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DAN PETERSEN

Let A2 be the moduli stack of principally polarized abelian surfaces. Let V

be a smooth `-adic sheaf on A2 associated to an irreducible rational finite-
dimensional representation of Sp(4). We give an explicit expression for the
cohomology of V in any degree in terms of Tate-type classes and Galois
representations attached to elliptic and Siegel cusp forms. This confirms
a conjecture of Faber and van der Geer. As an application we prove a di-
mension formula for vector-valued Siegel cusp forms for Sp(4, Z) of weight
three, which had been conjectured by Ibukiyama.

1. Introduction

Let Y = 0\H be a modular curve, given by the quotient of the upper half-plane
by a congruence subgroup 0 ⊂ SL(2,Z). An irreducible rational representation
V of SL(2) defines a local system on Y , since V is in particular a representation
of π1(Y )∼= 0 ⊂ SL(2). After work of Eichler, Shimura, Ihara, Deligne, and many
others after them, we understand extremely well the cohomology groups H •(Y,V).
The cohomology classes can be described group-theoretically in terms of modular
forms for the group 0, and the mixed Hodge structure on the cohomology groups
has a natural splitting in which the pure part corresponds to cusp forms and its
complement to Eisenstein series. We can think of V also as a smooth `-adic sheaf
(and Y as defined over a number field, or a deeper arithmetic base), in which case
the étale cohomology H •(Y,V) can be expressed in terms of Galois representations
attached to the same modular forms [Deligne 1971].

There is a vast theory describing the generalization of the above to moduli spaces
of higher-dimensional abelian varieties with some extra structure (polarization,
endomorphism, and level), and to more general Shimura varieties. But there is not
a single example where our understanding is as complete as in genus one.
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In this article we consider one of the simplest higher-genus examples and give
a quite explicit description of the cohomology in this case. Namely, consider the
moduli space A2 of principally polarized abelian surfaces, and let V be a smooth
`-adic sheaf associated to an irreducible representation of Sp(4). The main theorem
of this article is an explicit expression for the (semisimplification of the) `-adic
Galois representation H k

c (A2,V) for any k and any V in terms of Tate-type classes
and Galois representations attached to level-1 elliptic/Siegel cusp forms.

These cohomology groups are natural objects of study for algebraic geometers,
in particular because of applications to moduli of curves. The results of this paper
are used in [Petersen 2013] to prove that the Gorenstein conjecture fails for the
tautological rings of the spaces Mct

2,n for n ≥ 8. There is some history of algebraic
geometers studying the cohomology of Va,b for small values of a+ b by ad hoc
methods for such applications; see, e.g., [Getzler 1998, Section 8; Bergström 2009;
Petersen and Tommasi 2014, Section 3]. Let us also mention [Faber and van der
Geer 2004], who used point counts over finite fields to conjecture an expression for
the virtual `-adic Galois representation∑

k

(−1)k[H k
c (A2,V)] ∈ K0(Gal)

for any Va,b; see also [Bergström et al. 2014, Section 6] for a more detailed
description. The results in this paper confirm Faber and van der Geer’s conjecture.
When V has regular highest weight, their conjecture was proven in [Weissauer
2009b] (and later independently in [Tehrani 2013]).

Using the BGG-complex of Faltings, one can relate the results of this paper to
the coherent cohomology of the bundles of Siegel modular forms for Sp(4,Z), as
we explain at the end of Theorem 2.1. A direct consequence of our main theorem is
a proof of a dimension formula for vector-valued Siegel modular forms for Sp(4,Z)

of weight 3, which had been conjectured in [Ibukiyama 2007b]. This result has
been independently obtained in [Taïbi 2014] using Arthur’s trace formula.

