
Journal of Number Theory 133 (2013) 3921–3940
Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Computations of vector-valued Siegel modular forms ✩,✩✩

Alexandru Ghitza a, Nathan C. Ryan b,∗, David Sulon c

a Department of Mathematics and Statistics, University of Melbourne, Australia
b Department of Mathematics, Bucknell University, United States
c Department of Mathematics, Drexel University, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2013
Revised 4 April 2013
Accepted 19 April 2013
Available online 22 July 2013
Communicated by J. Brian Conrey

Keywords:
Siegel modular forms
Critical values
Congruences between modular forms

We carry out some computations of vector-valued Siegel
modular forms of degree two, weight (k, 2) and level one, and
highlight three experimental results: (1) we identify a rational
eigenform in a three-dimensional space of cusp forms; (2) we
observe that non-cuspidal eigenforms of level one are not
always rational; (3) we verify a number of cases of conjectures
about congruences between classical modular forms and Siegel
modular forms. Our approach is based on Satoh’s description
of the module of vector-valued Siegel modular forms of weight
(k, 2) and an explicit description of the Hecke action on
Fourier expansions.
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1. Introduction

Computations of modular forms in general and Siegel modular forms in particular are
of great current interest. Recent computations of Siegel modular forms on the paramod-
ular group by Poor and Yuen [21] have led to the careful formulation by Brumer and
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Kramer [3] of the Paramodular Conjecture, a natural generalization of the Taniyama–
Shimura–Weil Conjecture. Historically, computations of scalar-valued Siegel modular
forms in the 1970s by Kurokawa [15] led to the discovery of the Saito–Kurokawa lift,
a construction whose generalizations are still studied. In the 1990s, computations by
Skoruppa [28] revealed some striking properties that some scalar-valued Siegel modular
forms possess (namely, there are rational eigenforms of weights 24 and 26 in level 1 that
span a two-dimensional space of cusp forms). These properties have yet to be explained.
This paper is in the same spirit.

We carry out the first systematic computations of spaces of vector-valued Siegel mod-
ular forms of degree two and of weight (k, 2). We do this in Sage [29] using a package
co-authored by the second author, Raum, Skoruppa and Tornaría [22]. We then decom-
pose these spaces using the action of the Hecke operators and check that the eigenforms
we compute satisfy the Ramanujan–Petersson bound (see Proposition 3.1). We also ob-
serve two new phenomena: the existence of non-cuspidal eigenforms that are not defined
over Q (see Proposition 3.3), and the existence of a three-dimensional space of cusp forms
of level one that is reducible as a Hecke module over Q (see Proposition 3.2).

In addition, we verify two interesting conjectures on congruences: the first, due to
Harder, has been previously verified in some cases by Faber and van der Geer [31];
the other, due to Bergström, Faber, van der Geer and Harder, has been previously
verified in some cases by Dummigan [7]. Our approach to verifying these conjectures is
to compute Hecke eigenvalues of Siegel modular forms in as direct a manner as possible,
using Satoh’s concrete description of Siegel modular forms of weight (k, 2). This is a
very different approach than the one taken by Faber and van der Geer and we verify
cases that they do not (and vice versa). After determining a basis of eigenforms for the
space, we use explicit formulas for the Hecke action on Fourier expansions to extract the
Hecke eigenvalues. Our main results in this direction are Theorems 4.3 and 4.8, which
summarize the cases of the two conjectures that we have verified.

Our computation of the spaces of Siegel modular forms uses the framework developed
in [23], to which we refer the interested reader for a detailed description. The current
paper focuses on those aspects relevant to vector-valued forms of weight (k, 2) and on
the consequences of these computations. We have made the data gathered in the process
publicly available at [25] and at [19].

2. Vector-valued Siegel modular forms of weight (k, 2)

We recall the definition of a Siegel modular form of degree two. We consider the full
Siegel modular group Γ (2) given by

Γ (2) := Sp(4,Z) =
{
M ∈ M(4,Z): tM

(
I2

)
M =

(
I2

)}
. (1)
−I2 −I2
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Let

H(2) :=
{
Z ∈ M(2,C): tZ = Z, Im(Z) > 0

}
(2)

be the Siegel upper half space of degree 2. For a nonnegative integer j, the space C[X,Y ]j
of homogeneous polynomials of degree j has a GL2-action given by

(A, p) �→ A · p := p
(
(X,Y )A

)
. (3)

Definition 2.1. Let k, j be nonnegative integers. A Siegel modular form of degree 2 and
weight (k, j) is a complex analytic function F : H(2) → C[X,Y ]j such that

F (gZ) := F
(
(AZ + B)(CZ + D)−1) = det(CZ + D)k(CZ + D) · F (Z) (4)

for all g =
(
A B
C D

)
∈ Γ (2).

Remark 2.2. The action in (3) is a concrete realization of the symmetric power repre-
sentation Symj of GL2. Definition 2.1 is a concrete description of Siegel modular forms
with values in the representation space detk ⊗ Symj of GL2. We made these choices in
our implementation because it made the multiplication of vector-valued Siegel modular
forms easier to implement.

The space of all such functions is denoted M
(2)
k,j , where we suppress j if it is 0. If

j is positive F is called vector-valued, otherwise it is called scalar-valued. We write
M

(2)
∗ :=

⊕
k M

(2)
k for the ring of (scalar-valued) Siegel modular forms of degree 2.

