Γ )\Γ 1∞

∣∣∣∣ ∑
γ1∈(N0(Q)∩Γ )

Hk, j
γ1γ2(Z)

∣∣∣∣ < C ′′
k, j,μ,ς1,ς2,Γ . (4.6)

Proof. Let L be a lattice of SM(2;R) such that N0(Q) ∩ Γ = {δ(S); S ∈ L}. We use a certain Poisson
summation formula to prove this lemma. For x ∈ SM(2;C), M ∈ GL(2;C), by using [7, Theorem XI.2.4],
we can set tr(ρk, j(xM)) = ∑t

l=1 al(M)�ml (glx t gl)det(xM)k , where gl ∈ GL(2;R), al (l = 1, . . . , t) are
polynomials for the entries of M , and �ml are defined in Section 5.1. Here, the degree of the polyno-
mial �ml is equal to j for x. From [7, Lemma XI.2.3], classical methods, and an argument similar to
that in Section 5.1, we obtain the following Poisson summation formula:

∑
S∈L

tr
{
ρk, j

((
(γ · Z − Z + S)/2i

)−1
Y (C Z + D)−1)}

=
∑

T ∈L∗∩Ω2

t∑
l=1

bl · al(M)det(M)k · �ml

(
gl T

t gl
)

det(T )k−3/2 exp
(
2π i tr

(
T (γ · Z − Z)

))
,

where M = Y (C Z + D)−1, γ = ( A B
C D

)
, L∗ is the dual lattice of L, and bl is a constant depending on l

(cf. Section 5).
First, we prove (4.5). We set

I =
∑

γ2∈(N0(Q)∩Γ )\Γ 0∞

∣∣∣∣ ∑
γ1∈N0(Q)∩Γ

Hk, j
γ1γ2(Z)

∣∣∣∣
=

∑
γ ∈(N (Q)∩Γ )\Γ 0

∣∣∣∣∑
S∈L

tr
{
ρk, j

(((
A Z t A − Z + S + S ′)/2i

)−1
Y t A

)}∣∣∣∣,

2 0 ∞
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where γ2 = ( I2 S ′
0 I2

)( A 0
0 t A−1

)
. By using the Poisson summation formula, we get

I � constant ×
∑

A∈ΓM0

∑
T ∈L∗∩Ω2

∣∣ f (A, Y , T )
∣∣ det(T Y )k exp

(−2π tr
(
T
(

AY t A + Y
)))

,

where f (A, Y , T ) is a polynomial for the entries of A, Y , and T and its degree is j for each A,
Y , and T . Since Y > μI2, we have tr(T (AY t A + Y )) > tr(T Y ) + μ tr(T A t A). We put T = ( t1 t12

t12 t2

)
.

Since T ∈ L∗ ∩ Ω2, there exists a positive constant ξ such that t1 > ξ and t2 > ξ . Hence, we deduce
|t12| < (t1t2)

1/2 < ξ−1|t1t2| from det(T ) > 0. We also deduce y1 > μ, y2 > μ, and |y12| < μ−1|y1 y2|
from Y > μI2. We put A = ( a11 a12

a21 a22

)
. There exists a polynomial f1 for |a11|, |a12|, |a21|, |a22| such that

f (A, Y , T ) < constant × (t1t2 y1 y2)
j × f1(|a11|, |a12|, |a21|, |a22|). Hence, we get

I � constant ×
∑

T ∈L∗∩Ω2

(t1t2 y1 y2)
j det(T Y )k exp

(−2π tr(T Y )
)

×
∑

A∈ΓM0

f1
(|a11|, |a12|, |a21|, |a22|

)
exp

(−2πμ tr
(
T A t A

))
.

Therefore, we can reduce this proof to the proof of [25, Proposition 24].
Next, we prove (4.6). We set

I ′ =
∑

γ2∈(N0(Q)∩Γ )\Γ 1∞

∣∣∣∣ ∑
γ1∈N0(Q)∩Γ

Hk, j
γ1γ2(Z)

∣∣∣∣
=

∑
γ2∈(N0(Q)∩Γ )\Γ 1∞

∣∣∣∣∑
S∈L

tr
{
ρk, j

((
(γ2 · Z − Z + S)/2i

)−1
Y (C Z + D)−1)}∣∣∣∣.

By using the Poisson summation formula, we get

I ′ � constant ×
∑

γ2∈(N0(Q)∩Γ )\Γ 1∞

∑
T ∈L∗∩Ω2

∣∣ f ′((C Z + D)−1, Y , T
)∣∣ det(T Y )k

× ∣∣det(C Z + D)−k
∣∣ exp

(−2π tr
(
T t(C Z + D)−1Y (C Z + D)−1 + T Y

))
,

where f ′ is a polynomial for the entries of (C Z + D)−1, Y , and T and its degree is j for each (C Z +
D)−1, Y , and T . We put

γ2 = ±
⎛
⎜⎝

a 0 b ∗
∗ 1 ∗ ∗
c 0 d n
0 0 0 1

⎞
⎟⎠ .

Then, we have

(C Z + D)−1 = ±(cz1 + d)−1
(

1 −(cz12 + n)

0 cz1 + d

)
.

Since Y > μI2, we have

tr
(
T t(C Z + D)−1Y (C Z + D)−1 + T Y

)
> μ tr

(
T t(C Z + D)−1(C Z + D)−1) + tr(T Y ).
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By direct calculation, we have

tr
(
T t(C Z + D)−1(C Z + D)−1)
= |cz1 + d|−2 × {

t1 − 2(cx12 + n)t12 + (|cz1 + d|2 + |cz12 + n|2)
t2

}
= |cz1 + d|−2 × {

c2 y2
12t2 + t−1

2 det(T ) + t2
(
n + cx12 − t−1

2 t12
)2 + |cz1 + d|2t2

}
.

Therefore, we get

I ′ � constant ×
∑

T ∈L∗∩Ω2

(t1t2)
j(y1 y2)

2 j det(T Y )k exp
(−2π tr(T Y )

)

×
∑

g∈N ′′\Γ ′′

∑
n∈μ′Z

|cz1 + d|−k f ′
1

( |n + cx12|
|cz1 + d| ,

1

|cz1 + d|
)

exp

(
−2πξμ

|n + cx12 − t−1
2 t12|2

|cz1 + d|2
)

,

where g = ( a b
c d

)
, Γ ′′ is an arithmetic subgroup of SL(2;Q), μ′ and μ′′ are constants, N ′′ =

{( 1 μ′′n
0 1

); n ∈ Z} ⊂ Γ ′′ , and f ′
1(a

′,b′) is a polynomial for a′ and b′ (deg( f ′
1) � j).

We consider the infinite series

I ′1 =
∑

n∈μ′Z
|n + α1|t exp

(−β(n + α1 − α2)
2)

for constants t ∈ Z�0, α1, α2 ∈ R, and β ∈ R>0. We have

I ′1 � constant ×
t∑

l=0

|α2|t−l
∑

n∈α1−α2+μ′Z
|n|l exp

(−βn2)

by change of variable. Hence, we get

I ′1 � constant ×
t∑

l=0

|α2|t−l

×
{∣∣∣∣ l

2β

∣∣∣∣
l/2

exp(−l/2)

(
2

∣∣∣∣ l

2β

∣∣∣∣
1/2

+ 2μ′
)

+ |β|−(l+1)/2
∫
R

|x|l exp
(−x2)

dx

}
.

Therefore, we obtain

I ′ � constant ×
∑

T ∈L∗∩Ω2

(t1t2)
2 j(y1 y2)

2 j det(T Y )k exp
(−2π tr(T Y )

) ∑
g∈N ′′\Γ ′′

|cz1 + d|−k+1,

if we set α1 = cx12, α2 = t−1
2 t12, and β = 2πξμ|cz1 + d|−2 for I ′1.

We shall explain an evaluation for
∑

g∈N ′′\Γ ′′ |cz1 + d|−k+1. If c = 0, then we have d = ±1 and
|cz1 + d| = 1. We also have
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∑
g∈N ′′\Γ ′′, c 
=0

|cz1 + d|−k+1 �
∑

c∈κ1Z, c 
=0

∑
d∈κ2Z

∣∣(d + cx1)
2 + y2

1c2
∣∣−(k−1)/2

� constant ×
∑

c∈κ1Z, c 
=0

|c|−k+2 � constant

(cf. [25, Lemma 5]). Hence, we have
∑

g∈N ′′\Γ ′′ |cz1 + d|−k+1 � constant. Therefore, we obtain

I ′ � constant ×
∑

T ∈L∗∩Ω2

(t1t2)
2 j(y1 y2)

2 j det(T Y )k exp
(−2π tr(T Y )

)
.

Since y2 � ς1 y1 � ς2|y12|, there exists a positive constant κ3 such that Y > κ3
( y1 0

0 y2

)
. Hence, we

have tr(T Y ) > κ3(y1t1 + y2t2) and

I ′ � constant ×
∑

T ∈L∗∩Ω2

(t1t2 y1 y2)
2 j+k exp

(−2πκ3(y1t1 + y2t2)
)
.

Since t1t2 > t2
12, we have

I ′ � constant ×
∑

t1∈κ4Z>0, t2∈κ5Z>0

(t1t2 y1 y2)
2 j+k+1 exp

(−2πκ3(y1t1 + y2t2)
)
.

Hence, we have

I ′ � constant × (y1 y2)
2 j+k+1 exp

(−πκ3ξ(y1 + y2)
)

×
∑

t1∈κ4Z>0, t2∈κ5Z>0

(t1t2)
2 j+k+1 exp

(−πκ3μ(t1 + t2)
)
.

Thus, we obtain (4.6). �
4.5. Interchange of the integral and the infinite sum

We set

An,0 = (
g−1

n Γ gn
)0
∞ − (

g−1
n Γ gn

)1
∞, An,1 = (

g−1
n Γ gn

)1
∞,

An,2 = g−1
n Γ gn − ((

g−1
n Γ gn

)0
∞ ∪ (

g−1
n Γ gn

)1
∞

)
,(

g−1
n · Fn

)
0,s = {

Z = X + iY ∈ g−1
n · Fn; y1 � exp(1/s), y2 − y−1

1 y2
12 � exp

(
1/s2)}

,(
g−1

n · Fn
)

1,s = {
Z = X + iY ∈ g−1

n · Fn; y2 − y−1
1 y2

12 � exp
(
1/s2)}

,

Fn,0,s = g−1
n · Fn − (

g−1
n · Fn

)
0,s, Fn,1,s = g−1

n · Fn − (
g−1

n · Fn
)

1,s, Fn,2,s = g−1
n · Fn.

Note that g−1
n Γ gn becomes an arithmetic subgroup of G(Q), Fn,2,s does not depend on s, and g−1

n ·
Fn ⊂ Σ . The following proposition is a generalization of [25, Theorem 3].
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Proposition 4.5. If k � 5, then we have

∫
Γ \H2

∑
γ ∈Γ

Hk, j
γ (Z)dZ =

v∑
n=1

2∑
r=0

lim
s→+0

∑
γ ∈An,r

∫
Fn,r,s

Hk, j
γ (Z)dZ .

Proof. Since
∫
Γ \H2

|∑γ ∈Γ Hk, j
γ (Z)|dZ < ∞, we have

∫
Γ \H2

∑
γ ∈Γ

Hk, j
γ (Z)dZ =

v∑
n=1

∫
Fn

∑
γ ∈Γ

Hk, j
γ (Z)dZ =

v∑
n=1

∫
g−1

n ·Fn

∑
γ ∈g−1

n Γ gn

Hk, j
γ (Z)dZ .

By using Lemmas 4.3 and 4.4, we have

∫
g−1

n ·Fn

∑
γ ∈g−1

n Γ gn

Hk, j
γ (Z)dZ =

2∑
r=0

∫
g−1

n ·Fn

∑
γ ∈An,r

Hk, j
γ (Z)dZ .

By Lemma 4.3, for s > 0, we obtain ∫
Fn,r,s

∑
γ ∈An,r

∣∣Hk, j
γ (Z)

∣∣dZ < ∞.

It follows from Lemma 4.4 that

lim
s→+0

∫
(g−1

n ·Fn)r,s

∣∣∣∣ ∑
γ ∈An,r

Hk, j
γ (Z)

∣∣∣∣dZ � constant × lim
s→+0

∫
(g−1

n ·Fn)r,s

dZ

� constant × lim
s→+0

∞∫
exp(1/s2)

y−3 dy = 0,

where r = 0 or 1. Hence, it follows from Lebesgue’s convergence theorem that∫
g−1

n ·Fn

∑
γ ∈An,r

Hk, j
γ (Z)dZ = lim

s→+0

{ ∫
Fn,r,s

∑
γ ∈An,r

Hk, j
γ (Z)dZ +

∫
(g−1

n ·Fn)r,s

∑
γ ∈An,r

Hk, j
γ (Z)dZ

}

= lim
s→+0

∑
γ ∈An,r

∫
Fn,r,s

Hk, j
γ (Z)dZ .

Thus, we have proved the proposition. �
For each subset A of Γ , we can consider the value of

I(A) = ck, j

�(Z(Γ ))

v∑
n=1

2∑
r=0

lim
s→+0

∑
γ ∈g−1

n Agn∩An,r

∫
Fn,r,s

Hk, j
γ (Z)dZ

if I(A) is convergent. We call I(A) the contribution of A to the dimension formula.



220 S. Wakatsuki / Journal of Number Theory 132 (2012) 200–253
4.6. Semisimple contributions

From Lemma 4.2, the proof of Lemma 4.20, [25, Theorem 5], [1, Proposition 8], and [12, Section 3],
we obtain the following.

Lemma 4.6. Let k � 5. Let A(ss) be the subset that consists of all semisimple elements of Γ . We have∑
γ ∈A(ss)

∫
Γ \H2

|Hk, j
γ (Z)|dZ < +∞.

By using Lemma 4.6, Proposition 4.5, and the Selberg trace formula, we have

I
(

A(ss)
) = ck, j

�(Z(Γ ))

∑
{γ }Γ ⊂A(ss)

vol
(
C(γ ;Γ )\C

(
γ ; G(R)

)) ∫
C(γ ;G(R))\H2

Hk, j
γ ( Ẑ)dẐ .

The semisimple orbital integrals have been explicitly given by Langlands [24]. Hence, we obtain the
semisimple part of Theorem 3.1.

4.7. Vanishing case for non-semisimple contributions

Next, we consider the elements of types (e-1), (g-1), and (g-2). We prove that their contributions
are zero by Morita’s method [25]. If G(Q) is not Q-split, then Γ does not contain the elements of
type (e-1) (cf. [1, Proposition 7]), and the set of (g-1) satisfies the absolute convergence, which is the
same as that of Lemma 4.6 (cf. [1, Proposition 8]).

First, we consider the elements of type (e-1). Hence, we assume that G(Q) is Q-split. Let A(e1)

be the subset of all elements in Γ , which are G(R)-conjugate to the representative elements of (e-1).
We have

I
(

A(e1)
) = ck, j

�(Z(Γ ))
lim

s→+0

∑
{γ }Γ ⊂A(e1)

v∑
n=1

2∑
r=0

∑
δ∈g−1

n {γ }Γ gn∩An,r

∫
Fn,r,s

Hk, j
δ (Z)dZ ,

where {γ }Γ runs over all Γ -conjugacy classes in Γ , which are contained in A(e1). If we set Bn,r,γ =
{ω ∈ Γ ; g−1

n ω−1γωgn ∈ An,r}, then we have

I
(

A(e1)
) = ck, j

�(Z(Γ ))
lim

s→+0

∑
{γ }Γ ⊂A(e1)

v∑
n=1

2∑
r=0

∑
ω∈C(γ ;Γ )\Bn,r,γ

∫
Fn,r,s

Hk, j

g−1
n ω−1γωgn

(Z)dZ .