Let

Q :=
{
f = [a, b, c]: a, b, c ∈ Z, b2 − 4ac � 0, a � 0

}
where [a, b, c] corresponds to the quadratic form aX2 + bXY + cY 2.

A Siegel modular form F has a Fourier expansion of the form

F (Z) =
∑

f=[a,b,c]∈Q

CF (f)e
(
aτ + bz + cτ ′

)
.

Here Z := ( τ z
z τ ′ ) (τ, τ ′ ∈ H(1) and z ∈ C), e(x) = e2πix, the trace of a matrix A is

denoted by trA. The form F is called a cusp form if its Fourier expansion is supported
on positive-definite elements of Q. The subspace of cusp forms is denoted S

(2)
k,j .

The ring of all vector-valued Siegel modular forms
⊕

k,j M
(2)
k,j is not finitely generated.

For this reason the symmetric power j is usually fixed. The resulting module is finitely
generated over M (2)

∗ . We focus exclusively on weight (k, 2), where we have a very concrete
description of these spaces thanks to work of Satoh.
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Remark 2.3. The reader is cautioned not to confuse the vector-valued Siegel modular
forms defined above with vector-valued modular forms on SL2(Z). The latter are univari-
ate holomorphic functions on the upper-half plane in C, with values in a representation
space of the group SL2(Z) (for a precise definition, see for instance [13]). Apart from
the unfortunate clash of terminology, the two types of objects have very little in com-
mon.

2.1. Satoh’s theorem

The Satoh bracket is a special case of the general Rankin–Cohen bracket construction.
Satoh [26] examined the case of weight (k, 2). Suppose F ∈ M

(2)
k and G ∈ M

(2)
k′ are two

scalar-valued Siegel modular forms. We define the Satoh bracket by

[F,G]2 = 1
2πi

(
1
k
G∂ZF − 1

k′
F∂ZG

)
∈ M

(2)
k+k′,2, (5)

where ∂Z =
( ∂Z11 1/2∂Z12

1/2∂Z12 ∂Z22

)
.

In the same paper, Satoh showed that
⊕

k M
(2)
k,2 is generated by elements all of which

can be expressed in terms of Satoh brackets. More precisely, he showed that

M
(2)
k,2 = [E4, E6]2 ·M (2)

k−10 ⊕ [E4, χ10]2 ·M (2)
k−14

⊕ [E4, χ12]2 ·M (2)
k−16 ⊕ [E6, χ10]2 · C[E6, χ10, χ12]k−16

⊕ [E6, χ12]2 · C[E6, χ10, χ12]k−18 ⊕ [χ10, χ12]2 · C[χ10, χ12]k−22. (6)

Here the forms E4, E6, χ10, χ12 are the generators of the ring of scalar-valued Siegel
modular forms described by Igusa [11]. By C[A1, . . . , An]k we mean the module of weight
k modular forms that can be expressed in terms of generators A1, . . . , An.

A basis for the space M
(2)
k,2 was computed via a Sage [29] implementation in [22] of an

algorithm found in [23].

2.2. Hecke operators

As our interest is in computing Hecke eigenforms, we need to describe how one com-
putes the Hecke action. We give formulas for the image of a Siegel modular form of
weight (k, 2) under the operator T (pδ). The Hecke operators are multiplicative and so it
suffices to understand the image for these operators. The formulas can be found in [10]
but we present them here for completeness.

Let F be a Siegel modular form as above and let the image of F under T (pδ) have
coefficients C ′([a, b, c]). Then
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C ′([a, b, c]) =
∑

α+β+γ=δ

pβk+γ(2k−1)

×
∑

U∈R(pβ)
aU≡0 (pβ+γ)
bU≡cU≡0 (pγ)

(d0,βU) · C
(
pα

[
aU
pβ+γ

,
bU
pγ

,
cU

pγ−β

])
(7)

where

• R(pβ) is a complete set of representatives for SL(2,Z)/Γ (1)
0 (pβ) where Γ

(1)
0 (pβ) is

the congruence subgroup of SL(2, Z) of level pβ ;
• for f = [a, b, c], [aU , bU , cU ] = fU := f((X,Y )tU);
• d0,β =

( 1
pβ

)
;

• the · is given by the action defined in (3).

We denote the Hecke eigenvalue of a Siegel modular form F under the operator T (pδ)
by λpδ(F ). If the space S

(2)
k,2 has dimension d, the Hecke eigenvalues of F are algebraic

numbers of degree at most d. The field that contains the Hecke eigenvalues of F is
denoted QF .

2.3. Computing Hecke eigenforms

Fix a space of Siegel modular forms of weight (k, 2) with basis {F1, . . . , Fn}, obtained
as algebraic combinations of the Igusa generators and Satoh brackets. Because the Hecke
operators are a commuting family of linear operators, there is a basis {G1, . . . , Gn} for
the space consisting entirely of simultaneous eigenforms.

The forms Gi are determined computationally as follows. First, determine the matrix
representation for the Hecke operator T (2) by computing the image under T (2) of each
basis element Fi. Build a matrix N that is invertible and whose jth row consists of
coefficients of Fj at certain indices Q1, . . . , Qn. To ensure that N is invertible we pick
the indices one at a time, making sure that each choice of index Qi increases the rank
of N . We then construct a matrix M whose jth row consists of coefficients of the image of
Fj under T (2) indexed by Q1, . . . , Qn. Then the matrix representation of T (2) is MN−1.

We compute the Hecke eigenforms using T (2) and we express them in terms of the basis
{F1, . . . , Fn}. We compute the Hecke eigenvalues λpδ by computing these expressions to
high precision and then computing their image under the Hecke operator T (pδ) as in (7).

2.4. Hecke eigenvalues, Satake parameters and symmetric polynomials

Fix a prime p. The Satake isomorphism Ω is a map between the local-at-p Hecke
algebra Hp associated to Γ and a polynomial ring Q[x0, x1, x2]W2 invariant under the
action of the Weyl group. A matrix representation of Ω can be found in [14,24]. We
summarize the relevant results here.
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Consider

T (p) = Γ

⎛
⎜⎜⎝

1
1

p

p

⎞
⎟⎟⎠Γ, T0

(
p2) = Γ

⎛
⎜⎜⎝

1
1

p2

p2

⎞
⎟⎟⎠Γ, (8)

T1
(
p2) = Γ

⎛
⎜⎜⎝

1
p

p2

p

⎞
⎟⎟⎠Γ, T2

(
p2) = Γ

⎛
⎜⎜⎝

p

p

p

p

⎞
⎟⎟⎠Γ. (9)

The images under Ω of these operators are:

Ω
(
T (p)

)
= x0x1x2 + x0x1 + x0x2 + x0, (10)

Ω
(
T0

(
p2)) = 2p− 2

p
φ2 + p− 1

p
φ1 + φ0, (11)

Ω
(
T1

(
p2)) = p2 − 1

p3 φ2 + 1
p
φ1, (12)

Ω
(
T2

(
p2)) = 1

p3φ2, (13)

where

φ0 = x2
0x

2
1x

2
2 + x2

0x
2
1 + x2

0x
2
2 + x2

0, (14)

φ1 = x2
0x

2
1x2 + x2

0x1x
2
2 + x2

0x1 + x2
0x2, (15)

φ2 = x2
0x1x2. (16)

Fix a Siegel Hecke eigenform F . It can be shown [1, p. 165] that for any p there exists
a triple (αF

0,p, α
F
1,p, α

F
2,p) ∈ (C×)3/W2 with the property that Ω(T )|xi←αF

i,p
= λT (F ), the

eigenvalue of F with respect to the Hecke operator T . The numbers α are called the
Satake parameters of F at p.

We will make use of the following way of expressing T (p)2 in terms of the operators
Ti(p2):

Theorem 2.4. (See [31].) T (p)2 = T0(p2) + (p + 1)T1(p2) + (p2 + 1)(p + 1)T2(p2).

3. Computational and experimental results

We carry out the computations of particular eigenforms in the following way. Satoh’s
theorem as described above in Section 2.1 gives a recipe for computing a basis of vector-
valued Siegel modular forms of weight (k, 2). In particular, following [28] we can compute
the Fourier expansions of the Igusa generators E4, E6, χ10, χ12. This is done via an ex-
plicit map from elliptic modular forms to Siegel modular forms. For each generator we
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easily computed the part of its Fourier expansion which is supported on positive definite
quadratic forms up to discriminant 3000 and on singular quadratic forms [0, 0, c] where
0 � c � 750.

Using these four Igusa generators we determine a basis for the space of weight (k, 2)
as prescribed by Satoh’s theorem: we compute a basis for the modules Mk−10, Mk−14,
Mk−16 and C[E6, χ10, χ12]k−16, C[E6, χ10, χ12]k−18, C[χ10, χ12]k−22. We then form a ba-
sis for the space of weight (k, 2) by multiplying each basis above by the Satoh bracket
that corresponds to it in Satoh’s theorem and end up with eigenforms following the pro-
cedure described in Section 2.3. One might pause at the idea of multiplying vector-valued
Siegel modular forms but this is precisely the reason why we defined the coefficients of
vector-valued Siegel modular forms to be homogeneous polynomials (see Remark 2.2).

For example, we find that a Hecke basis for the space of weight (16, 2) is given by

G1 = E6[E4, E6]2 −
173 820 100 608

1 557 539 [E4, χ12]2 + 1 800 409 600
1 557 539 [E6, χ10]2, (17)

G2 = [E4, χ12]2 +
(

5
8064α + 755

42

)
[E6, χ10]2, (18)

G2 = [E4, χ12]2 +
(

5
8064 ᾱ + 755

42

)
[E6, χ10]2 (19)

where α is a root of x2 + 58 752x + 858 931 200 and ᾱ is its conjugate. The form G1 is
non-cuspidal (probably Eisenstein) and the other two forms in the basis are cuspidal.