For each Γ -conjugacy class, we can take a representative element γ which belongs to Γ ∩
gm P0(Q)g−1

m ∩ gm P1(Q)g−1
m for a certain m. We fix such γ and m. Note that Γ ∩ gn Pr(Q)g−1

n =
gn(g−1

n Γ gn)r∞ g−1
n (r = 0,1). By [25, Proposition 12], for any gn , we see that ε−1 g−1

m γ gmε (ε ∈
g−1

m Γ gn) belongs to (g−1
n Γ gn)r∞ if and only if ε belongs to g−1

m Γ gn ∩ Pr(Q). Hence, for any
g−1

n ω−1γωgn ∈ (g−1
n Γ gn)r∞ , we have g−1

m ωgn ∈ g−1
m Γ gn ∩ Pr(Q). Furthermore, we find that g−1

m ωgn
runs over all elements of

⋃v
n=1 g−1

m · C(γ ;Γ )\Γ · gn in the above sum. Hence, we can use the same
argument as in [25, Proof of Theorem 6] on the basis of these facts and Lemma 4.2, if we prove
Lemma 4.7, which is a generalization of [25, Lemma 13]. Therefore, we have I(A(e1)) = 0.

Lemma 4.7. Let B1,s = {X + iY ∈ H2; y1 > 0, y2 − y−1
1 y2

12 � exp(1/s2)}. Let s be a sufficiently small positive
real number. Then, there exist positive constants c and c′ , which depend only on Γ , such that

v⋃
n=1

⋃
ξ∈g−1Γ g ∩P (Q)

ξ · (g−1
n · Fn

)
1,cs ⊂ B1,s ⊂

v⋃
n=1

⋃
ξ∈g−1Γ g

ξ · (g−1
n · Fn

)
1,c′s.
m n 1 m n
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Proof. We can easily observe that
⋃v

n=1
⋃

ξ∈g−1
m Γ gn∩P1(Q)

ξ · (g−1
n · Fn)1,cs ⊂ B1,s . Hence, we have only

to prove B1,s ⊂ ⋃v
n=1

⋃
ξ∈g−1

m Γ gn
ξ · (g−1

n · Fn)1,c′s . Let W = U + iV ∈ B1,s . Then, there exists an element

ξ ∈ g−1
m Γ gn such that W ∈ ξ · (g−1

n · Fn). We take Z = X + iY ∈ g−1
n · Fn such that ξ · Z = W ∈ B1,s . We

have only to prove Z ∈ (g−1
n · Fn)1,c′s for a constant c′ depending only on g−1

m Γ gn . By the action of
ξ = ( A B

C D

)
, we have Y �→ V = t(C Z + D)−1Y (C Z + D)−1. Hence, we have V −1 = (C X + D)Y −1(X t C +

t D) + C Y t C .
If det(C) 
= 0, then V −1 > constant × I2. Hence, we get ξ · (g−1

n · Fn) ∩ B1,s = ∅.

Let rank(C) = 1. If we set ξ = ( A B
C D

) = ( H 0
0 t H−1

)( A′ B ′
C ′ D ′

)( P 0
0 t P−1

)
, C ′ = ( c1 0

0 0

)
, D ′ = ( d1 d2

0 d3

)
, X ′ =

P X t P = ( x′
1 x′

12

x′
12 x′

2

)
, and Y ′ = P Y t P = ( y′

1 y′
12

y′
12 y′

2

)
, then we get

V −1 = t H−1
{(

c1x′
1 + d1 c1x′

12 + d2
0 d4

)
Y ′−1

(
c1x′

1 + d1 0
c1x′

12 + d2 d4

)
+

(
c2

1 y′
1 0

0 0

)}
H−1.

Therefore, if H /∈ {( ∗ 0
∗ ∗

) ∈ GL(2;Q)}, then we have v1 det(V )−1 > c′′ for a constant c′′ and ξ · (g−1
n ·

Fn) ∩ B1,s = ∅. Hence, we can take ξ1 ∈ P1(Q) and ξ2 ∈ P0(Q) such that ξ = ξ1 × ξ2 and the compo-
nents of ξ1 and ξ2 belong to a certain lattice on Q. We know that ξ−1

1 · B1,s ⊂ B1,c′′′s for a constant c′′′ .
We can reduce this case to the case of C = 0.

Let C = 0. Then, we have V −1 = DY −1 t D . We set D = ( d1 d2
d3 d4

)
. If we prove d2

3 y2 − 2d3d4 y12 +
d2

4 y1 > constant × y1, then we have Z = X + iY ∈ F1,c′s . By
( y1 y12

y12 y2

) = ( 1 0
u 1

)( y1

y′
2

)( 1 u
0 1

)
, we have

d2
3 y2 − 2d3d4 y12 + d2

4 y1 = y1(d4 − ud3)
2 + d2

3 y′
2. Since Z ∈ g−1

n · Fn ⊂ Σ , we easily obtain the inequal-
ity. �

Since we can also prove the vanishing of the contributions for types (g-1) and (g-2) by using an
argument similar to that of type (e-1), we omit the proof for types (g-1) and (g-2).

We shall explain the reason for I(A(e1)) = 0 shortly. Using the argument in [25, p. 230] and the
above mentioned argument, we can express the contribution I(A(e1)) as

I
(

A(e1)
) = lim

s→+0

∑
{γ }Γ ⊂A(e1)

∫
Fγ ,s

Hk, j
γ (Z)dZ ,

where Fγ ,s is a certain domain satisfying lims→+0 Fγ ,s = Fγ and Fγ is the fundamental domain of
the centralizer of γ . Furthermore, we have

∫
Fγ ,s

Hk, j
γ (Z)dZ =

∑
l,m∈Z�0, l+5�m� j+k

∫
Ds

{ ∞∫
−∞

(
f1(W )w + f2(W )

)−m
fl,m(W )wl dw

}
dW ,

where Fγ ,s ∼= (−∞,∞) × Ds , dZ = dw dW , f1, f2, and fl,m are polynomials of W , and f1(W )w +
f2(W ) 
= 0 (∀(w, W ) ∈ (−∞,∞) × Ds). Using

∫ ∞
−∞( f1(W )w + f2(W ))−m dw = 0 and the induction

via

∞∫
−∞

wl

(aw + b)m
dw =

[
− wl

a(m − 1)(aw + b)m−1

]∞

−∞
+

∞∫
−∞

lwl−1

a(m − 1)(aw + b)m−1
dw

(a, b are constants and aw + b 
= 0), we find that the contribution is zero.
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4.8. Limit formulas and orbital integrals

Before we calculate the contributions for unipotent and quasi-unipotent elements, we explicitly
calculate some orbital integrals. We use limit formulas for unipotent orbital integrals on real semisim-
ple Lie groups. Barbasch, Vogan, Rossmann [26], and Božičević [3] have studied limit formulas for such
orbital integrals. We need these formulas for the cases of SL(2;R) and Sp(2;R). As for Sp(2;R), we
use the limit formulas given in [26] and [3]. Since they gave these limit formulas on Lie algebras,
we need to lift these formulas from the Lie algebras to the groups. As for the lift, we refer to [36,
Chapter 8].

Let n(u) = ( 1 u
0 1

)
, k(θ) = ( cos θ sin θ

− sin θ cos θ

)
, a(v) = ( v 0

0 v−1

)
. We define the Haar measure on SL(2;R) by

dα = 2v−3 du dv dθ and α = n(u)a(v)k(θ). We denote the space of C-valued C∞-class compactly sup-
ported functions on an analytic group H by C∞

com(H).

Lemma 4.8. For f ∈ C∞
com(SL(2;R)), we have

lim
θ→0, θ∈Cn(u)

(
eiθ − e−iθ ) ∞∫

1

π∫
0

f
((

a(v)k
(
θ ′))−1

k(θ)
(
a(v)k

(
θ ′)))2

(
1 − v−4)

v dv dθ ′

= κn(u) ×
2π∫
0

∞∫
0

f
((

a(v)k
(
θ ′))−1

n(u)
(
a(v)k

(
θ ′)))2v−3 dv dθ ′,

where κn(u) = ui, Cn(u) = {θ > 0} if u > 0, and Cn(u) = {θ < 0} if u < 0. On the left-hand side, the measure
on SO(2;R)\SL(2;R) is given by dμ\dα where SO(2;R) = {k(μ)}. On the right-hand side, the measure on
N\SL(2;R) is given by du\dα, where N = {n(u); u ∈ R}.

For f ∈ C∞
com(G(R)) and γ ∈ G(R), we set Φ f (γ ) = ∫

C(γ ;G(R))\G(R)
f (ĝ−1γ ĝ)dĝ , where dĝ is the

invariant measure on C(γ ; G(R))\G(R), which is induced from the Haar measures on G(R) and
C(γ ; G(R)). For all regular elliptic elements α(θ1, θ2), we take the Haar measure (2π)−2 dw1 dw2
on the compact Cartan subgroup C(α(θ1, θ2); G(R)) = {α(w1, w2)}.

Lemma 4.9. We set

(1)

ν =
⎛
⎜⎝

0 0 0 0
0 0 0 t
0 0 0 0
0 0 0 0

⎞
⎟⎠ (t = ±1), pν(θ1, θ2) = (θ1 − θ2)(θ1 + θ2),

Cν = {θ1 > θ2 > 0} (t = 1), Cν = {θ1 < θ2 < 0} (t = −1),

(2)
ν =

(
0 S
0 0

)
(S = ±I2), pν(θ1, θ2) = θ1 − θ2,

Cν = {θ1 > θ2 > 0} (S = I2), Cν = {θ1 < θ2 < 0} (S = −I2).

For f ∈ C∞
com(G(R)), we have

lim
(θ1,θ2)→(0,0), (θ1,θ2)∈Cν

pν(∂1, ∂2)�(θ1, θ2)Φ f
(
α(θ1, θ2)

) = κν × Φ f
(
exp(ν)

)
,

where κν is a constant, which is independent of f , ∂i = ∂/∂θi (i = 1,2), and �(θ1, θ2) = (eiθ1 − e−iθ1 )(eiθ2 −
e−iθ2)(ei(θ1+θ2)/2 − e−i(θ1+θ2)/2)(ei(θ1−θ2)/2 − e−i(θ1−θ2)/2).
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Proof. We must prove a condition for the nilpotent elements of (1) in order to use Rossmann’s limit
formula (cf. [26, Section 5]). Because the case of (1) is not considered in [3] (the minimal nilpotent
orbits are not Richardson). For the nilpotent element ν ∈ gR of (1), we show that G(R) · ν = (G(C) ·
ν) ∩ (

⋂
μ∈C′

ν
(N ∩ G(R) · R×+μ)), where N is the nilpotent cone in g and

C′
ν =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 0 θ1 0
0 0 0 θ2

−θ1 0 0 0
0 −θ2 0 0

⎞
⎟⎠ ; (θ1, θ2) ∈ Cν

⎫⎪⎬
⎪⎭ ,

under the adjoint action. We can easily find a sequence {μl} (⊂ G(R) ·R×+μ) such that μl → ν . Hence,

we have only to prove that −ν does not belong to (G(C) · ν) ∩ (
⋂

μ∈Cν
(N ∩ G(R) · R×+μ)). We ob-

serve that C′
ν = C′′

ν J2, where C′′
ν = {diag(θ1, θ2, θ1, θ2); (θ1, θ2) ∈ Cν}, J2 = ( 0 I2

−I2 0

)
, and gC′

ν g−1 =
gC′′

ν
t g J2. Hence, G(R) · R×+μ is contained in {x ∈ gR; x J−1

2 is half-positive definite} if t = 1, {x ∈ gR;
x J−1

2 is half-negative definite} if t = −1. If t = 1 (resp. t = −1), then ν J−1
2 is half-positive (resp. half-

negative) definite and −ν J2 is half-negative (resp. half-positive) definite. Thus, we have proved the
condition for (1). For the case of (2), we can prove the condition similarly (the case of (2) is consid-
ered in [3]). �

We need the following lemma to use the above mentioned limit formulas for the calculations of
J0(γ ;0) (cf. [24, Section 6]), because the support of Hk, j

γ (Z) is not compact.

Lemma 4.10. Let γ be an element of type (e-2), (e-4), (f-1), (f-2), (f-3) or (f-4) in Γ . The integral J0(γ ;0) is
absolutely convergent.

Proof. For (e-2) and (e-4), we can prove the absolute convergence of J0(γ ;0) by using Lem-
mas 5.1 and 4.13. In the case of (f-1) and (f-2), we can easily obtain the absolute conver-
gence of J0(γ ;0) by direct calculation (cf. Sections 4.14 and 4.15). It follows from Lemmas 4.23

and 4.25 that
∫
Γ \H2

∑
ω∈{γ }Γ |Hk, j

ω (Z)|dZ < ∞ for (f-3) and (f-4). Hence, by using the equality
vol(C0(γ ;Γ )\C0(γ ;G(R)))

[C(γ ;Γ ):C0(γ ;Γ )] J0(γ ;0) = ∑
ω∈{γ }Γ

∫
Γ \H2

Hk, j
ω (Z)dZ , we obtain the absolute convergence of

J0(γ ;0) for (f-3) and (f-4). �
From the values of orbital integrals [25, Theorems 8, 9] ( j = 0), we know the following.

Lemma 4.11. Let ν be a nilpotent element in Lemma 4.9. We take the measures dĝ, which are the same as
those described in Section 3. The centralizers are given by C(γ ; G(R)) = {±I4} × C0(γ ; G(R)) in (1) and
C(γ ; G(R)) = O (2;R) � C0(γ ; G(R)) in (2). The measures on C0(γ ; G(R)) have been defined in Section 3.
We assume that the volumes of {±I4} and O (2;R) are equal to one. In case of (1), we have κν = −26 · π4 . In
case of (2), we have κν = 24π2 (S = I2), κν = −24π2 (S = −I2).

By Lemma 4.10, we can apply the limit formulas (Lemmas 4.8, 4.9, 4.11) to the calculations of the
integrals J0(γ ;0), similar to [24, Section 5]. Thus, we obtain the following result.

Lemma 4.12. Let γ be an element of type (e-2), (e-4), (f-1), (f-2), (f-3), or (f-4) in Γ . Then, from the limit
formulas, we obtain the explicit form of J0(γ ;0), which has been described in Section 3.

We note that we cannot apply the limit formula to the integral J0(γ ; s) for (e-3) −det(S) ∈ (Q×)2,
because it is not an orbital integral.
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4.9. Unipotent contribution of (e-4)

If G(Q) is not split, the elements of (e-4) do not appear in Γ . By Lemma 4.2 and [25, Theorem 8],
we get the following.

Lemma 4.13. Let k � 5. Let A(e4) be the subset of Γ , which consists of all elements of type (e-4). Then, we
have

∑
γ ∈g−1

n A(e4)gn

∫
g−1

n ·Fn
|Hk, j

γ (Z)|dZ < +∞.

From this lemma and Lemma 4.12, we can easily deduce the result for (e-4) given in Section 3.

4.10. Contributions of (e-2), (e-3), (f-1), (f-2), (f-3), and (f-4)

Let A(∗∗) be the subset of Γ , which consists of all elements of type (∗-∗), where (∗-∗) indicates
(e-2), (e-3), (f-1), (f-2), (f-3), or (f-4). Let A(e3)′ be the subset of A(e3), which consists of the elements
G(Q)-conjugate to ±δ(T ), det(T ) < 0, −det(T ) ∈ (Q×)2. We set A(e2)′ = A(e2)∪ (A(e3)− A(e3)′). For
γ = gδ(S)g−1 ∈ A(e2) (g ∈ G(Q)), we set

Gγ ,Γ = {
gδ(T )g−1 ∈ Γ ; det(T ) 
= 0, −det(T ) /∈ (

Q×)2}
.