The Hecke eigenvalues that appear in the space S
(2)
k,2 tend to have the largest possible

degree, namely the dimension d of the space. For example the forms G2 and G2 above
have Hecke eigenvalues in a quadratic field. There are however (very surprisingly!) coun-
terexamples to this; this is analogous to what happens in the scalar-valued spaces S

(2)
24

and S
(2)
26 , see [28], but in stark contrast to the situation in degree one (as predicted by

Maeda’s conjecture).
Consider the weight (20, 2). Let α, ᾱ be the roots of the polynomial x2 − 780 288x +

121 332 695 040 in an algebraic closure of Q, and let K = Q[α] be the corresponding
quadratic number field. The field K has discriminant 23 · 26 177. The space S

(2)
20,2 is

three-dimensional, and a basis of Hecke eigenforms is given by:

H1 = χ10[E4, E6]2 −
5
14E6[E4, χ10], (20)

H2 = χ10[E4, E6]2 +
(

25
12 241 152α− 7685

15 939

)
E6[E4, χ10]2

+
( −1

364 320α + 674
759

)
E4[E4, χ12]2, (21)

H3 = χ10[E4, E6]2 +
(

25
ᾱ− 7685

)
E6[E4, χ10]2
12 241 152 15 939
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+
( −1

364 320 ᾱ + 674
759

)
E4[E4, χ12]2. (22)

Note that the first has rational eigenvalues, and the second and third have conjugate
quadratic eigenvalues. We checked that each of these forms satisfies the Ramanujan–
Petersson conjecture.

Proposition 3.1. For all k satisfying 14 � k � 30, the Hecke eigenforms in S
(2)
k,2 satisfy

the Ramanujan–Petersson conjecture at p = 2, 3, 5. More precisely, let F ∈ S
(2)
k,2 be a

Hecke eigenform with eigenvalues λp, λp2 and consider the polynomial

X4 − λpX
3 +

(
λ2
p − λp2 − p2k−2)X2 − p2k−1λpX + p4k−2. (23)

Then all roots z ∈ C of this polynomial satisfy |z| = p(2k+j−3)/2.

We also looked at the level 1 elliptic modular forms with Hecke eigenvalues in quadratic
fields and these fields are different than K. This indicates that H2 and H3 are unlikely
to be lifts. Therefore the naive generalization of Maeda’s conjecture does not hold for
S

(2)
k,2. We remark that in all other weights for which we have carried out computations,

the naive generalization does indeed hold:

Proposition 3.2. Let k ∈ {14, 16, 18, 22, 24, 26, 28, 30}. Then the characteristic polynomial
of the Hecke operator T (2) acting on Sk,2 is irreducible over Q. If k = 20, the character-
istic polynomial of the Hecke operator T (2) decomposes over Q into a linear factor and
a quadratic factor.

We also make note of another interesting computational phenomenon that merits
further investigation. It is interesting to us because an analogous phenomenon does
not happen in the scalar-valued case. In the scalar-valued case of level 1, there are
four kinds of modular forms of even weight: Eisenstein series, Klingen–Eisenstein series,
Saito–Kurokawa lifts and cusp forms that are not lifts. The first two are not cuspidal
and always have rational coefficients. Compare this fact to the following proposition:

Proposition 3.3. Let k ∈ {22, 26, 28, 30}. The space of modular forms of weight (k, 2)
that are not cusp forms is two-dimensional but consists of a single Galois orbit. The
corresponding quadratic fields are:

k Discriminant
22 144 169
26 131 · 139
28 51 349
30 67 · 273 067

The data that make up the proofs of these propositions can be found at [25].
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4. Verification of some conjectural congruences

The most famous modular form is arguably

Δ(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − · · · =
∞∑

n=1
τ(n)qn. (24)

Ramanujan discovered a number of congruences involving the coefficients τ(n), among
which is

τ(p) ≡ p11 + 1 (mod 691) for all primes p. (25)

This is part of a more general phenomenon: if a prime � � k−1 divides the numerator
of the zeta-value ζ(−k+1) (equivalently, the numerator of the Bernoulli number Bk), then
the constant term of the Eisenstein series Ek is zero modulo �. This can be interpreted
to say that there is a congruence mod � between this Eisenstein series and some cuspidal
eigenform of weight k.

As explained in [31] and [8], Deligne’s work on attaching families of �-adic Galois
representations to Hecke eigenforms of degree one allows us to interpret Ramanujan’s
congruence as taking place between traces of Frobenius acting on cohomology spaces of
local systems.

A more recent development is the construction (initiated by Laumon [18] and Taylor
[30] and completed by Weissauer [32]) of families of four-dimensional �-adic Galois repre-
sentations attached to Siegel modular eigenforms of degree two. It is then natural to ask
about generalizations of Ramanujan’s congruence to this setting. Building on his study
of Eisenstein cohomology for arithmetic groups, Harder stated a conjecture [8] regarding
congruences between classical (degree one) eigenforms and Siegel eigenforms of degree
two. This statement, which appears below as Conjecture 4.2, was verified in a number
of cases by Faber and van der Geer [31], who calculated the number of points on the
relevant moduli spaces over finite fields and related them to the Hecke eigenvalues of
Siegel modular forms. (This relation was stated as a conjecture in [31], but it has since
been proved by van der Geer and Weissauer in most cases. We refer the interested reader
to [2] for more details.)

Bergström, Faber and van der Geer have extended this point counting approach to
Siegel modular forms of degree three in [2]. At the same time, they formulated another
conjectural congruence relating Siegel modular forms of degree two and classical eigen-
forms, this time via critical values of symmetric square L-functions. We state this below
as Conjecture 4.6. It generalizes a result of Katsurada and Mizumoto for scalar-valued
Siegel modular forms (see [12]), and a number of vector-valued cases have been proved
by Dummigan in [7, Proposition 4.4].

We verify the conjectures by using the data we collected in Section 3 and some custom
Sage code that computes critical values of L-functions.
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4.1. Notation

The conjectures appear in different forms in [8,31,2]. We follow the approach of [2]
and adapt it to our notation and the quantities that we compute.

We denote the space of cusp forms of weight r with respect to the group Γ (1) =
SL(2,Z) by S

(1)
r . Suppose f ∈ S

(1)
r is a Hecke eigenform; we denote its Hecke eigenvalue

with respect to the operator T (n) by an = an(f). The spaces S(1)
r are finite dimensional,

say of dimension d; according to Maeda’s conjecture [9], the eigenvalues an are algebraic
numbers of degree d. The number field that contains the coefficients is denoted Qf .

Fix a prime p. For an eigenform f ∈ S
(1)
r , let α0 and α1 denote the Satake parameters

at p and define

μpδ(f) = αδ
0 + αδ

0α
δ
1 for δ � 1. (26)

Similarly, for a Siegel eigenform F ∈ S
(2)
k,j , let α0, α1, α2 be the Satake parameters at

p and define

μpδ(F ) = αδ
0 + αδ

0α
δ
1 + αδ

0α
δ
2 + αδ

0α
δ
1α

δ
2 for δ � 1. (27)

4.2. L-functions of modular forms

Let f(q) =
∑

anq
n ∈ S

(1)
r be an eigenform and consider

L(f, s) =
∞∑

n=1

an
ns

=
∏
p

(
1 − app

−s + pr−1−2s)−1
. (28)

After introducing the factor at infinity L∞(f, s) = Γ (s)/(2π)s, the completed L-function

Λ(f, s) = Γ (s)
(2π)sL(f, s) =

∞∫
0

f(iy)ys−1 dy (29)

has holomorphic continuation to C and satisfies the functional equation

Λ(f, s) = (−1)r/2Λ(f, r − s). (30)

Its critical values occur at 1 � t � r− 1 (of course, the functional equation implies that
it suffices to consider half of this interval).

Manin and Vishik proved that there exist real numbers ω+(f), ω−(f), called periods
of f , such that the ratio of the critical values of Λ(f, s) and the periods is algebraic.
More precisely, define the algebraic critical values

Λ̃(f, t) =
{
Λ(f, t)/ω+(f) if t is even,
Λ(f, t)/ω−(f) if t is odd.

(31)
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Theorem 4.1 (Manin–Vishik). (See [20].) If f ∈ S
(1)
r is an eigenform and t is an integer

satisfying 1 � t � r − 1, then Λ̃(f, t) ∈ Qf .

As explained in [8], the denominators of certain classes in the cohomology groups of
local systems on the moduli space of abelian surfaces should be expressed in terms of
critical values Λ̃(f, t). Harder conjectured that the appearance of certain large primes
in these denominators should imply the existence of congruences between eigenvalues of
forms of degree one and two.

Conjecture 4.2 (Harder). Let f ∈ S
(1)
r be a Hecke eigenform with coefficient field Qf

and let � be an ordinary prime in Qf (i.e. such that the �th Hecke eigenvalue of f is not
divisible by �). Suppose s ∈ N is such that �s divides the algebraic critical value Λ̃(f, t).
Then there exists a Hecke eigenform F ∈ S

(2)
k,j , where k = r− t+ 2, j = 2t− r− 2, such

that

μpδ(F ) ≡ μpδ(f) + pδ(k+j−1) + pδ(k−2) (
mod �s

)
(32)

for all prime powers pδ.

4.2.1. Computation of the quantities μpδ

The first step in our numerical verification of the conjecture is to compute, as described
in Section 3, the Hecke eigenforms in various weights and their corresponding Hecke
eigenvalues λp(F ) and λp2(F ). Once we have those, the second step is to relate the
Hecke eigenvalues to the values μpδ(F ). We do this by relating the polynomials that
define μpδ(F ) to the expressions of λp(F ) in terms of the Satake parameters α0, α1, α2.

Example 1. Let λi(p2) = Ω(Ti(p2))|xi←αi
. Note λ2(p2) = p2k+j−6 from the definition of

the slash operator. Then we have the equations

λ2
p = λ0

(
p2) + (p + 1)λ1

(
p2) +

(
p2 + 1

)
(p + 1)λ2

(
p2), (33)

λp2 = λ0
(
p2) + λ1

(
p2) + λ2

(
p2) (34)

where the first equation comes from Theorem 2.4.
We compute λp, λp2 and know λ2(p2). This allows us to solve for λ0(p2) and λ1(p2).

Then we observe

μp = λp, (35)

μp2 = 2λp2 − λ2
p + 2p2k+j−4, (36)

μp3 =
(
3λp2 − 2λ2

p + 3(p + 1)p2k+j−4)λp. (37)
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4.2.2. Computation of the congruence primes �

We consider the ratios

Λ(f, 2) : Λ(f, 4) : · · · : Λ(f, r − 2) and Λ(f, 1) : Λ(f, 3) : · · · : Λ(f, r − 1) (38)

which by Theorem 4.1 are in Qf .
We compute these ratios of critical values as floating point numbers in Sage [29]. This

is done via an implementation of (29) due to Dokchitser [5]. We take these floating point
numbers and find their minimal polynomial using fplll [4], an implementation of the LLL
lattice reduction algorithm wrapped in Sage. We provide an example to illustrate our
process and summarize our computations in Table 1.