For −γ = −gδ(S)g−1 ∈ A(e2), we set G−γ ,Γ = {−ω ∈ Γ ; ω ∈ Gγ ,Γ }. We have a one-to-one corre-
spondence between Gγ ,Γ and [γ ]Γ for γ ∈ A(e2). We require the following transformation in order
to calculate the contribution of each family. Note that there exists only a finite number of Γ -conjugacy
classes of families for them.

Proposition 4.14. If k � 5, then we have

I
(

A(e2)′
) = ck, j

�(Z(Γ ))

∑
Gγ ,Γ

v∑
n=1

∫
g−1

n ·Fn

∑
ω∈⋃

γ ′∈Gγ ,Γ
{γ ′}Γ

Hk, j

g−1
n ωgn

(Z)dZ ,

where Gγ ,Γ runs over subsets which correspond to a complete system of representative elements of Γ -
conjugacy classes of families of (e-2). Let A be one of the subsets A(e3)′ , A( f 1), A( f 2), A( f 3), or A( f 4).
If k � 5, then we have

I(A) = ck, j

�(Z(Γ ))

∑
[γ ]Γ

v∑
n=1

∫
g−1

n ·Fn

∑
ω∈⋃

γ ′∈[γ ]Γ {γ ′}Γ
Hk, j

g−1
n ωgn

(Z)dZ ,

where [γ ]Γ runs over a complete system of representative elements of Γ -conjugacy classes of families which
are contained in A.

Proof. We set Jn,γ = ⋃
γ ′∈Gγ ,Γ

g−1
n {γ ′}Γ gn for γ ∈ A(e2). We also set Jn,γ = ⋃

γ ′∈[γ ]Γ g−1
n {γ ′}Γ gn

for γ ∈ A(e3)′ , A( f 1), A( f 2), A( f 3), or A( f 4). It is sufficient to prove

∫
g−1

n ·Fn

∣∣∣∣ ∑
δ∈Jn,γ ∩An,r

Hk, j
δ (Z)

∣∣∣∣dZ < +∞ (4.7)

for r = 0, 1. By using Lemmas 4.4, 4.13, 4.15, and 4.16, we get (4.7) for A(e2)′ and A(e3)′ . For A( f 1),
by using Lemmas 4.20 and 4.21, we have (4.7) if we prove

∫
g−1·F |∑γ Hk, j

γ (Z)|dZ < constant, where

n n
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γ runs the set

⎧⎪⎨
⎪⎩±

⎛
⎜⎝

1 0 0 ∗
0 1 ∗ ∗
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
∗ −1 0 0
0 0 1 ∗
0 0 0 −1

⎞
⎟⎠ ∈ g−1

n A( f 1)gn

⎫⎪⎬
⎪⎭ .

We can prove this convergence by replacing −Q (Z;γ ) → (2i)−1s2 y1 + (2i)−1s′
2 y1 + y1 y2 +

(2i)−1 y1((c′t)2z1 − 2c′tz12) − (i−1x12 − (2i)−1(c′tz1 + cs12))
2 and −4−1|c′tz1 + cs12|2 → |z12 −

2−1(c′tz1 + cs12)|2 in the proof of Lemma 4.16. For A( f 2), we can prove (4.7) by using the results in
Section 4.15. For A( f 3), we can prove (4.7) by using Lemma 4.23, A( f 3) ∩ P1(Q) = ∅, the coordinate
given in Section 4.16, and an argument similar to that in Section 4.15. For A( f 4), we can prove (4.7)
by using Lemma 4.25, A( f 4) ∩ P0(Q) = ∅, the coordinate given in Section 4.17, and an argument
similar to that in Section 4.15. �
4.11. Convergence of unipotent terms

Before we calculate the contributions of (e-2) and (e-3), we require some lemmas for studying
the convergence of some unipotent terms. In the case of non-split Q-forms, we do not require the
following lemmas. By Lemma 4.2 and the proofs of [25, Lemmas 14, 15, 16], we get the following,
which is a generalization of [25, Lemmas 14, 15, 16].

Lemma 4.15. We set

En,1 = g−1
n

(
A(e2) ∪ A(e3)

)
gn ∩ ((

g−1
n Γ gn

)1
∞ − (

g−1
n Γ gn

)0
∞

)
,

En,2 = {
δ(S) ∈ (

g−1
n Γ gn

)0
∞ ∩ (

g−1
n Γ gn

)1
∞; −det(S) ∈ (

Q×)2}
,

En,3 = g−1
n A(e3)′gn ∩ ((

g−1
n Γ gn

)0
∞ − (

g−1
n Γ gn

)1
∞

)
.

If k � 5, then we have
∫

g−1
n ·Fn

∑
γ ∈En,l

|Hk, j
γ (Z)|dZ < +∞ for l = 1,2,3.

The following lemma is a generalization of [25, Proposition 25].

Lemma 4.16. Let k � 5 and Z = X + iY ∈ H2(μ,ς1, ς2). Let a, a′ , a′′ , c, c′ ∈ R>0 . Then, there exists a constant
C ′′′

k, j,μ,ς1,ς2,a,a′,a′′,c,c′ depending only on k, j, μ, ς1 , ς2 , a, a′ , a′′ , c, and c′ such that

∑
s′2∈a′Z, |s′2|<a′′

∑
t,s12∈Z

∣∣∣∣ ∑
s2∈aZ

Hk, j
γ (Z)

∣∣∣∣ < C ′′′
k, j,μ,ς1,ς2,a,a′,a′′,c,c′ ,

where

γ =
⎛
⎜⎝

1 0 0 cs12
0 1 cs12 s2 + s′

2
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
c′t 1 0 0
0 0 1 −c′t
0 0 0 1

⎞
⎟⎠ .
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Proof. The above mentioned sum is equal to

tr

[
ρk, j

(
1

2i

((
1 0

c′t 1

)
Z

(
1 c′t
0 1

)
+

(
0 cs12

cs12 s2 + s′
2

)
− Z

)(
1 −c′t
0 1

))−1

ρk, j(Y )

]

=
∑

j1, j2�0, j1+2 j2= j

a j1 j2

det(Y )k+ j2(Q (Z;γ ) + det(Y ) − 4−1|c′tz1 + cs12|2) j1

Q (Z;γ )k+ j1+ j2

=
∑

j1, j2�0, j1+2 j2= j

a j1 j2

∑
p1,p2,p3�0, p1+p2+p3= j1

j1!
p1!p2!p3!

det(Y )k+ j2+p2 4−p3 |c′tz1 + cs12|2p3

Q (Z;γ )k+ j1+ j2−p1
,

where Q (Z;γ ) = (2i)−1s2 y1 + (2i)−1s′
2 y1 + y1 y2 + (2i)−1 y1((c′t)2z1 +2c′tz12)− (y12 + (2i)−1(c′tz1 +

cs12))
2. Hence, we have only to prove

I =
∑

t,s12∈Z

∣∣∣∣ ∑
s2∈aZ

det(Y )k+p(c′tz1 + cs12)
2q

Q (Z;γ )k+ j2+p+q

∣∣∣∣ < constant.

Furthermore, by using the Poisson summation formula for s2, we have

I = constant ×
∑

t,s12∈Z

det(Y )k+p|c′tz1 + cs12|2p

yk+ j2+p+q
1

×
∣∣∣∣∣

∞∑
m=1

mk+ j2+p+q−1

× exp
(
2πa−1mi

{
s′

2 + 2iy2 + (
c′t

)2
z1 + 2c′tz12 − (2iy1)

−1(
2iy12 + c′tz1 + cs12

)2})∣∣∣∣∣
� constant ×

2p∑
r=0

(2p)!
r!(2p − r)!

∑
t,s12∈Z

∞∑
m=1

det(Y )k+p|c′tx1 + cs12|2q−rmk+ j2+p+q−1

yk+ j2+p+q−r
1

× exp
(−4πa−1m

{
y2 − y−1

1 y2
12 + 4−1(

c′t
)2

y1 + 4−1 y−1
1

(
c′tx1 + cs12

)2})
� constant ×

2p∑
r=0

(2p)!
r!(2p − r)!

∑
t∈Z

∞∑
m=1

det(Y )k+pmk+ j2+p−2+r/2

yk+ j2+p−1−r/2
1

× exp
(−4πa−1m

(
y2 − y−1

1 y2
12

) − πa−1m
(
c′t

)2
y1

)
.

We can reduce this proof to the proof of [25, Proposition 25]. �
4.12. Unipotent contribution of (e-2)

We assume that Assumption 2.1 holds. For {hm}v0
m=1 in Assumption 2.1, we may assume {hm}v0

m=1 ⊂
{gn}v

n=1 and gn satisfies the equality of Assumption 2.1 for each n. Under Assumption 2.1, we have
(g−1

n Γ gn)M0 = g−1
n Γ gn ∩ M0(Q). We use the same notations and conditions for (e-2) as those men-

tioned in Section 3. We treat the family [γ ]Γ for γ = gδ(S)g−1 ∈ A(e2), where S > 0 or S < 0. It
follows from [25, Proof of Theorem 9], Assumption 2.1, Proposition 4.14, (4.7), Lemmas 4.15 and 4.16
that

I

( ⋃
γ ′∈[γ ]

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))
vol

(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
lim

s→+0

∑
γ ′∈[γ ] /∼

J0(γ
′; s)

[C(γ ;Γ ) : C 0(γ ;Γ )] .

Γ Γ
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We use the following two properties to prove this equality. Let δ be an element of g−1
m A(e2)gm ∩

(g−1
m Γ gm)0∞ . One is that ε−1δε (ε ∈ g−1

m Γ gn) belongs to (g−1
n Γ gn)0∞ if and only if ε belongs to

g−1
m Γ gn ∩ P0(Q). The other is that det(Y ) is multiplied by a positive constant under the action of

g−1
m Γ gn ∩ P0(Q) on H2. Note that there exists an element h ∈ P0(Q) such that g−1

m Γ gn = g−1
m Γ gmh

if g−1
m Γ gn ∩ P0(Q) 
= ∅. Therefore, we have only to calculate the integral J0(γ ; s). We easily get

J0(γ ; s) =
∫

Y >0

tr
{
ρk, j

(
I2 + (2i)−1Y −1 S

)−1}(
det(Y )

)−3−s
dY .

We consider an element h ∈ GL(2;R) such that S = ±h th. If we transform Y �→ hY th, then we have

J0(γ ; s) = det(S)−s−3/2
∫

Y >0

tr
{
ρk, j

(
I2 ± (2i)−1Y −1)−1}(

det(Y )
)−3−s

dY

= det(S)−s−3/2
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∫
Y >0

(2 det(Y ) ± (2i)−1 tr(Y )) j1 det(Y ) j2+k−3−s

(det(Y ) ± (2i)−1 tr(Y ) − 4−1) j1+ j2+k
dY

= det(S)−s−3/2
∑

j1+2 j2= j, j1, j2�0

a j1, j2 ×
∑

p+q+r= j1

j1!
p!q!r! × 2−2r

×
∫

Y >0

det(Y ) j2+k−3−s+q

(det(Y ) ± (2i)−1 tr(Y ) − 4−1) j1+ j2+k−p
dY ,

where we define the constants a j1, j2 by tr(ρ0, j(z)) = ∑
j1+2 j2= j, j1, j2�0 a j1, j2 tr(z) j1 det(z) j2 for z ∈

M(2;C). It follows from [25, Proof of Theorem 9] that

J0(γ ; s) = det(S)−s−3/2 × 23+2s

×
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∑
p+q+r= j1

j1!
p!q!r! × exp

(±(π/2)i(3 + 2s + 2r)
)

× Γ (k′′ + 1 − s)Γ (1/2)Γ (k′ − k′′ − 3/2 + s)Γ (k′′ + 3/2 − s)Γ (k′ − k′′ − 2 + s)

Γ (k′)Γ (k′ − 1/2)
,

where k′ = j1 + j2 + k − p and k′′ = j2 + k − 3 + q. Since Γ (s) is continuous, we have Γ (ar ± s) =
Γ (ar) + o(s) uniformly for a finite set {ar}r (ar > 0). Hence, we get

J0(γ ; s) = det(S)−s exp(±sπ i)

×
{

23 det(S)−3/2
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∑
p+q+r= j1

j1!
p!q!r! exp

(±(π/2)i(3 + 2r)
)

× Γ (k′′ + 1)Γ (1/2)Γ (k′ − k′′ − 3/2)Γ (k′′ + 3/2)Γ (k′ − k′′ − 2)

Γ (k′)Γ (k′ − 1/2)
+ o(s)

}
.

From this we have J0(γ ; s) = { J0(γ ;0) + o(s)} × det(S)−s exp(±sπ i). Thus, we obtain the result for
(e-2), given in Section 3, by using Lemma 4.12.
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4.13. Unipotent contribution of (e-3)

First, by [25, Proof of Theorem 9], Proposition 4.14, Lemmas 4.15 and 4.16, and the arguments in
Sections 4.7 and 4.12, we find that the contribution of A(e3) − A(e3)′ is zero.

Next, we treat the family [γ ]Γ for γ = gδ(S)g−1 ∈ A(e3)′ , where S is indefinite and −det(S) ∈
(Q×)2. If G(Q) is not split, then such elements do not appear in Γ . We may set gm = g for a cer-
tain m, and [γ ]Γ /∼ = {gmδ(S)g−1

m ; S ∈ ⋃t
u=1 Lu}, where L′

2,u(s12) is a certain subset of L2,u(s12) and

Lu = {βu
( 0 s12

s12 s2

)
tβu ∈ L′; s12 ∈ L1,u, s2 ∈ L′

2,u(s12)}. It follows from Proposition 4.14 and Lemmas 4.15
and 4.16 that

I

( ⋃
γ ′∈[γ ]Γ /∼

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

v∑
n=1

t∑
u=1

∫
g−1

n ·Fn

∑
S∈Lu

∑
δ′∈g−1

n {gmδ(S)g−1
m }Γ gn

Hδ′(Z)dZ .

Hence, we have only to calculate the contribution for u = 1. We can assume β1 = I2 without loss
of generality. Hence, we consider the contribution of

⋃
S∈L1

{gmδ(S)g−1
m }Γ , where L1 = {( 0 s12

s12 s2

) ∈
L′; s12 ∈ L1,1, s2 ∈ L′

2,1(s12)}. We set

δ′(s12, s2) =
⎛
⎜⎝

1 0 0 s12
0 1 s12 s2
0 0 1 0
0 0 0 1

⎞
⎟⎠ and η(w) =

⎛
⎜⎝

1 0 0 0
w 1 0 0
0 0 1 −w
0 0 0 1

⎞
⎟⎠ .

For an integer N ′ , we set

�′ = {
δ′(s12, s2)η(w); w, s12 ∈ N ′−1Z, s2 ∈ N ′−2Z, w 
= 0

}
.

Then, there exists an integer N ′ such that �′ contains the set of all element of
⋃v

n=1 g−1
n Γ gn , which

are of the form δ′(s12, s2)η(w). Fix such an N ′ .

Lemma 4.17. (See [25, Proposition 18].) For any h ∈ �′ , there exists an element ξ ∈ Sp(2;Z) ∩ P1(Q) such
that ξ−1hξ = δ′(s12, s2) for certain s12 (s12 
= 0), s2 .

Lemma 4.18. If U
( 0 s12

s12 s2

)
t U = ( 0 s′12

s′12 s′2

)
(s12 
= 0) for U ∈ GL(2;R), then s′

12 = ±det(U )s12 .