Example 2. Let g ∈ S
(1)
32 , a two-dimensional space of cusp forms. We will calculate the

ratio of critical values

Λ(g, 1) : Λ(g, 3) : Λ(g, 5) : Λ(g, 7) : Λ(g, 9) : Λ(g, 11) : Λ(g, 13) : Λ(g, 15). (39)

As we are interested only in the ratio, we compute

Λ(g, 1)
Λ(g, 1) : Λ(g, 3)

Λ(g, 1) : Λ(g, 5)
Λ(g, 1) : Λ(g, 7)

Λ(g, 1) : Λ(g, 9)
Λ(g, 1) : Λ(g, 11)

Λ(g, 1) : Λ(g, 13)
Λ(g, 1) : Λ(g, 15)

Λ(g, 1)
= 1 : 0.045375 · · · : 0.002369 · · · : 0.000143 · · · : 0.000010 · · · : 8.65221 · · ·

×10−7 : 8.50052 · · · × 10−8 : 9.23745 × 10−9 (40)

using a Sage implementation of Λ(g, s). Then we find the minimal polynomial of each
ratio; e.g., Λ(g,3)

Λ(g,1) is a root of

1 254 224 510x2 − 471 820 065x + 18 826 702, (41)

which defines a quadratic field of discriminant 5 · 13 · 67 · 8353 · 3 523 144 283.

4.2.3. Checking ordinarity of the primes �

We use a simple algorithm that is very fast but uses large amounts of storage. Let d

be the dimension of S(1)
r , and suppose we want to check that � is ordinary for all Hecke

eigenforms in S
(1)
r . We proceed as follows: (a) compute the Victor Miller basis for S

(1)
r

to a precision of about d� coefficients; (b) compute the matrix of the Hecke operator T


acting on this basis; (c) reduce the matrix modulo � and check whether it is invertible.
This allowed us to verify that most primes � appearing in Table 1 are ordinary. The

current understanding of the distribution of non-ordinary primes is rather limited, but
numerical evidence seems to indicate that they are very rare in level one, so it would
be surprising to find a prime � > r that divides an algebraic critical value and is non-
ordinary.
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Table 1
A summary of the cases verified numerically for the proof of Theorem 4.3. (The
primes 
 marked with a * have not been checked to be ordinary.)

r t Large 
 | Norm(Λ̃(f, t)) (k, j) dimS
(2)
k,j

32 18 211 (16, 2) 2
36 20 269 741 (18, 2) 2
40 22 509 (20, 2) 3

1447
44 24 205 157 (22, 2) 5
48 26 168 943 (24, 2) 5
52 28 173 (26, 2) 8

929
4261

∗ 434 167
56 30 173 (28, 2) 10

1721
38 053

1 547 453
60 32 ∗ 325 187 (30, 2) 11

∗ 32 210 303
∗ 427 092 920 047

4.2.4. Verification of the congruences
We observe that there are two cases: when δ = 1 and when δ > 1. The difference is

that in the first case the congruence reduces to a congruence on the Hecke eigenvalue
λp while in the second case we require both λp and λp2 . The effect of this difference is
that we can verify many more congruences when δ = 1 than when δ > 1; this is due to
the number of coefficients needed to compute λp as compared to the number needed to
compute λp and λp2 .

The way the actual verification works is essentially the same starting from the point
where μpδ(F ) and μpδ(f) have been computed. Each side of the congruence mod �s

is an algebraic number in QF and Qf respectively. In the cases we have considered,
the exponent s appearing in the conjecture was always 1. We compute the minimal
polynomial m(x) of the coefficient ap of f and the minimal polynomial M(x) of the
Hecke eigenvalue λp of F . Then we look at the roots of m and M in F
. The conjecture
holds if for some choice of root of m and some choice of root of M the congruence
holds.

The following statement summarizes our results on Conjecture 4.2.

Theorem 4.3. Let r � 60 be a multiple of 4. If f ∈ S
(1)
r is a Hecke eigenform with

coefficient field Qf and � is an ordinary prime in Qf that divides the algebraic critical
value Λ̃(f, r/2 + 2), then there exists a Hecke eigenform F ∈ S

(2)
r/2,2 such that

μpδ(F ) ≡ μpδ(f) + pδ(r/2+1) + pδ(r/2−2) (mod �) (42)

for

pδ ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 125}. (43)
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Proof. For weights r � 28, we have verified that there are no ordinary primes � dividing
Λ̃(f, r/2 + 2), so the statement is vacuously true.

For weights 32 � r � 60 and

pδ ∈ {2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31} (44)

we have verified the congruence for all large primes � dividing the algebraic critical value.
The results are listed in Table 1.

The remaining cases pδ ∈ {8, 27, 125} follow from the rest by Proposition 4.9. �
4.3. Symmetric square L-functions of modular forms

It is possible to associate higher-degree L-functions to modular forms, by using various
tensorial constructions. We describe the L-function attached to the symmetric square of
a modular form.