For an element s12 ∈ L1,1 (s12 
= 0), let �n,s12 denote the set of all elements γ in g−1
n Γ gn ∩ �′

such that there exist ξ ∈ g−1
m Γ gn and s2 ∈ L2,1(s12), which satisfy ξγ ξ−1 = δ′(s12, s2) ∈ g−1

m Γ gm . For
a 
= 0, b 
= 0, we set

φ1(a) =
⎛
⎜⎝

a 0 0 0
0 a−1 0 0
0 0 a−1 0
0 0 0 a

⎞
⎟⎠ , φ2(a) =

⎛
⎜⎝

0 a 0 0
a−1 0 0 0

0 0 0 a−1

0 0 a 0

⎞
⎟⎠ ,

φ3(b) =
⎛
⎜⎝

b 0 0 0
0 b 0 0
0 0 b−1 0
0 0 0 b−1

⎞
⎟⎠ .
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Lemma 4.19. For any ξ ∈ g−1
m Γ gn and γ ∈ �n,s12 such that ξγ ξ−1 = δ′(s12, s2) ∈ g−1

m Γ gm, we can express
ξ as η(−2−1s−1

12 s2)ξ = ε1ε2ε3ε4ε5 , where ε1 = φ1(a) or φ2(a), ε2 = φ3(b), ε3 = δ(S), ε4 = η(t′), and ε5 ∈
Sp(2;Z) ∩ P1(Q). If we fix s12 , then there exists a finite subset J in R2 such that the pair (a,b) belongs to J
for any such ε1 and ε2 .

Proof. We have η(−2−1s−1
12 s2)ξγ ξ−1η(2−1s−1

12 s2) = δ′(s12,0). By γ ∈ �n,s12 ⊂ �′ and Lemma 4.17,
there exists ε5 ∈ Sp(2;Z) ∩ P1(Q) such that ε5γ ε−1

5 = δ′(s′
12, s′

2). Since γ = ε−1
5 δ′(s′

12, s′
2)ε5 =

ξ−1δ′(s12, s2)ξ , we have ε5ξ
−1δ′(s12, s2)ξε

−1
5 = δ′(s′

12, s′
2). Hence, we can set ε5ξ

−1 = ( U 0
0 t U−1

)( I2 T
0 I2

)
.

It follows from Lemma 4.18 that s′
12 = ±det(U )s12. We set ε4 = η(−s′

2(2|det(U )|s12)
−1) and

ε2 = φ3(|det(U )|−1/2). If s′
12 = |det(U )|s12, then we get δ′(s12,0) = ε2ε4ε5γ ε−1

5 ε−1
4 ε−1

2 . If s′
12 =

−|det(U )|s12, then we get δ′(s12,0) = ε2ε4ε
′
5γ ε′−1

5 ε−1
4 ε−1

2 for ε′
5 = diag(1,−1,1,−1)ε5. Since

diag(1,−1,1,−1) ∈ Sp(2;Z) ∩ P1(Q), we may replace ε′
5 with ε5. Since

ε2ε4ε5γ ε−1
5 ε−1

4 ε−1
2 = δ′(s12,0)

= η
(−2−1s−1

12 s2
)
ξγ ξ−1η

(
2−1s−1

12 s2
)
,

there exists an element h ∈ C(δ′(s12,0); G(R)) such that η(−2−1s−1
12 s2)ξ = h × ε2ε4ε5. Thus, we get

the first assertion of this lemma. Since h × ε2 belongs to a certain lattice in M(4;Q), the second
assertion follows. �

Let Z = X + iY ∈ Σ and y2 − y−1
1 y2

12 � c(s12), where c(s12) is a constant. We set Z ′ = X ′ + iY ′ =
ε1ε2ε3ε4ε5 · Z and Y ′ = ( y′

1 y′
12

y′
12 y′

2

)
for ε1ε2ε3ε4ε5 in Lemma 4.19. If ε1 = φ1(a), then we have y′

1 �
a2b2α−1β and y′

2 − y′−1
1 y′ 2

12 � a−2b2c(s12). The constants α and β have been used for the defining Σ

(cf. Section 4.2). If ε1 = φ2(a), then we have y′
2 � a−2b2α−1β and y′

1 − y′−1
2 y′ 2

12 � a2b2c(s12). Let
c(s12) = Maxγ ∈⋃v

n=1 �n,s12
{a4α−1β, a−4α−1β}. Then, the domain ε1ε2ε3ε4ε5 · {Z ∈ Σ; y2 − y−1

1 y2
12 �

c(s12)} is contained in {y2 � y1} (resp. {y1 � y2}) if ε1 = φ1(a) (resp. ε1 = φ2(a)). Therefore, we
can use the argument in [25, Proof of Theorem 9] for the calculation below. We note that there
exists only a finite number of g−1

n Γ gn-conjugacy classes in g−1
n Γ gn which have intersections with

�n,s12 .
Fix s12 and s2. Let c ∈ R and t′ = 1 or 2. Let Tn,s12,s2,c,t′ denote the subset of C0(δ

′(s12, s2);
g−1

m Γ gm)\g−1
m Γ gn , which consists of all elements ξ such that ξ−1δ′(s12, s2)ξ ∈ �n,s12 and

y−1
1 det(Y ) �→ c · y−1

t′ det(Y ) via the action of ξ . Note that we can apply Lemma 4.16 to the set
{ξ−1δ′(s12, s2)ξ ; ξ ∈ Tn,s12,s2,c,t′ }. Therefore, from Lemmas 4.16 and 4.19, we deduce

lim
s→+0

v∑
n=1

∫
g−1

n ·Fn

∑
ω∈�n,s12 ∩g−1

n {gmδ′(s12,s2)g−1
m }Γ gn

Hk, j
ω (Z)

(
y−1

1 det(Y )
)−s

dZ

= [
C
(

gmδ′(s12, s2)g−1
m ;Γ ) : C0

(
gmδ′(s12, s2)g−1

m ;Γ )]−1

× lim
s→+0

∑
t′=1,2

∑
c

∑
ξ∈Tn,s12,s2,c,t′

∫
ξ ·g−1

n ·Fn

Hk, j
δ′(s12,s2)

(Z)
(

y−1
t′ det(Y )

)−s
dZ ,

where c runs over a finite set in R. It follows from the above mentioned arguments, Proposition 4.14,
Lemmas 4.15 and 4.16, and the argument in [25, Proof of Theorem 9] that
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I

( ⋃
S∈L1

{
gmδ(S)g−1

m

}
Γ

)

= ck, j

�(Z(Γ ))

v∑
n=1

∑
s12∈L1,1

∑
s2∈L′

2,1(s12)

{ ∑
ω∈g−1

n {gmδ′(s12,s2)g−1
m }Γ gn−�n,s12

∫
g−1

n ·Fn

Hk, j
ω (Z)dZ

+
∑

ω∈�n,s12 ∩g−1
n {gmδ′(s12,s2)g−1

m }Γ gn

∫
(g−1

n ·Fn)∩{y−1
1 det(Y )<c(s12)}

Hk, j
ω (Z)dZ

+ lim
s→+0

∑
ω∈�n,s12 ∩g−1

n {gmδ′(s12,s2)g−1
m }Γ gn

∫
(g−1

n ·Fn)∩{y−1
1 det(Y )�c(s12)}

Hk, j
ω (Z)

(y−1
1 det(Y ))s

dZ

}

= ck, j

�(Z(Γ ))
vol

(
C0(γ ;Γ )\C0

(
γ ; G(R)

)) ∑
s12∈L1,1

1

s3
12

×
∑

s2∈L′
2,1(s12)

[
C
(

gmδ′(s12, s2)g−1
m ;Γ ) : C0

(
gmδ′(s12, s2)g−1

m ;Γ )]−1 × lim
s→+0

J0
(
δ′(1,0); s

)
.

From this we have

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))
vol

(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
lim

s→+0

∑
γ ′∈[γ ]Γ /∼

J0(γ
′; s)

[C(γ ;Γ ) : C 0(γ ;Γ )] .

Hence, we have only to calculate the integral J0(δ
′(1,0); s). First, we have

J0
(
δ′(1,0); s

)
= 2

∫
0<y1�y2

tr

{
ρk, j

(
I2 + (2i)−1Y −1

(
0 1
1 0

))−1}
det(Y )−3(

y−1
1 det(Y )

)−s
dY

= 2
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∫
0<y1�y2

(2y1 y2 − 2y2
12 + iy12)

j1 det(Y ) j2+k−3−s ys
1

(y1 y2 − y2
12 + iy12 + 1/4) j1+ j2+k

dY

= 2
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∑
p+q+r= j1

j1!(−4)−r

p!q!r!
∫

0<y1�y2

det(Y ) j2+k−3−s+q ys
1

(y1 y2 − y2
12 + iy12 + 1/4) j1+ j2+k−p

dY .

By an argument similar to that in [25, Proof of Theorem 9], we have

J0
(
δ′(1,0); s

) = −2
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∑
p+q+r= j1

j1!
p!q!r! (−4)−r × 22k′−2k′′−4π1/2

× Γ (k′′ + 1)Γ (k′ − k′′ − 3/2)Γ (k′′ + 3/2)Γ (k′ − k′′ − 2)

′ ′ + o(s),

Γ (k )Γ (k − 1/2)
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where k′ = j1 + j2 + k − p and k′′ = j2 + k − 3 + q. Therefore, it follows from the calculation of
J0(δ(I2);0) in Section 4.12 that

J0
(
δ′(1,0); s

) = − J0
(
δ(I2);0

) × i + o(s) = −c−1
k, j 2−3π−2( j + 1) + o(s).

Thus, we obtain the result for (e-3) given in Section 3.

4.14. Quasi-unipotent contribution of (f-1)

If G(Q) is not split, then the elements of type (f-1) do not appear in Γ .

Lemma 4.20. Let k � 5. We have
∫

g−1
n ·Fn

∑
γ ∈g−1

n A( f 1)gn∩An,0
|Hk, j

γ (Z)|dZ < +∞.

Proof. By Lemma 4.2, we may assume j = 0. Let γ = ( I2 S
0 I2

)( U 0
0 t U−1

) ∈ An,0, where the eigenvalues of

U are 1, −1, rank(S) = 1. Let U = ( a b
c d

)
(b 
= 0).

First, we assume a 
= ±1. If we set V = ( 1+a b
1−a −b

)
, then we have V U V −1 = ( 1 0

0 −1

) = I ′ . We note
that a + d = 0 and ad − bc = −1. Hence, we have

(
V 0
0 t V −1

)
γ

(
V −1 0

0 t V

)
=

(
I2 V S t V
0 I2

)(
I ′ 0
0 I ′

)
, V S t V =

(
s′

1 s′
12

s′
12 s′

2

)
,

s′
1 = (1 + a)2s1 + 2b(1 + a)s12 + b2s2,

s′
12 = (

1 − a2)
s1 − 2abs12 − b2s2,

s′
2 = (1 − a)2s1 − 2b(1 − a)s12 + b2s2.

From this we have s′
1 = 0 or s′

2 = 0. Therefore, s2 is determined by s1, s12, a, and b. Hence, we can
reduce this proof to the proof of [25, Theorem 4].

Next, we assume a = ±1. We easily find c = 0 because ad = −1 and ad − bc = −1. If we replace

V = ( 1 −2−1b
0 1

)
, then we get V S t V = ( s1−bs12+4−1b2s2 s12−2−1bs2

s12−2−1bs2 s2

)
. Hence, we can reduce this case also

to that of [25]. �
Lemma 4.21. Let k � 5. For

En,4 =

⎧⎪⎨
⎪⎩γ = ±

⎛
⎜⎝

a 0 b ∗
∗ 1 ∗ ∗
c 0 d ∗
0 0 0 1

⎞
⎟⎠ ∈ An,1; γ ∈ g−1

n A( f 1)gn,

(
a b
c d

)

= −I2

⎫⎪⎬
⎪⎭ ,

we have
∫

g−1
n ·Fn

∑
γ ∈En,4

|Hk, j
γ (Z)|dZ < +∞.

Proof. Let

γ = ±
⎛
⎜⎝

1 0 0 s12
0 1 s12 s2
0 0 1 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1 0 0 0
a3 1 0 0
0 0 1 −a3
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎠ ∈ En,4.

Then, we easily find that s2 is determined by s12, a3, a, b, c, and d, since
( a b

c d

)
is unipotent. Hence,

we can reduce this proof to the proof of [25, Theorem 4]. �
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Let γ be an element of A( f 1), and En,5 = g−1
n A( f 1)gn ∩ An,1 − En,4. It follows from Proposi-

tion 4.14 and Lemmas 4.20 and 4.21 that

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

{
v∑

n=1

∑
δ∈⋃

γ ′∈[γ ]Γ {γ ′}Γ , δ /∈En,5

∫
g−1

n ·Fn

Hk, j
δ (Z)dZ

+ lim
s→+0

v∑
n=1

∑
δ∈⋃

γ ′∈[γ ]Γ {γ ′}Γ , δ∈En,5

∫
g−1

n ·Fn

Hk, j
δ (Z)

(
y−1

1 det(Y )
)−s

dZ

}
.

We may assume that γ belongs to Γ ∩ (gmEm,5 g−1
m ) for a certain m. For any element δ of Em,5, we

find that ε−1δε ∈ En,5 (ε ∈ g−1
m Γ gn) if and only if ε ∈ g−1

m Γ gn ∩ P1(Q). Hence, by using (4.7), for
g−1

m γ gm ∈ Em,5, we get

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)

= ck, j

�(Z(Γ ))

{ ∑
γ ′∈[γ ]Γ

v∑
n=1

∑
δ∈g−1

m C(γ ′;Γ )gm\Qn,4,γ ′

∫
δg−1

n ·Fn

Hk, j

g−1
m γ ′ gm

(Z)dZ

+ lim
s→+0

∑
γ ′∈[γ ]Γ

v∑
n=1

∑
δ∈g−1

m C(γ ′;Γ )gm\Qn,5,γ ′

∫
δg−1

n ·Fn

Hk, j

g−1
m γ ′ gm

(Z)
(

y−1
1 det(Y )

)−s
dZ

}
,

where Qn,5,γ ′ = {δ ∈ g−1
m Γ gn; δ−1 g−1

m γ ′ gmδ ∈ En,5} and Qn,4,γ ′ = g−1
m Γ gn − Qn,5,γ ′ . We get the fol-

lowing by using the argument in [25, p. 240].

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

∑
[γ ]Γ

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C 0(γ ;Γ )] lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

)
.

Hence, we have only to calculate the integral J0(γ ; s). From Hashimoto’s calculation [12, p. 447], we
deduce

J0(γ ; s) =
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∞∫
0

∞∫
0

(−1) j1+ j2+k((2i)−1λ) j1 v2 j2+2k−3−2st

(v2 + v2t2 − (2i)−1λ) j1+ j2+k
dt dv,

where γ is the same form as that in (f-1) of Section 3. Therefore, we can evaluate this integral by
using the argument in Section 4.12, Lemma 4.12, and Hashimoto’s calculations [12, p. 447].

4.15. Quasi-unipotent contribution of (f-2)

If G(Q) is not split, then the elements of type (f-2) do not appear in Γ . Let γ be an element of
A( f 2), which satisfies

γ = g

⎛
⎜⎝

1 0 λ1 0
0 −1 0 λ2
0 0 1 0

⎞
⎟⎠ g−1
0 0 0 −1
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for certain g ∈ G(R), λ1, λ2 ∈ R, λ1, λ2 
= 0. As a coordinate of C0(g−1γ g; G(R))\H2, we take

{( y1 x12+iy12
x12+iy12 y2

) ∈ H2; Y > 0, x12 ∈ R}. Hence, we have Ẑ = ( 0 x12
x12 0

)+ iY and dẐ = det(Y )−3 dx12 dY .
On the coordinate, we have

Hk, j
g−1γ g

( Ẑ) = tr

[
ρk, j

{(
1 0
0 −1

)−1 (
y1 + (2i)−1λ1 ix12

ix12 y2 − (2i)−1λ2

)−1

Y

}]

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2

(−1) j1+ j2+k((2i)−1(y1λ2 + y2λ1))
j1 det(Y ) j2+k

(x2
12 + (y1 + (2i)−1λ1)(y2 − (2i)−1λ2)) j1+ j2+k

.

Fix positive constants c1 and c2. We set

γ ′ = g

⎛
⎜⎝

1 0 λ′
1 0

0 −1 0 λ′
2

0 0 1 0
0 0 0 −1

⎞
⎟⎠ g−1.

Using Lemma 4.2 and

∣∣Hk,0
g−1γ g

( Ẑ)
∣∣ < constant × det(Y )k(y2

1 + λ2
1

)−k/2(
y2

2 + (
λ2 + (

x2
12λ1

)(
y2

1 + λ2
1

)−1)2)−k/2
,

for −1/2 < μ < k − 3/2, we have

∫
Y >0

∫
R

∣∣Hk, j
g−1γ g

( Ẑ)
∣∣ det(Y )−3−μ dx12 dY < constant × |λ1λ2|−1−μ.

Therefore, for a small μ � 0, we have

∑
γ ′∈[γ ]Γ

∫
Y >0, y1<c1, y2<c2

∫
R

∣∣Hk, j
g−1γ ′ g

( Ẑ)
∣∣ det(Y )−μ dẐ < +∞.

For λ′
1 = λ′

3 + λ′
4 and a small μ � 0, by the Poisson summation formula for λ′

3, we have

∑
λ′

4∈b3Z, |λ′
4|<b4

∑
λ′

2∈b2Z−{0}

∫
Y >0, y1>c1, y2<c2

∫
R

∣∣∣∣ ∑
λ′

3∈b1Z

Hk, j
g−1γ ′ g( Ẑ)

∣∣∣∣ det(Y )−μdẐ < +∞.

In case of λ′
1 = 0, we have |H g−1γ ′ g( Ẑ)| < constant × |x4

12 + y2
1 y2

2 + 4−1 y2
1λ

′ 2
2 |−k/2. Hence, for λ′

1 = 0,
we also have

∑
λ′

2∈b2Z−{0}

∫
Y >0, y1>c1, y2<c2

∫
R

∣∣Hk, j
g−1γ ′ g

( Ẑ)
∣∣ det(Y )−μ dẐ < +∞.

For λ′
1 = λ′

2 = 0, we have
∫

Y >0, y1>c1, y2>c2
|Hk, j

g−1γ ′ g
( Ẑ)|det(Y )−μ dẐ < +∞ (μ > −1). For λ′

2 = 0, by

the Poisson summation formula for λ′
1, we have

∫
Y >0, y1>c1, y2>c2

∫
R |∑λ′

1
Hk, j

g−1γ ′ g
( Ẑ)|dẐ < +∞. It

follows from these facts and the Poisson summation formula in the proof of Lemma 4.4 that
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∫
Y >0, y1>c1, y2>c2

∫
SM(2;R)/L

∣∣∣∣ ∑
γ ′∈[γ ]Γ

∑
δ∈C0(γ ;Γ )\gN0(R)g−1∩Γ

Hk, j
g−1γ ′ g

(
g−1δg · Z

)∣∣∣∣dZ < ∞,

where L is the lattice such that N0(R) ∩ g−1Γ g = {δ(T ); T ∈ L}. We also have

∑
γ ′∈[γ ]Γ

∫
R

∣∣Hk, j
g−1γ ′ g( Ẑ)

∣∣dx12 < +∞

by simple calculation. Therefore, by these inequalities and Proposition 4.14, we obtain

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)

= ck, j

�(Z(Γ ))

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )]
∫

Y >0

∑
γ ′∈[γ ]Γ

∫
R

Hk, j
g−1γ ′ g

( Ẑ)dx12 det(Y )−3 dY .

Lemma 4.22. Let k � 5. For a family [γ ]Γ of type (f-2) and a small s � 0, we have

∫
Y >0

∣∣∣∣ ∑
γ ′∈[γ ]Γ

∫
R

Hk, j
g−1γ ′ g

(Z)dx12

∣∣∣∣ det(Y )−3−s dY < +∞.

Proof. By direct calculation, we have

∫
R

Hk, j
g−1γ ′ g

(Z)det(Y )−3−s dx12

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2

∞∫
−∞

(−1) j1+ j2+k((2i)−1(y1λ2 + y2λ1))
j1 det(Y ) j2+k−3−s

(x2
12 + (y1 + (2i)−1λ1)(y2 − (2i)−1λ2)) j1+ j2+k

dx12

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2

Γ (1/2)Γ ( j1 + j2 + k − 1/2)

Γ ( j1 + j2 + k)

× (−1) j1+ j2+k((2i)−1(y1λ2 + y2λ1))
j1 det(Y ) j2+k−3−s

(y1 + (2i)−1λ1) j1+ j2+k−1/2(y2 − (2i)−1λ2) j1+ j2+k−1/2
.

By substituting (2i)−1(y1λ2 + y2λ1) = y2(y1 + (2i)−1λ1) − y1(y2 − (2i)−1λ2), we have

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2

Γ (1/2)Γ ( j1 + j2 + k − 1/2)

Γ ( j1 + j2 + k)

×
∑

p+q= j1

j1!
p!q!

(−1) j1+ j2+k yp
2 (−y1)

q det(Y ) j2+k−3−s

(y1 + (2i)−1λ1) j1+ j2+k−1/2−p(y2 − (2i)−1λ2) j1+ j2+k−1/2−q
.

Thus, we have proved this lemma. �
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From Lemma 4.22, we deduce

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

∑
[γ ]Γ

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

)
.

Hence, we have only to calculate the integral J0(γ ; s). We can evaluate the integral J0(γ ; s) by using
the argument in Section 4.12, the proof of Lemma 4.22, Lemma 4.12, and Hashimoto’s calculations
[12, p. 445].

4.16. Quasi-unipotent contribution of (f-3)

Let γ be an element of A( f 3), which satisfies

γ = g

⎛
⎜⎝

cos θ sin θ λ cos θ λ sin θ

− sin θ cos θ −λ sin θ λ cos θ

0 0 cos θ sin θ

0 0 − sin θ cos θ

⎞
⎟⎠ g−1

for certain g ∈ G(R), λ ∈ R, λ 
= 0, sin θ 
= 0.

Lemma 4.23. For the Γ -conjugacy class {γ }Γ , there exists a constant Ck, j,Γ,γ , f 3 depending only on k, j, Γ ,
and γ such that

∑
γ ′∈{γ }Γ ∩g P0(R)g−1

∣∣Hk, j
g−1γ ′ g(Z)

∣∣ < Ck, j,Γ,γ , f 3 × y3/2
1 y1/2

2 .

Proof. For γ ′ ∈ {γ }Γ ∩ g P0(R)g−1, we have

g−1γ ′g =
(

h−1

th

)(
I2 T

I2

)(
I2 λI2

I2

)(
k(θ)

k(θ)

)(
I2 −T

I2

)(
h

th−1

)
,

where h ∈ GL(2;R) and h−1 · k(θ) · h ∈ (g−1Γ g)M0 . Hence, if we set γ ′ = ( I2 S
I2

)( A
t A−1

)
, then S

belongs to a subset of

⋃
h−1·k(θ)·h∈(g−1Γ g)M0

{
h−1

(
λI2 +

(
t1 t12
t12 −t1

))
th−1 ∈ L′; t1, t12 ∈ R

}
,

for a certain lattice L′ in SM(2;R). From this, for S = ( s1 s12
s12 s2

)
, we find that s2 is determined by

s1, s2, and A. Therefore, we reduce the proof of this lemma to that in [25, Theorem 4] by using
Lemma 4.2. �

From this lemma, for s ∈ R�0, we get

∫
C (g−1γ g;G(R))\H

∣∣Hk, j
g−1γ g

( Ẑ)
∣∣ det(Y )−s d Ẑ < constant × |λ|−1−2s.
0 2
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Hence, it follows from Lemma 4.23, Proposition 4.14, and (4.7) that

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

)
.

Therefore, we have only to calculate the integral J0(γ ; s). As a coordinate of C(g−1γ g; G(R))\H2,

we take {( x1+iy1 x12
x12 −x1+iy2

) ∈ H2 | 0 < y1 < y2}. We take the measure (2π)−1 dθ on SO(2;R) =
{k(θ); 0 � θ < 2π} ∼= C0(g−1γ g; G(R))\C(g−1γ g; G(R)). The measure on the coordinate is given by
(y2 − y1)(y1 y2)

−3 dx1 dx12 dy1 dy2. For the above mentioned coordinate, we have

Hk, j
g−1γ g

(Z)det(Y )−3−s

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2 × (2i)− j1 × (y1 y2)
k+ j1+ j2−s−3

× {
2x12 sin θ

(
y−1

1 − y−1
2

) + λ cos θ
(

y−1
1 + y−1

2

) + 4i cos θ
} j1

× {
x2

1 sin2 θ + (
x12 sin θ + 2−1i cos θ(y1 − y2)

)2 + 4−1(y1 + y2 − iλ)2}−k− j1− j2
.

By using [12, Lemma 3-5], we have

J0(γ ; s) =
∑

j1+2 j2= j, j1, j2�0

a j1, j2 × (2i)− j1 × Γ (k + j1 + j2 − 1
2 )Γ ( 1

2 )

Γ (k + j1 + j2)
× (sin θ)−2k−2 j1−2 j2

×
j1∑

p=0, j1−p∈2Z

( j1−p)/2∑
q=0

Γ ( j1 + 1)Γ (( j1 − p)/2 + 1)

Γ (p + 1)Γ ( j1 − p + 1)Γ (q + 1)Γ (( j1 − p)/2 − q + 1)

× Γ (k + j1 + j2 − q − 1)Γ (1/2)

Γ (k + j1 + j2 − q − 1/2)
× (2 sin θ)2 j1−2p(cos θ)p

×
∫

0<y1<y2

(y1 y2)
k+ j2−s−3(y1 + y2)

p(y2 − y1)
j1−p+1(y1 + y2 − iλ)−2k− j+2 dy1 dy2.

Lemma 4.24. Let a = λ/|λ| and k1 ∈ R>0 , k2 , k3 , k4 ∈ Z, k4 − 2k1 − 2k2 − k3 − 3 > 0. Then, we have

∫
0<y1<y2

(y1 y2)
k1(y2 − y1)

2k2+1(y1 + y2)
k3(y1 + y2 − ia)−k4 dy1 dy2

= (ia)k4−2k1−2k2−k3−3 × 2−2k1−2 × π

× Γ (k1 + 1)Γ (k2 + 1)

Γ (k1 + k2 + 2)
× Γ (k4 − 2k1 − 2k2 − k3 − 3)Γ (2k1 + 2k2 + k3 + 3)

Γ (k4)
.

Therefore, we can evaluate the integral J0(γ ; s) by using the argument in Section 4.12 and
Lemma 4.12.
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4.17. Quasi-unipotent contribution of (f-4)

If G(Q) is not split, then the elements of type (e-3) do not appear in Γ . Let γ be an element of
A( f 4), which satisfies

γ = g

⎛
⎜⎝

cos θ 0 sin θ 0
0 1 0 λ

− sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ g−1

for certain g ∈ G(R), λ ∈ R, λ 
= 0, sin θ 
= 0. We can deduce the following lemma from [25, Theo-
rem 4], Lemma 4.2, and an argument similar to Lemma 4.23.

Lemma 4.25. For the Γ -conjugacy class {γ }Γ , there exists a constant Ck, j,Γ,γ , f 4 depending only on k, j, Γ ,
and γ such that

∑
γ ′∈{γ }Γ ∩(g P1(R)g−1)

∣∣Hk, j
g−1γ ′ g(Z)

∣∣ < Ck, j,Γ,γ , f 4 × y2.

From this lemma, for s ∈ R�0, we get

∫
C0(g−1γ g;G(R))\H2

∣∣Hk, j
g−1γ g

( Ẑ)
∣∣(y−1

1 det(Y )
)−s

d Ẑ < constant × |λ|−1−s.

Hence, it follows from Lemma 4.25, Proposition 4.14, and (4.7) that

I

( ⋃
γ ′∈[γ ]Γ

{
γ ′}

Γ

)
= ck, j

�(Z(Γ ))

vol(C0(γ ;Γ )\C0(γ ; G(R)))

[C(γ ;Γ ) : C0(γ ;Γ )] lim
s→+0

∑
γ ′∈[γ ]Γ

J0
(
γ ′; s

)
.

Hence, we have only to calculate the integral J0(γ ; s). As a coordinate of C(g−1γ g; G(R))\H2, we

take {( x1+iy1 x12
x12 iy2

) ∈ H2 | x1 ∈ R, x12 � 0, y1, y2 > 0}. We take the measure (2π)−1 dθ on SO(2;R) =
{k(θ); 0 � θ < 2π} ∼= C0(g−1γ g; G(R))\C(g−1γ g; G(R)). The measure on the coordinate is given by
x12 y1(y1 y2)

−3 dx1 dx12 dy1 dy2. For the above mentioned coordinate, we have

Hk, j
g−1γ g

(Z)det(Y )−3(
y−1

1 det(Y )
)−s

=
∑

j1+2 j2= j, j1, j2�0

a j1, j2(2i)− j1(−4)k+ j1+ j2 yk+ j2−3
1 yk+ j2−3−s

2

× {
2x2

12(1 − cos θ + iy1 sin θ) + (2iy2 + λ)
(
x2

1 sin θ + y2
1 sin θ + 2iy1 cos θ + sin θ

)}−k− j1− j2

× {
x2

12 y1 sin θ + y1(2iy2 + λ) + y2
(
x2

1 sin θ + y2
1 sin θ + 2iy1 cos θ + sin θ

)} j1
.

By simple calculation, we get

∞∫
(δx2

12 + ω)k2

(αx2
12 + β)k1

x12 dx12 =
k2∑

p=0

Γ (k2 + 1)Γ (p + 1)Γ (k1 − p − 1)

2Γ (p + 1)Γ (k2 − p + 1)Γ (k1)
α−p−1β−k1+p+1δpωk2−p .
0
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Therefore, we have

J0(γ ; s) =
∫

R>0

∫
R>0

∫
R

dx1 dy1 dy2

×
j1∑

p=0

j1−p∑
q=0

Γ ( j1 + 1)

2Γ ( j1 − p + 1)

Γ (k + j1 + j2 − p − 1)

Γ (k + j1 + j2)

Γ ( j1 − p + 1)

Γ (q + 1)Γ ( j1 − p − q + 1)

× yk+ j2−2+p+q
1 yk+ j1+ j2−p−q−3−s

2 × 2−p−1 × (1 − cos θ + iy1 sin θ)−p−1

× (2iy2 + λ)−k− j1− j2+p+q+1(x2
1 sin θ + y2

1 sin θ + 2iy1 cos θ + sin θ
)−k− j2−q+1

.

Thus, we can evaluate the integral J0(γ ; s) by using the integral for y2, the argument in Section 4.12,
and Lemma 4.12.

5. Prehomogeneous vector spaces

In this section, we give a formula (Theorem 5.7) for the contributions of (e-2), (e-3), and (e-4),
which is a generalization of Shintani’s result [28, Section 3] to the vector-valued case. By using this
formula, we obtain a different proof for the contributions of (e-2), (e-3), and (e-4). The space SM(n;C)

is a prehomogeneous vector space, i.e., SM(n;C) has a Zariski dense open GL(n;C)-orbit by the action
x �→ gx t g (x ∈ SM(n;C), g ∈ GL(n;C)). The contributions of (e-2), (e-3), and (e-4) coincide with zeta
integrals of prehomogeneous vector spaces of symmetric matrices of degree one or two for certain
test functions.

5.1. Poisson summation formula

We assume that r is equal to 1 or 2. We set Vr = SM(r;R) and Ωr = {x ∈ Vr; x > 0}. For x ∈ Vr ,
we set

f ∗
r (x) = tr

[
ρk, j

(
1 − ix 0

0 1

)−1]
(r = 1), tr

[
ρk, j(I2 − ix)−1]

(r = 2).