Fix a Hecke eigenform f ∈ S
(1)
r and let αp, βp be the roots of the polynomial X2 −

apX + pr−1. The associated symmetric square L-function is

L
(
Sym2f, s

)
=

∏
p

((
1 − α2

pp
−s

)(
1 − β2

pp
−s

)(
1 − αpβpp

−s
))−1

. (45)

We take as factor at infinity

L∞
(
Sym2f, s

)
= Γ (s)

(2π)s
Γ ((s + 2 − r)/2)

π(s+2−r)/2 (46)

and set

Λ
(
Sym2f, s

)
= L∞

(
Sym2f, s

)
L
(
Sym2f, s

)
. (47)

Then Λ(Sym2f, s) has holomorphic continuation to C and satisfies the functional equa-
tion

Λ
(
Sym2f, s

)
= Λ

(
Sym2f, 2r − 1 − s

)
. (48)

We define the algebraic critical values

L̃
(
Sym2f, t

)
= L(Sym2f, t)

π2t−r+1〈f, f〉 for t = r, r + 2, . . . , 2r − 2, (49)

where 〈·,·〉 denotes the Petersson inner product.
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Remark 4.4.

(a) It is possible to express the algebraic critical values as quotients of the com-
pleted L-function Λ(Sym2f, t), which would be closer to the treatment of the
usual L-function as given in the previous section. We prefer to take a quotient of
L(Sym2f, t) instead, as this is the definition used in much of the existing work on
symmetric square L-values.

(b) The algebraic critical values are often denoted D∗
f (t); we prefer to write L̃(Sym2f, t)

as this indicates that we are working with the symmetric square (rather than other
symmetric powers, for instance).

Theorem 4.5. (See Zagier [33].) If f ∈ S
(1)
r is an eigenform and t is even such that

r � t � 2r − 2, then L̃(Sym2f, t) is an algebraic number.

Moreover, and this is useful for our computations, it can be shown that L̃(Sym2f, t) ∈
Qf , see [27].

Conjecture 4.6 (Bergström–Faber–van der Geer–Harder). Let f ∈ S
(1)
r be a Hecke eigen-

form with coefficient field Qf and let � be a large prime in Qf . Suppose s ∈ N is such that
�s divides the algebraic critical value L̃(Sym2f, t). Then there exists a Hecke eigenform
F ∈ S

(2)
k,j , where k = t− r + 2, j = 2r − t− 2, such that

μpδ(F ) ≡ μpδ(f)
(
pδ(k−2) + 1

) (
mod �s

)
(50)

for all prime powers pδ.

The case j = 0 concerns scalar-valued Siegel modular forms. The first examples of
such congruences were found by Kurokawa [16], who conjectured that they should be gov-
erned by certain primes dividing the numerators of algebraic critical values. Kurokawa’s
conjecture was recently proved by Katsurada and Mizumoto, who even extended these
results to the case of scalar-valued Siegel modular forms of arbitrary degree (see [12,
Theorem 3.1]).

In the vector-valued setting, the congruence in Conjecture 4.6 was proved for the
six rational eigenforms of degree one (weights 12, 16, 18, 20, 22, 26) by Dummigan
in [7, Proposition 4.4]. (Dummigan has indicated that it should be possible to extend
his Proposition 4.4 to higher weights, using a pullback formula as in Katsurada and
Mizumoto [12].)

Remark 4.7. The conjecture does not specify what is meant by a large prime �. Dummi-
gan’s result uses � > 2r. In the cases we have verified (see Theorem 4.8 for details), it
was sufficient to take � > 2.
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Our numerical verification of Conjecture 4.6 follows the approach of the last section.
We highlight only the essential differences.

4.3.1. Computation of the congruence primes �

We find the appropriate primes � by computing the algebraic critical values directly
from (49). The squared-norm 〈f, f〉 of f can be obtained from the identity

〈f, f〉 = (r − 1)!
22r−1πr+1L

(
Sym2f, r

)
, (51)

so all we require is high-precision evaluation of the symmetric square L-function at
various points. For this we use Dokchitser’s L-function calculator [5] as wrapped in
Sage, as well as some Sage code made available to us by Martin Raum.

Having obtained a sufficiently precise floating point approximation to the algebraic
number L̃(Sym2f, t), we then find its minimal polynomial. The congruence primes � are
the primes larger than 2 occurring in the factorization of the numerator of the norm of
L̃(Sym2f, t).

The critical values we obtain in this way agree with the ones computed by Dummigan
in the case of rational eigenforms,1 see Table 1 in [6]. We were also able to verify the
case r = 24 by comparing our result with the trace of L̃(Sym2f, 46) as obtained (by
theoretical means) by Lanphier in [17].

The following statement summarizes our results on Conjecture 4.6.

Theorem 4.8. Let r � 32. If f ∈ S
(1)
r is a Hecke eigenform with coefficient field Qf and

� > 2 is a prime in Qf that divides the algebraic critical value L̃(Sym2f, 2r − 4), then
there exists a Hecke eigenform F ∈ S

(2)
r−2,2 such that

μpδ(F ) ≡ μpδ(f)
(
pδ(r−4) + 1

)
(mod �) (55)

for

pδ ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 125}. (56)

Proof. For weight r = 12, we computed the numerator of the rational number
L̃(Sym2Δ, 20) and found it to be −223, so there are no large primes dividing this al-
gebraic critical value and the statement is vacuously true.