For x ∈ Ω1, we set f1(x) = ∑ j
l=0(2π)k+lΓ (k + l)−1xk+l−1 exp(−2πx). For x /∈ Ω1, we set f1(x) = 0.

The spherical polynomial Φm(x) for m = (m1,m2) ∈ Z�0 (m1 � m2) is defined by Φm(x) =∫
SO(2;R)

�m(t gxg)dg , where �m(x) = xm1−m2
1 det(x)m2 and dg is the Haar measure on SO(2;R) nor-

malized by
∫

SO(2;R)
dg = 1. Since tr(ρk, j(x)) is invariant under the action x �→ t gxg (g ∈ SO(2;R)), we

can express tr(ρk, j(x)) as the linear combination tr(ρk, j(x)) = ∑
m1+m2=2k+ j,m2�k amΦm(x) (am ∈ R)

(cf. [7, Proposition XI.3.1]). For x ∈ Ω2, we set

f2(x) =
∑

m1+m2=2k+ j,m2�k

(2π)−(1/2)+m1+m2am

Γ (m1)Γ (m2 − 2−1)
Φm(x)det(x)−3/2 exp

(−2π tr(x)
)
.

For x /∈ Ω2, we set f2(x) = 0. Let dx denote the Lebesgue measure on Vr . For the scalar-valued case
( j = 0), the following lemma is obtained from the works of Shintani [28] and Siegel [29].

Lemma 5.1.

(i) If −1 < Re(s) < k − r, then the integral
∫

Vr
f ∗
r (x)|det(x)|s dx is absolutely convergent.

(ii) If k > (r − 1)/2, then we get
∫

Vr
fr(x)exp(2π i tr(xy))dx = f ∗

r (y). This integral is absolutely convergent.
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Proof. For r = 1, the proofs of (i) and (ii) are trivial. Hence, we consider only the case r = 2. By
the proof of Lemma 4.2, we may assume j = 0 for the absolute convergence of

∫
V 2

f ∗
2 (x)|det(x)|s dx.

Hence, (i) is proved by [28, Lemma 19]. The integral
∫
Ω2

Φm(x)det(x)−3/2 exp(−2π tr(x))dx is ab-
solutely convergent if m2 − (3/2) > −1. Hence, if k > 1/2, then the integral of (ii) is absolutely
convergent. From [7, Lemma XI.2.3], we know

∫
Ω2

Φm(x)exp
(− tr(xy)

)
det(x)−3/2 dx = π1/2Γ (m1)Γ

(
m2 − 2−1)

Φm
(

y−1)
.

Thus, we have proved the equality in (ii). �
We use the following lemma to prove Theorem 5.7.

Lemma 5.2. Suppose k > 2. Then, we have

f2(x) =
{

2−5+2k+ jc−1
k, j tr(ρk, j(x)H−1

k, j )det(x)−3/2 exp(−2π tr(x)) (x ∈ Ω2),

0 (x /∈ Ω2),

where

Hk, j =
∫
Ω2

ρk, j(x)exp
(−π tr(x)

)
det(x)−3 dx.

Proof. By [8, Expose 6, Théorème 6], for y ∈ Ω2, Z ∈ H2, and k > 2, we get

ck, j · ρk, j(Z/2i)−1 = 2
∫
Ω2

Hk, j(4y)−1 exp
(
2π i tr(y Z)

)
dy,

where Hk, j(y) = ∫
Ω2

ρk, j(x)exp(−π tr(yx))det(x)−3 dx. Since tr(ρk, j(x)H−1
k, j ) is a SO(2;R)-invariant

polynomial, we get the above mentioned lemma by substituting Z = 2i(I2 − ix). �
We identify V 2 with its dual vector space via the symmetric bilinear form 〈x, x∗〉 = tr(x J1x∗ J1),

J1 = ( 0 1
−1 0

)
(x, x∗ ∈ V 2). We also identify V 1 with its dual space via the symmetric bilinear form

〈x, x∗〉 = xx∗ (x, x∗ ∈ V 1). Let Lr be a lattice for a Q-structure of Vr and L∗
r be the dual lattice to Lr ,

i.e., L∗
r = {x∗ ∈ Vr; 〈x, x∗〉 ∈ Z (∀x ∈ Lr)}. We denote the volume of the fundamental parallelogram of

Lr by vol(Lr).
We get the following Poisson summation formula by the proof of Lemma 5.2 and the trace of

the formula [8, Appendix of Expose 10]. For the scalar-valued case ( j = 0), the following lemma is
obtained from the works of Siegel [29] and Braun [4].

Proposition 5.3. (See [8, Appendix of Expose 10].) Suppose k > 2. For any Z ∈ H2 , we have

∑
T ∈L2∩Ω2

F2(T )exp
(
2π i tr(T Z)

) = vol(L2)
−1

∑
S∈L∗

2

tr
(
ρk, j

(
(Z + S)/i

)−1)
,

where F2(T ) = f2(T )exp(2π tr(T )).

In the proof of Lemma 4.4, we have already used a Poisson summation formula, which is an
analogue of this formula. By Lemma 5.1 and Proposition 5.3, we get the following.
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Proposition 5.4. If k > r, we have

∑
x∈Lr

fr(x) = vol(Lr)
−1

∑
x∈L∗

r

f ∗
r (x) (both sides are absolutely convergent).

5.2. Zeta integrals

Let O1 be the unit group with norm 1 of O, where O is a maximal order of an indefinite division
quaternion algebra B over Q. Let D be an arithmetic subgroup of a Q-form of SL(r;R), i.e., D is
commensurable with SL(r;Z) or O1 (r = 2). We assume that Lr is invariant for D . We define the zeta
integral Z(Pr, Lr, s) as

Z(Pr, Lr, s) =
∫

G+/D

det(g)2s
∑
x∈L′

r

Pr
(

gx t g
)

dg,

where L′
r = Lr − {x ∈ Vr: det(x) = 0}, Pr is a function on Vr , G+ = {g ∈ GL(r;R);det(g) > 0}, and dg

is the Haar measure on G+ defined by det(g)−r ∏
1�i, j�r dgi j . By Lemma 5.1 and Proposition 5.4, we

can discuss the convergence, functional equation, and meromorphic continuity of the zeta integral
using arguments similar to those of the scalar-valued case in [28] and [1].

Proposition 5.5.

(i) The integral Z( fr, Lr, s) is absolutely convergent if Re(s) > (r + 1)/2 and Re(k + s) > r. The integral
Z( fr, Lr, s) is a meromorphic function of s on C.

(ii) Suppose that D is commensurable with SL(r;Z). If

{
k > 1, Re(s) < k (r = 1),

k > 4, 2Re(s) < k (r = 2)

and Re(s) > (r − 1)/2, then the integral Z( f ∗
r , L∗

r , s) is absolutely convergent. The integral Z( f ∗
r , L∗

r , s)
is a meromorphic function of s on C.

(ii)′ Suppose that D is commensurable with O1 . If 0 < Re(s) < k − 1/2, then the integral Z( f ∗
2 , L∗

2, s) is
absolutely convergent. The integral Z( f ∗

2 , L∗
2, s) is a meromorphic function of s on C.

(iii) We have the functional equation Z( fr, Lr, s) = vol(Lr)
−1 Z( f ∗

r , L∗
r , (r + 1)/2 − s).

Proof. We easily get (i), (ii) r = 1, (ii)′ , and (iii) by Lemma 5.1, Proposition 5.4, and the arguments
of Shintani [28] and Arakawa [1]. Hence, it is sufficient to prove (ii) r = 2. Let D be an arithmetic
subgroup of SL(2;Q). We set

R =
{

k

(
a 0
0 a−1

)(
1 0
u 1

)
∈ SL(2;R); k ∈ SO(2;R), a � α′′, u ∈ W ′′′

}

for a constant α′′ and a compact subset W ′′′ of R. We may assume that R is a Siegel set of D . Then,
there exist elements h′

1,h′
2, . . . ,h′

v ′ in SL(2;Q) such that a fundamental domain of D on SL(2;R) is

contained in
⋃v ′

w=1 Rhw . From the arguments in [28], we have only to show that the integral

∫
R×R ,det(g)�1

∣∣∣∣det(g)2s
∑

x∈(h′
w L2

t h′
w )′

f ∗
2

(
gx t g

)∣∣∣∣dg
>0
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is convergent for k > 4, where (h′
w L2

th′
w)′ = h′

w L2
th′

w − {x ∈ V 2: det(x) = 0}. We use the following
lemma, which is proved in [28, Lemma 20], because we may assume j = 0 by the proof of Lemma 4.2.
We slightly modified the result of [28, Lemma 20].

Lemma 5.6. Let m1 , m2 , and m12 be positive real numbers and D be a relatively compact subset of GL(2,R).
Then, there exists a positive constant c′′ , which depends only on m1 , m2 , m12 , j, k, and D, such that

∣∣ f ∗
2

(
gx t g

)∣∣ � c′′ × (
1 + |x1|

)−m1(1 + |x2|
)−m2(1 + |x12|

)−m12
( for any g ∈ D)

if k � m1 + m2 + m12 (x = ( x1 x12
x12 x2

)
).

By using this lemma and the argument in [28, Proof of Lemma 21], we prove the convergence
of the above mentioned integral. We set h′

w L2
th′

w − {det(x) = 0} = Mw ∪ Nw , Mw = {x1 
= 0}, Nw =
{x1 = 0}. We consider the absolute convergence for each the summation part of Mw or Nw . As for
the summation part of Mw , by using Lemma 5.6 and the argument in [28], we have

∫
R×R>0

det(g)2s

∣∣∣∣ ∑
x∈Mw

f ∗
2

(
gx t g

)∣∣∣∣dg < +∞

if there exist positive real numbers m1, m2, and m12 satisfying m1,m2,m12 > 1, 2s < m1 + m2 +
m12 � k, and 0 < m1 − m2 + 1. Next, we evaluate the summation part of Nw . We write f ∗

2 (x) =
f ∗
2 (x1, x12, x2). It follows from the argument in [28] that

∫
R×R>0

det(g)2s

∣∣∣∣ ∑
x∈Nw

f ∗
2

(
gx t g

)∣∣∣∣dg < constant ×
1∫

0

du

×
∫

(t1,t2)∈R′
(t1t2)

s
∑

l∈b1Z−{0}

∑
0�b3m<2b1|l|

∣∣∣∣ ∑
n∈b4Z

f ∗
2

(
0, t1t2l, t2

2

{
m + b2l + 2l(u + n)

})∣∣∣∣t−2
1 dt1 dt2,

where R′ = {(t1, t2) ∈ R2
>0; t1t2 � 1, t1/t2 � b}, b, b1, b2, b3, and b4 are positive constants. We also

have

f ∗
2 (0, p,q) =

∑
j1+2 j2= j, j1, j2�0

a j1 j2 · (2 − √−1q) j1
(
1 + p2 − √−1q

)−k− j1− j2

=
∑

j1+2 j2= j, j1, j2�0

j1∑
j′=0

a′
j1 j2 j′ ·

(
1 − p2) j′(

1 + p2 − √−1q
)−k− j′− j2

,

where a′
j1 j2 j′ is a constant depending only on ( j1, j2, j′). By using the Poisson summation formula

for n, we find that the absolute convergence is reduced to that of

1∫
0

du

∫
(t1,t2)∈R′

(t1t2)
s

∑
l∈Z−{0}

∑
n=1

∣∣t2
1l

∣∣ j′ ∣∣t2
2l

∣∣−k|n|k+ j′−1 exp
(−πn

(
l−1t−2

2 + lt2
1

))
t−2

1 dt1 dt2

(0 � j′ � j). Thus, we have proved the absolute convergence. �
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5.3. Unipotent contribution of ((e-2) and (e-3)) or (e-4)

We consider the contribution of ((e-2) and (e-3)) or (e-4). Let γ1 be an element of Γ , which
is G(Q)-conjugate to δ(S1) (rank(S1) = 1). Hence, γ1 is of type (e-4). We set A1 = ⋃

γ ′∈[γ1]Γ {γ ′}Γ .

Let γ2 be an element of Γ , which is G(Q)-conjugate to δ(S2) (det(S2) 
= 0). For γ2 = gδ(S2)g−1

(g ∈ G(Q)), we set Uγ2,Γ = {gδ(T )g−1 ∈ Γ ; det(T ) 
= 0} and A2 = ⋃
γ ′∈Uγ2,Γ

{γ ′}Γ . The set Uγ2,Γ

contains the two families for (e-2) gδ(T2)g−1 (det(T2) > 0) and (e-3) gδ(T3)g−1 (−det(T3) ∈ (Q×)2).
We set D = Γ̃+ and L2 = L if r = 2, D = {1} and L1 = Z if r = 1 (cf. (e) Unipotent in Section 3). Using
[28, Section 3] and Proposition 4.14, we have

I(Ar) = ck, j

�(Z(Γ ))
× c(r) × Z

(
f ∗
r , Lr,2 − 2−1(r − 1)

)
,

where

c(1) = 22π−1 × vol
(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
,

c(2) = 24π−1 × �
(

Z(Γ )
) × [Γ̃ : Γ̃+]−1 × vol

(
C0(γ ;Γ )\C0

(
γ ; G(R)

))
.

It follows from Proposition 5.5 that

I(Ar) = ck, j

�(Z(Γ ))
× c(r) × vol

(
L∗

r

) × Z
(

fr, L∗
r , r − 2

)
.

For x ∈ L∗
r ∩ Ωr , we set Gx = {g ∈ G+ | gx t g = x} and Dx = D ∩ Gx . For any bounded domain Ux

such that Ux ⊂ Ux ⊂ Ωr , let W x = {g ∈ G+ | gx t g ∈ Ux}. Put

μ(x) =
∫

W x/Dx

dg/

∫
Ux

det(y)−(r+1)/2 dy.

The number μ(x) is finite and independent of the choice of Ux . Let L∗
r ∩ Ωr/∼′′ denote the set of

D-orbits in L∗
r ∩ Ωr . We define the zeta functions ξ(L∗

r , s) as follows:

ξ
(
L∗

r , s
) =

∑
x∈L∗

r ∩Ωr/∼′′

μ(x)

det(X)s

(
Re(s) >

1 + r

2

)
.

These zeta functions are called zeta functions associated to symmetric matrices. Since SM(n;C) is
a prehomogeneous vector space, they are examples of prehomogeneous zeta functions. ξ(L∗

r , s) is a
meromorphic function of s on C and has a pole at s = (r + 1)/2 (cf. [28,1,27]). If D is commensurable
with SL(2;Z), ξ(L∗

2, s) also has a pole at s = 1.

Theorem 5.7. The contribution of Ar for ((e-2)(e-3), r = 2) or ((e-4), r = 1) is given by

I(Ar) = ck, j

�(Z(Γ ))
× c(r) × vol

(
L∗

r

) × Z
(

fr, L∗
r , r − 2

)
= ck, j

�(Z(Γ ))
× c(r) × vol

(
L∗

r

) × ξ
(
L∗

r , r − 2
) × P (r),

where P (1) = (2π)2( j + 1)(k − 2)−1( j + k − 1)−1 and P (2) = 2−2c−1
k, j ( j + 1).
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Proof. It follows from the relations between zeta integrals and zeta functions (cf. [28, Proof of Theo-
rem 5] and [1, Proof of Proposition 1]) that

Z
(

fr, L∗
r , r − 2

) = ξ
(
L∗

r , r − 2
) × P (r),

where the integrals P (1) and P (2) are given by

P (1) =
∫
Ω1

f1(x)x−2 dx, P (2) =
∫
Ω2

f2(x)det(x)−3/2 dx.

By direct calculation, we get P (1) = (2π)2( j + 1)(k − 2)−1( j + k − 1)−1. By using Lemma 5.2, we get

P (2) = 2−5+2k+ jc−1
k, j

∫
Ω2

tr
(
ρk, j(x)H−1

k, j

)
exp

(−2π tr(x)
)

det(x)−3 dx

= 2−2c−1
k, j

∫
Ω2

tr
(
ρk, j(x)H−1

k, j

)
exp

(−π tr(x)
)

det(x)−3 dx

= 2−2c−1
k, j tr

{(∫
Ω2

ρk, j(x)exp
(−π tr(x)

)
det(x)−3 dx

)
H−1

k, j

}

= 2−2c−1
k, j tr

(
Hk, j H−1

k, j

) = 2−2c−1
k, j ( j + 1). �

If r = 1, then we have L∗
1 = Z and ξ(L∗

1,−1) = −1/24. If D is commensurable with SL(2;Z), from
[28, Theorem 2] and [27, Theorem 1], we know

ξ
(
L∗

2,0
) × �(Z(Γ ))

2
= vol(D\H1)

24
− π · vol(L2)

26 · 3
×

t∑
u=1

cu

d3
u
.

If D is commensurable with O1, from [1, Proposition 1], we know

ξ
(
L∗

2,0
) × �(Z(Γ ))

2
= vol(D\H1)

24
.

From Theorem 5.7 and these results for special values, we obtain an alternative proof for the unipotent
contributions, mentioned at (e) Unipotent of Section 3.

6. QQQ-rank one case

Let B be an indefinite division quaternion algebra over Q, O be a maximal order of B, and D(B)

be the discriminant of B. Then, G(Q) is a non-slit Q-form of Sp(2;R). We set Γ ∗(1) = G(O) and
Γ ∗(N) = {( a b

c d

) ∈ Γ ∗(1); a − 1,b, c,d − 1 ∈ NO}.
As for the scalar-valued case ( j = 0), the dimension formula for Sk,0(Γ

∗(1)) has been derived
by Hashimoto [13], and that for Sk,0(Γ

∗(N)) (N � 3) has been derived by Arakawa [1] and Yam-
aguchi [37] (Yamaguchi used the Riemann–Roch theorem). In this section, we generalize their results
to the vector-valued case. From [14, Section 5-1], the characteristic polynomials of the torsion ele-
ments of G(Q) are as follows:
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f1(x) = (x − 1)4, f1(−x), f7(x) = (x2 + x + 1)2, f7(−x),
f2(x) = (x − 1)2(x + 1)2, f8(x) = (x2 + 1)(x2 + x + 1), f8(−x),
f3(x) = (x − 1)2(x2 + 1), f3(−x), f9(x) = (x2 + x + 1)(x2 − x + 1),
f4(x) = (x − 1)2(x2 + x + 1), f4(−x), f10(x) = (x4 + x3 + x2 + x + 1), f10(−x),
f5(x) = (x − 1)2(x2 − x + 1), f5(−x), f11(x) = x4 + 1,
f6(x) = (x2 + 1)2, f12(x) = x4 − x2 + 1.

In the notation
∏

p|D(B) , p runs over only prime numbers. The notation t = [t0, t1, . . . , tl−1; l]m

implies that t = tn if m ≡ n (mod l). We denote the Legendre symbol by
( ∗

p

)
. We note that

dimC Sk, j(Γ
∗(1)) = 0 if j is odd. The following is a generalization of the result obtained by

Hashimoto [13] ( j = 0).

Theorem 6.1. If k � 5 and j is even, then we have dimC Sk, j(Γ
∗(1)) = ∑12

l=1 Hl, where Hl, being the total
contribution of elements of Γ ∗(1) with the characteristic polynomial fl(±x), are given as follows:

H1 = 2−73−35−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3) ×
∏

p|D(B)

(p − 1)
(

p2 + 1
)

+ 2−33−1( j + 1)
∏

p|D(B)

(p − 1).

H2 = 2−73−2(−1)k( j + k − 1)(k − 2)
∏

p|D(B)

(p − 1)2 ×
{

7 if 2 � D(B),

13 if 2 | D(B).

H3 = 2−53−1[
(−1) j/2(k − 2),−( j + k − 1), (−1) j/2+1(k − 2), ( j + k − 1);4

]
k

×
∏

p|D(B)

(p − 1)

(
1 −

(−1

p

))
.

H4 = 2−33−3{[
( j + k − 1),−( j + k − 1),0;3

]
k + [

(k − 2),0,−(k − 2);3
]

j+k

}
×

∏
p|D(B)

(p − 1)

(
1 −

(−3

p

))
.

H5 = 2−33−2{[−( j + k − 1),−( j + k − 1),0, ( j + k − 1), ( j + k − 1),0;6
]

k

+ [
(k − 2),0,−(k − 2),−(k − 2),0, (k − 2);6

]
j+k

}
×

∏
p|D(B)

(p − 1)

(
1 −

(−3

p

))
.

H6 = −2−3(−1) j/2
∏

p|D(B)

(
1 −

(−1

p

))

+ 2−73−1(−1) j/2+k( j + 1)
∑

D0|2D(B)

∏
q|D0

(q − 1) ×
∏

p|2D(B)/D0

(
1 −

(−1

p

))
× A

+ 2−73−1(−1) j/2( j + 2k − 3)
∑

De |2D(B)

∏
q|De

(q − 1) ×
∏

p|2D(B)/De

(
1 −

(−1

p

))
× B,

where
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A (resp. B) =
⎧⎨
⎩

3 if 2 � D(B), 2 | D∗,
5 if 2 | D(B), 2 | D∗; or 2 � D(B), 2 � D∗,
11 if 2 | D(B), 2 � D∗

and D∗ = D0 (resp. De) runs through the set of divisors of 2D(B), which are the product of odd (resp. even)
number of distinct primes.

H7 = −2−13−1[1,−1,0;3] j

∏
p|D(B)

(
1 −

(−3

p

))

+ 2−33−3( j + 1)[0,1,−1;3] j+2k ×
∑

D0|3D(B)

∏
q|D0

(q − 1) ×
∏

p|3D(B)/D0

(
1 −

(−3

p

))
× A

+ 2−33−3( j + 2k − 3)[1,−1,0;3] j ×
∑

De |3D(B)

∏
q|De

(q − 1) ×
∏

p|3D(B)/De

(
1 −

(−3

p

))
× B,

where

A (resp. B) =
⎧⎨
⎩

1 if 3 | D∗,
4 if 3 � D(B), 3 � D∗,
16 if 3 | D(B), 3 � D∗

and D∗ = D0 (resp. De) runs through the set of divisors of 3D(B), which are the product of odd (resp. even)
number of distinct primes.

H8 = 2−23−1C8(k, j) ×
∏

p|D(B)

(
1 −

(−1

p

))(
1 −

(−3

p

))
,

C8(k, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[1,0,0,−1,−1,−1,−1,0,0,1,1,1;12]k if j ≡ 0 mod 12,

[−1,1,0,1,1,0,1,−1,0,−1,−1,0;12]k if j ≡ 2 mod 12,

[1,−1,0,0,−1,1,−1,1,0,0,1,−1;12]k if j ≡ 4 mod 12,

[−1,0,0,−1,1,−1,1,0,0,1,−1,1;12]k if j ≡ 6 mod 12,

[1,1,0,1,−1,0,−1,−1,0,−1,1,0;12]k if j ≡ 8 mod 12,

[−1,−1,0,0,1,1,1,1,0,0,−1,−1;12]k if j ≡ 10 mod 12.

H9 = 2−13−2C9(k, j) ×
∏

p|D(B),p 
=2

(
1 −

(−3

p

))2

×
{

2 if 2 � D(B),

5 if 2 | D(B),

C9(k, j) =
{ [1,0,0,−1,0,0;6]k if j ≡ 0 mod 6,

[−1,1,0,1,−1,0;6]k if j ≡ 2 mod 6,

[0,−1,0,0,1,0;6]k if j ≡ 4 mod 6.

H10 = 2−15−1C10(k, j) ×
∏

p|D(B)

2 ×
∏

p∈D(−1;5)

2 ×

⎧⎪⎨
⎪⎩

0 if
⋃3

i=1 D(i;5) 
= ∅,

1 if
⋃3

i=1 D(i;5) = ∅, 5 | D(B),

2 if
⋃3

i=1 D(i;5) = ∅, 5 � D(B),

where we set D(i; j) = {p | D(B); p ≡ i mod j},
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C10(k, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[1,0,0,−1,0;5]k if j ≡ 0 mod 10,

[−1,1,0,0,0;5]k if j ≡ 2 mod 10,

0 if j ≡ 4 mod 10,

[0,0,0,1,−1;5]k if j ≡ 6 mod 10,

[0,−1,0,0,1;5]k if j ≡ 8 mod 10.

H11 = 2−3C11(k, j) ×
∏

p|D(B),p 
=2

2 ×
∏

p∈D(−1;8)

2 ×
{

0 if D(1;8) 
= ∅,

1 if D(1;8) = ∅,

C11(k, j) =

⎧⎪⎨
⎪⎩

[1,0,0,−1;4]k if j ≡ 0 mod 8,

[−1,1,0,0;4]k if j ≡ 2 mod 8,

[−1,0,0,1;4]k if j ≡ 4 mod 8,

[1,−1,0,0;4]k if j ≡ 6 mod 8.

H12 = 0 if D(1;12) 
= ∅,

otherwise

H12 = 2−23−1
∏

p|D(B)

2 ×
∏

p∈D(−1;12)

2 × (−1) j/2+k[1,−1,0;3] j × A

+ 2−23−1
∏

p|D(B)

2 ×
∏

p∈D(−1;12)

2 × (−1) j/2[0,−1,1;3] j+2k × B,

where

(i) if 2 � D(B), 3 � D(B),

A (resp. B) =
{ 1/2 if D(−1;12) 
= ∅,

0 if D(−1;12) = ∅, �D(5;12) is even (resp. odd),

1 if D(−1;12) = ∅, �D(5;12) is odd (resp. even),

(ii) if 2 � D(B), 3 | D(B),

A (resp. B) =
{ 3/4 if D(−1;12) 
= ∅,

1/2 if D(−1;12) = ∅, �D(5;12) is even (resp. odd),

1 if D(−1;12) = ∅, �D(5;12) is odd (resp. even),

(iii) if 2 | D(B), 3 � D(B),

A (resp. B) =
{ 3/4 if D(−1;12) 
= ∅,

1 if D(−1;12) = ∅, �D(5;12) is even (resp. odd),

1/2 if D(−1;12) = ∅, �D(5;12) is odd (resp. even),

(iv) if 6 | D(B),

A (resp. B) =
{ 9/8 if D(−1;12) 
= ∅,

5/4 if D(−1;12) = ∅, �D(5;12) is even (resp. odd),

1 if D(−1;12) = ∅, �D(5;12) is odd (resp. even).(−1

p

)
=

{0 if p = 2,

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4),

(−3

p

)
=

{ 0 if p = 3,

1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).



S. Wakatsuki / Journal of Number Theory 132 (2012) 200–253 247
Proof. We can generalize the proof of [13, Theorem 4-1] by using Theorem 3.1. Note that Theorem B.1
is used in the proof of this theorem (cf. Appendix B). �
Numerical examples of dimCCC Sk, j(Γ

∗(1)).
(i) D(B) = 2 × 3.

j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17

0 2 0 4 2 8 5 15 10 25 15 34 26 53 38
2 2 2 5 7 15 17 33 34 53 58 91 96 138 140
4 4 6 14 19 35 42 67 77 114 126 179 200 264 287
6 9 17 30 40 65 82 118 145 195 224 299 341 432 484
8 19 27 49 67 106 131 188 223 298 346 448 514 642 717

(ii) D(B) = 2 × 5.
j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16

0 4 2 13 5 26 19 56 41 98 70 149 123 232
2 9 12 28 39 82 99 170 185 285 316 470 513 714
4 23 33 76 99 180 227 346 408 587 675 926 1051 1364
6 46 83 150 203 330 423 607 742 1004 1173 1534 1771 2228
8 88 141 246 347 532 684 955 1157 1522 1805 2302 2669 3298

(iii) D(B) = 3 × 5.
j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15

0 9 8 34 29 86 85 183 178 331 318 536 531
2 30 52 117 170 311 405 640 775 1120 1324 1821 2100
4 84 149 298 431 703 934 1357 1694 2316 2789 3644 4283
6 174 323 574 834 1281 1702 2373 2985 3936 4757 6044 7136
8 330 575 979 1416 2091 2756 3752 4681 6044 7305 9117 10 746

∗ Our theorem is not valid for k = 4. We formally substitute k = 4 in the formula of our theorem. When D(B) = 6, we know
dimC S4,0(Γ ∗(1)) = 2 from [16, Theorem 4.4]. We conjecture that the dimension of Sk, j(Γ

∗(1)) is given by substituting k = 4
in the formula (cf. [12,13]). We also conjecture the same for other arithmetic subgroups.

Theorem 6.2. k � 5. j is even. If 2 � D(B), then we have

dim Sk, j
(
Γ ∗(2)

) = 2−33−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)
∏

p|D(B)

(p − 1)
(

p2 + 1
)

+ 2−2 · 3 · 5( j + 1)
∏

p|D(B)

(p − 1)

+ 2−3 · 5(−1)k( j + k − 1)(k − 2)
∏

p|D(B)

(p − 1)2.

If 2 | D(B), then we have

dim Sk, j
(
Γ ∗(2)

) = 3−15−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)
∏

p|D(B)

(p − 1)
(

p2 + 1
)

+ 2 · 3 · ( j + 1)
∏

p|D(B)

(p − 1) + (−1)k( j + k − 1)(k − 2)
∏

p|D(B)

(p − 1)2.

Proof. Let r be even, and p1, . . . , pr , and q be primes. The prime q satisfies q ≡ 5 (mod 8) and
(q/pm) = −1 for all pm 
= 2. Let α = p1 · · · pr and β = q. We define the quaternion algebra B by
B = Q + Qa + Qb + Qab, a2 = α, b2 = β , ab = −ba. Then, D(B) = p1 p2 · · · pr . We set

O = Z + Z
1 + b + Z

a(1 + b) + Z
(a + γ )b
2 2 q
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where γ 2 ≡ α (mod q). Ibukiyama constructed this integer ring O and proved that this integer ring
O is maximal (cf. [17]). We set

g1 =
(

0 1
1 0

)
/∈ Γ ∗(2) and g2 =

(
b −2(2l + 1)

2 −b

)
∈ Γ ∗(2),

where b2 = β = q = 4(2l + 1) + 1. It follows from H2 = I({g1}Γ ∗(1)) + I({g2}Γ ∗(1)) that the conjugacy
classes {g1}Γ ∗(1) and {g2}Γ ∗(1) are all the Γ ∗(1)-conjugacy classes whose eigenvalues are 1 and −1.
Thus, we have obtained the dimension formula for Γ ∗(2) by using Theorem 3.2. �

Using Theorem 3.2, we get the following dimension formula, which is a generalization of the result
obtained by Arakawa [1] and Yamaguchi [37] ( j = 0).

Theorem 6.3. If k � 5 and N � 3, then we have

dim Sk, j
(
Γ ∗(N)

) = [
Γ ∗(1) : Γ ∗(N)

]
×

{
2−83−35−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)

∏
p|D(B)

(p − 1)
(

p2 + 1
)

+ 2−43−1( j + 1)N−3
∏

p|D(B)

(p − 1)

}
,

where [Γ ∗(1) : Γ ∗(N)] = N10 ∏
p|N, p�D(B)(1 − p−2)(1 − p−4)

∏
p|N, p|D(B)(1 − p−2)(1 + p−1).

7. QQQ-rank two case

We can obtain the dimension formulas for some congruence subgroups of Sp(2;Z) by using Theo-
rems 3.1 and 3.2. We also use Theorem B.1 (cf. Appendix B) or the classifications of the Γ -conjugacy
classes (cf. Gottschling [9], Ueno [34], and Hashimoto [12, Sections 6 and 7]). In this paper, we do not
describe the classifications and local factors. Our proofs are different from Tsushima’s proofs [32,33].