1 Dummigan confirmed that a few of the factorizations from Table 1 in [6] are incorrect. Here are the
values in question, with their corrected factorizations:

k = 16, r = 3: 220
/37 · 53 · 7 · 11 · 132 · 17, (52)

k = 16, r = 11: 224 · 839/312 · 58 · 74 · 112 · 132 · 17 · 19 · 23, (53)

k = 20, r = 11: 227 · 304477/319 · 58 · 74 · 112 · 132 · 172 · 19 · 23 · 29. (54)



A. Ghitza et al. / Journal of Number Theory 133 (2013) 3921–3940 3937
Table 2
A summary of the cases verified numerically for the proof of Theorem 4.8.

r t Odd 
 | Norm(L̃(Sym2f, t)) (k, j) dimS
(2)
k,j

16 28 373 (14, 2) 1
18 32 541 (16, 2) 2

2879
20 36 439 367 (18, 2) 2
22 40 281 (20, 2) 3

286 397
24 44 2 795 437 (22, 2) 5

256 021 114 049
26 48 4 598 642 018 203 (24, 2) 5
28 52 4 017 569 791 (26, 2) 8

65 593 901 428 085 768 723
30 56 937 481 (28, 2) 10

4 302 719 815 755 987 715 030 485 446 839
32 60 350 747 (30, 2) 11

45 130 901 953
432 796 809 552 670 722 149

For weights 16 � r � 32 and

pδ ∈ {2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31} (57)

we have verified the congruence for all large primes � dividing the algebraic critical value.
The results are listed in Table 2.

The remaining cases pδ ∈ {8, 27, 125} follow from the rest by Proposition 4.9. �
4.4. Reduction of cubes to primes and squares of primes

We describe some elementary considerations that allow reducing the case δ = 3 of
both conjectures to the cases δ = 1 and δ = 2. For ease of notation in this section, we
will write

gδ = αδ
0 + αδ

0α
δ
1, (58)

Gδ = αδ
0 + αδ

0α
δ
1 + αδ

0α
δ
2 + αδ

0α
δ
1α

δ
2, (59)

where in the first line α0 and α1 are the Satake parameters of f ∈ S
(1)
r , while in the

second line α0, α1 and α2 are the Satake parameters of F ∈ S
(2)
k,j .

In the degree one setting, we have the relation α2
0α1 = pr−1, which allows us to express

g2 and g3 in terms of g1:

g2 = g2
1 − 2pr−1, g3 = g1

(
g2
1 − 3pr−1). (60)

In the degree two setting, we have the relation α2
0α1α2 = p2k+j−3, which allows us to

express G3 in terms of G1 and G2:

G3 = 1
G1

(
−G2

1 + 3G2 + 6p2k+j−3). (61)
2
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Proposition 4.9. In Conjecture 4.2 and Conjecture 4.6, the congruences for the case δ = 3
follow from the congruences for the cases δ = 1 and δ = 2.

Proof. (a) Define hδ = pδ(k+j−1) + pδ(k−2) for all δ � 1. Then the congruence in Con-
jecture 4.2 can be written

(Cδ): Gδ ≡ gδ + hδ

(
mod �s

)
. (62)

It is easily seen that

h2 = h2
1 − 2p2k+j−3, h3 = h1

(
h2

1 − 3p2k+j−3). (63)

(Observe the similarities between these equations and (60).)
We assume that the congruences (C1) and (C2) hold. Using Eqs. (61), (60) and (63)

(in this order), we compute

G3 ≡ 1
2(g1 + h1)

(
−(g1 + h1)2 + 3(g2 + h2) + 6p2k+j−3) (64)

= 1
2(g1 + h1)

((
−g2

1 + 3g2
)
− 2g1h1 +

(
−h2

1 + 3h2 + 6p2k+j−3)) (65)

= (g1 + h1)
(
g2
1 − 3pr−1 − g1h1 + h2

1
)

(66)

= g3
1 − 3pr−1g1 + h3

1 − 3pr−1h1 (67)

= g3 + h3, (68)

after noting that, under the conditions of Conjecture 4.2, the weight parameters r, k and
j are related by r − 1 = 2k + j − 3.

(b) The calculation is similar to the previous part. We let hδ = pδ(k−2) + 1 for all
δ � 1. The congruence in Conjecture 4.6 takes the form

(
C ′

δ

)
: Gδ ≡ gδhδ

(
mod �2

)
. (69)

We easily see that

h2 = h2
1 − 2pk−2, h3 = h1

(
h2

1 − 3pk−2). (70)

Assuming that congruences (C ′
1) and (C ′

2) hold, we obtain

G3 ≡ 1
2g1h1

(
−g2

1h
2
1 + 3

(
g2
1 − 2pr−1)(h2

1 − 2pk−2) + 6p2k+j−3) (71)

= g1h1
(
g2
1h

2
1 − 3pk−2g2

1 − 3pr−1h2
1 + 9p2k+j−3) (72)

= g1h1
(
g2
1 − 3pr−1)(h2

1 − 3pk−2) (73)

= g3h3, (74)

where we used the relation r = k + j, valid under the conditions of Conjecture 4.6. �
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