Let Γ (1) = Sp(2;Z) and Γ (N) = {γ ∈ Γ (1); γ ≡ I4 (mod N)}. As for the scalar-valued case ( j = 0),
the dimension formulas for Sk,0(Γ (N)) (N = 1,2) have been derived by Igusa [22], Hashimoto [12]
and Tsushima [31], the dimension formula for Sk,0(Γ (N)) (N � 3) has been derived by Christian [6],
Morita [25], and Yamazaki [38] (Gunji also derived a formula for N = 3 in [10]).

Theorem 7.1. If k � 5 and j is even, then we have dimC Sk, j(Γ (1)) = ∑12
l=1 Hl, where Hl, being the total

contribution of elements of Γ (1) with the characteristic polynomial fl(±x), are given as follows:

H1 = 2−73−35−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)

− 2−53−2( j + 1)( j + 2k − 3) + 2−43−1( j + 1).

H2 = 2−73−27(−1)k( j + k − 1)(k − 2) − 2−43−1(−1)k( j + 2k − 3) + 2−53(−1)k.

H3 = −2−3[
(−1) j/2,−1, (−1) j/2+1,1;4

]
k

+ 2−53−1[
(−1) j/2(k − 2),−( j + k − 1), (−1) j/2+1(k − 2), ( j + k − 1);4

]
k.

H4 = −2−23−2{[1,−1,0;3]k + [1,0,−1;3] j+k
} − 3−2{[1,0,1;3]k + [0,−1,−1;3] j+k

}
+ 2−33−3{[

( j + k − 1),−( j + k − 1),0;3
] + [

(k − 2),0,−(k − 2);3
] }

.
k j+k
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H5 = −2−23−1{[−1,−1,0,1,1,0;6]k + [1,0,−1,−1,0,1;6] j+k
}

+ 2−33−2{[−( j + k − 1),−( j + k − 1),0, ( j + k − 1), ( j + k − 1),0;6
]

k

+ [
(k − 2),0,−(k − 2),−(k − 2),0, (k − 2);6

]
j+k

}
.

H6 = −2−3(−1) j/2 + 2−73−15(−1) j/2( j + 2k − 3) + 2−7(−1) j/2+k( j + 1).

H7 = −2−13−1[1,−1,0;3; j]
+ 2−13−3( j + 2k − 3)[1,−1,0;3] j + 2−23−3( j + 1)[0,1,−1;3] j+2k.

H8 = 2−23−1C8(k, j), H9 = 3−2C9(k, j), H10 = 5−1C10(k, j),

H11 = 2−3C11(k, j), H12 = 2−23−1(−1) j/2[0,−1,1;3] j+2k,

where C8(k, j), C9(k, j), C10(k, j), and C11(k, j) are given in Theorem 6.1.

Numerical examples of dimCCC Sk, j(Γ (1)).
j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 3 0 4 0
2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 3 1 5 1
4 0 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 6 3 8 4
6 0 0 0 0 1 0 1 1 2 1 3 2 5 3 7 4 9 6 12 9
8 0 0 0 0 1 1 2 1 3 2 5 4 7 5 9 7 13 10 17 13

∗ Our theorem is not valid for k = 4. Igusa has calculated the dimensions for ( j,k) = (0,4) in [22]. For ( j,k) = (2,4), (4,4),
the values are trivial, because we can prove them by using dimC S8,2(Γ (1)) = dimC S8,4(Γ (1)) = 0 and the multiple of the
Eisenstein series of weight 4. For ( j,k) = (6,4), (8,4), Ibukiyama has calculated the dimensions by using the Witt operator.

Theorem 7.2. If k � 5 and j is even, then we have

dimC Sk, j
(
Γ (2)

) = 2−33−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)

− 2−3 · 5( j + 1)( j + 2k − 3) + 2−3 · 3 · 5( j + 1)

+ 2−3 · 5(−1)k(k − 2)( j + k − 1)

− 2−3 · 3 · 5(−1)k( j + 2k − 3) + 2−3 · 32 · 5(−1)k.

Theorem 7.3. If k � 5 and N � 3, then we have

dimC Sk, j
(
Γ (N)

) = [
Γ (1) : Γ (N)

] × {
2−83−35−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)

− 2−63−2( j + 1)( j + 2k − 3)N−2 + 2−53−1( j + 1)N−3}
,

where [Γ (1) : Γ (N)] = N10 ∏
p:prime, p|N(1 − p−2)(1 − p−4).

For a prime p, we set Γ0(p) = {( A B
C D

) ∈ Γ (1); C ≡ 0 (mod p)}. Let χ be a Dirichlet character

modulo p. Let χ(γ ) = χ(det(D)) for
( A B

C D

) ∈ Γ0(p). We can prove χ(γ ) = 1 for any unipotent el-
ement γ ∈ Γ0(p) by simple calculation. Hence, we can apply Theorem 3.2 to the calculation of
dimC Sk, j(Γ0(p),χ). Hashimoto has not classified Γ0(p)-conjugacy classes for p = 2 in [12]. Since
Γ0(2)-conjugacy classes can be classified by using the same argument as that in [12], we omit the
proof for p = 2. For a polynomial f (x) with Z-coefficients, in the notation

∑
f (a)≡0, a runs over all

solutions of f (a) ≡ 0 mod p on Z/pZ.
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Theorem 7.4. If k � 5, j is even, and p is prime, then we have dimC Sk, j(Γ0(p),χ) = ∑12
l=1 Hl, where Hl, be-

ing the total contribution of elements of Γ0(p) with the characteristic polynomial fl(±x), are given as follows:

H1 = 2−73−35−1( j + 1)(k − 2)( j + k − 1)( j + 2k − 3)(p + 1)
(

p2 + 1
)

− 2−43−2( j + 1)( j + 2k − 3)(p + 1) + 2−23−1( j + 1).

H2 = 2−73−2(−1)k( j + k − 1)(k − 2)χ(−1) ×
{

7(p + 1)2 if p 
= 2,

57 if p = 2

− 2−33−1(−1)k( j + 2k − 3)(p + 1)χ(−1) + 2−4(−1)kχ(−1)

(
7 −

(−1

p

))
.

H3 = −2−2[
(−1) j/2,−1, (−1) j/2+1,1;4

]
k

( ∑
a2+1≡0

χ(a)

)

+ 2−53−1[
(−1) j/2(k − 2),−( j + k − 1), (−1) j/2+1(k − 2), ( j + k − 1);4

]
k

× (p + 1)

( ∑
a2+1≡0

χ(a)

)
.

H4 = −2−13−2{[1,−1,0;3]k + [1,0,−1;3] j+k
}( ∑

a2+a+1≡0

χ(a)

)

− 2 · 3−2{[1,0,1;3]k + [0,−1,−1;3] j+k
}( ∑

a2+a+1≡0

χ(a)

)

+ 2−33−3{[
( j + k − 1),−( j + k − 1),0;3

]
k + [

(k − 2),0,−(k − 2);3
]

j+k

}
× (p + 1)

( ∑
a2+a+1≡0

χ(a)

)
.

H5 = −2−13−1{[−1,−1,0,1,1,0;6]k + [1,0,−1,−1,0,1;6] j+k
}

×
( ∑

a2−a+1≡0

χ(a)

)

+ 2−33−2{[−( j + k − 1),−( j + k − 1),0, ( j + k − 1), ( j + k − 1),0;6
]

k

+ [
(k − 2),0,−(k − 2),−(k − 2),0, (k − 2);6

]
j+k

}
× (p + 1)

( ∑
a2−a+1≡0

χ(a)

)
.

H6 = −2−3(−1) j/2
{

2 + χ(−1)

(
1 +

(−1

p

))}

+ 2−73−1(−1) j/2( j + 2k − 3) ×
{

5{p + 1 + χ(−1)(1 + (−1
p ))} if p 
= 2,

23 if p = 2

+ 2−7(−1) j/2+k( j + 1) ×
{

p + 1 + χ(−1)(1 + (−1
p )) if p 
= 2,
3 if p = 2.



S. Wakatsuki / Journal of Number Theory 132 (2012) 200–253 251
H7 = −2−13−1[1,−1,0;3] j

(
2 +

∑
a2+a+1≡0

χ(a)

)

+ 2−13−3( j + 2k − 3)[1,−1,0;3] j ×
{

p + 1 + ∑
a2+a+1≡0 χ(a) if p 
= 3,

7 if p = 3

+ 2−23−3( j + 1)[0,1,−1;3] j+2k

×
⎧⎨
⎩

p − 1 + (
∑

a2+a+1≡0 χ(a))2 if p ≡ 1 mod 3,

p + 1 if p ≡ 2 mod 3,

1 if p = 3.

H8 = 2−23−1C8(k, j)

( ∑
a2+a+1≡0

χ(a)

)( ∑
c2+1≡0

χ(c)

)
.

H9 = 3−2C9(k, j) ×
{

(
∑

a2−a+1≡0 χ(a))(
∑

c2+c+1≡0 χ(c)) if p 
= 2,

3/2 if p = 2.

H10 = 5−1C10(k, j)

( ∑
a4+a3+a2+a+1≡0

χ(a)

)
.

H11 = 2−3C11(k, j) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2χ(−1) + ∑
a2+1≡0 χ(a) if p ≡ 1 mod 8,

2χ(−1) if p ≡ 3 mod 8,∑
a2+1≡0 χ(a) if p ≡ 5 mod 8,

0 if p ≡ 7 mod 8,

1 if p = 2.

H12 = 2−23−1(−1) j/2[0,−1,1;3] j+2k

{
χ(−1)

(
1 +

(−1

p

))
+

∑
a2+a+1≡0

χ(a)

}
.

C8(k, j), C9(k, j), C10(k, j), and C11(k, j) are given in Theorem 6.1.

Numerical examples of dimCCC Sk, j(Γ0(3)).
j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 0 2 0 5 0 10 0 16 0 23 1 35 3 47 4
2 0 0 2 0 7 3 16 6 26 12 44 24 67 37 92 54
4 1 0 5 3 14 10 29 20 49 36 79 61 116 90 163 130
6 3 4 11 11 27 25 51 46 84 74 128 116 187 168 258 232
8 5 7 18 19 42 43 77 74 123 118 187 181 269 256 365 349

Numerical examples of dimCCC Sk, j(Γ0(3), ( det(D)
3 )).

j�k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 0 4 0 7 0 12 0 20 1 29 1 39 4 55
2 0 1 0 5 1 10 3 21 10 36 17 53 28 79 47 112
4 0 2 2 9 6 20 14 38 29 63 47 95 74 139 111 191
6 1 7 7 19 17 38 33 66 59 106 94 156 138 220 199 301
8 3 10 14 29 30 56 56 98 97 154 148 223 214 314 304 426

∗ Our theorem is not valid for k = 4. Tsushima has calculated the dimensions for ( j,k) = (0,4) in [33]. For k = 4, j > 0, the
values are conjectural.

Appendix A. Non-cusp forms

In this appendix, we explain some properties of non-cusp forms for Γ (1) and Γ ∗(1). A C j+1-
valued holomorphic function f on H2 is called a Siegel modular form of weight ρk, j for Γ if f
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satisfies f (γ · Z) = ρk, j(C Z + D) f (Z) for all γ = ( A B
C D

) ∈ Γ and Z ∈ H2. Let Mk, j(Γ ) be the space of
Siegel modular forms of weight ρk, j for Γ . Let Nk, j(Γ ) be the orthogonal complement of Sk, j(Γ ) in
Mk, j(Γ ) by the Petersson inner product. We have Mk, j(Γ ) = Sk, j(Γ )⊕ Nk, j(Γ ). From [23,2], we know
the following results for Γ (1). We also obtain the following results for Γ ∗(1) similarly.

Theorem A.1. Let k � 5. j is even. If k is odd, then Nk, j(Γ (1)) = Nk, j(Γ
∗(1)) = {0}. If k is even,

we have dimC Nk,0(Γ (1)) = dimC Mk(SL(2;Z)), dimC Nk, j(Γ (1)) = dimC Sk+ j(SL(2;Z)) ( j > 0),
dimC Nk,0(Γ

∗(1)) = 1, and dimC Nk, j(Γ
∗(1)) = 0 ( j > 0), where Mk(SL(2;Z)) (resp. Sk(SL(2;Z))) is the

space of modular forms (resp. cusp forms) of weight k with respect to SL(2;Z).

Thus, we obtain the dimension formulas for Mk, j(Γ (1)) and Mk, j(Γ
∗(1)). The Eisenstein series

span the spaces Nk, j(Γ (1)) and Nk, j(Γ
∗(1)). For details of the Eisenstein series, we refer to [23,2]

(split Q-form case) and [16] (non-split Q-form case). For details of the L-functions of vector-valued
Siegel modular forms, we refer to [2] (split Q-form case) and [30] (non-split Q-form case).

Appendix B. Elliptic contributions

Here, we describe the formula for elliptic contributions used in the proofs of Theorems 6.1 and 7.1.
The formula was obtained by Hashimoto (cf. [11–13]). If H is an algebraic group defined over Q, we
denote the p-adic completion (resp. the adelization) of H by H p (resp. HA). We set

G̃(Q) =
{

g =
(

a b
c d

)
∈ M(2;B);

(
a b
c d

)(
0 1
1 0

)(
aι cι

bι dι

)
= n(g)

(
0 1
1 0

)
, n(g) ∈ Q>0

}

and Z(g) = {z ∈ M(2;B) | zg = gz} for g ∈ G̃(Q). We assume that Γ satisfies the following conditions:
(i) there exists a Z-order R of M(2;B) such that Γ = R× ∩ G̃(Q) and (ii) n(R×

p ∩ G̃ p) = Z×
p for all p.

Theorem B.1. (See [12, Theorem 2-4].) The elliptic contribution in Theorem 3.1 is equal to

ck, j

∑
{g}G̃(Q)

J ′
0(g)

∑
LG̃ (Λ)

MG̃(Λ)
∏

p

cp(g, R p,Λp).

The notations are defined below.

(1) The first sum is extended over the conjugacy classes in G̃(Q) of the elements with fi-
nite orders, which are locally integral (cf. [12, Theorem 1-3]). (2) LG̃(Λ) runs over the G̃-genera
of Z-orders in Z(g). The G̃-genus LG̃(Λ) containing Λ consists of all Z-orders in Z(g), which
are conjugate in Z(g)×p ∩ G̃ p with Λp for all p. (3) We decompose the group (Z(g)× ∩ G̃)A into

the disjoint union (Z(g)× ∩ G̃)A = ⋃h
k=1(Z(g)× ∩ G̃(Q))yk(Λ

×
A ∩ G̃A), ΛA = Λ ⊗Z ZA . Let Λk =

ykΛy−1
k = ⋂

p((yk)pΛp(yk)
−1
p ∩ Z(g)). Then, we define MG̃(Λ) = vol(Λ×

0 ∩ C0(g; G(R))\C0(g; G(R)))∑h
k=1[Λ×

k ∩ G̃(Q) : Λ×
0 ∩ C0(g; G(Q))]−1, where Λ0 is a fixed Z-order of Z(g) (MG̃(Λ) is the G̃-Mass

of Λ). (4) We set cp(g, R p,Λp) = �((Z(g)× ∩ G̃)p\M p(g, R p,Λp)/(R×
p ∩ G̃ p)), where M p(g, R p,Λp) =

{x ∈ G̃ p; x−1 gx ∈ R p , there exists an a ∈ (Z(g)× ∩ G̃)p such that Z(g)p ∩ (xR p x−1) = aΛpa−1}.
(5) J ′

0(g) = J0(g) if −I4 /∈ C0(g; G(R)), and J ′
0(g) = 2−1 J0(g) if −I4 ∈ C0(g; G(R)).

The explicit calculations of the local factors cp for R p = M2(Op) have been carried out by
Hashimoto and Ibukiyama [14].
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