The strategy of our proof is as follows. Up to semisimplification, the cohomology
is the direct sum of the Eisenstein cohomology and the inner cohomology. The
Eisenstein cohomology on A2 of an arbitrary local system was determined in
[Harder 2012], so we need only to find the inner cohomology. Now we use that
the inner cohomology contains the cuspidal cohomology and is contained in the
intersection cohomology, and both of these can be understood in terms of data
attached to discrete spectrum automorphic representations for GSp(4). There is a
very large body of work dealing with automorphic representations on GSp(4) (due
to Piatetski-Shapiro, Soudry, Arthur, Weissauer, Taylor, Hales, Waldspurger and
many others) since it is one of the first test cases for the general Langlands program.
Since we will only work in level 1, we can work with PGSp(4), in which case
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all necessary information on the discrete spectrum automorphic representations is
worked out and described very explicitly in [Flicker 2005]. These results allow us to
determine both the cuspidal and the intersection cohomology of these local systems,
and to deduce after comparing with Harder’s results that the inner cohomology
coincides with the cuspidal cohomology in these cases.

In Section 2, I state the main theorem and explain the applications to vector-valued
Siegel cusp forms. Section 3 contains a brief review of automorphic representations
and the cohomology of Shimura varieties. I hope that this will help make the
arguments accessible for algebraic geometers without this background. Section 4
specializes to PGSp(4) and contains the proof of the main theorem.

2. Statement of results

Let A2 denote the moduli stack of principally polarized abelian surfaces. Let
f : X →A2 be the universal family. We have a local system (smooth `-adic sheaf)
V= R1 f∗Q` on A2 of rank 4 and weight 1, and there is a symplectic pairing∧2

V→Q`(−1).

Here Q`(−1) denotes the Tate twist of the constant local system on A2. Recall
Weyl’s construction of the irreducible representations of Sp(4) [Fulton and Harris
1991, Section 17.3]: if V is the standard 4-dimensional symplectic vector space,
then the irreducible representation with highest weight a ≥ b≥ 0 is a constituent of
V⊗(a+b), where it is “cut out” by Schur functors and by contracting with the sym-
plectic form. For instance, the representation of highest weight (2, 0) is Sym2(V ),
and the representation (1, 1) is the complement of the class of the symplectic form
inside

∧2V . Weyl’s construction works equally well in families, and so for each
a ≥ b ≥ 0 we obtain a local system Va,b which is a summand in V⊗(a+b). In
this paper we determine the cohomology of Va,b considered as an `-adic Galois
representation up to semisimplification.

Note that every point of A2 has the automorphism (−1), given by inversion on
the abelian variety. This automorphism acts as multiplication by (−1)a+b on the
fibers of Va,b. This shows that the local system has no cohomology when a+ b is
odd. Hence, we restrict our attention to the case when a+ b is even.

Before we can state our main results we need to introduce some notation. For
any k, let sk denote the dimension of the space of cusp forms for SL(2,Z) of
weight k. Similarly, for any j ≥ 0, k ≥ 3, we denote by s j,k the dimension of the
space of vector-valued Siegel cusp forms for Sp(4,Z), transforming according to
the representation Sym j

⊗ detk .
To each normalized cusp eigenform f for SL(2,Z) of weight k is attached a

2-dimensional `-adic Galois representation ρ f of weight k− 1 [Deligne 1971]. We
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define Sk =
⊕

f ρ f to be the direct sum of these Galois representation for fixed k.
By the main theorem of [Weissauer 2005], there are also 4-dimensional Galois
representations attached to vector-valued Siegel cusp eigenforms for Sp(4,Z) of
type Sym j

⊗ detk with k ≥ 3, and we define S j,k analogously. So dim Sk = 2sk and
dim S j,k = 4s j,k .

Moreover, we introduce s ′k : this is the cardinality of the set of normalized cusp
eigenforms f of weight k for SL(2,Z) for which the central value L

(
f, 1

2

)
vanishes.

In this paper all L-functions will be normalized to have a functional equation relating
s and 1− s. The functional equation shows that the order of L( f, s) at s = 1

2 is
always odd if k≡ 2 (mod 4) and is even if k≡ 0 (mod 4). Hence, in the former case,
sk= s ′k ; in the latter case, 0≤ s ′k ≤ sk . In our results, the quantity s ′k will only occur in
the case k≡ 0 (mod 4), and in this case it is conjectured that s ′k = 0. Indeed, [Conrey
and Farmer 1999] proved that this vanishing is implied by Maeda’s conjecture;
Maeda’s conjecture has been verified numerically for weights up to 14000 [Ghitza
and McAndrew 2012].

Finally we define S j,k=grW
j+2k−3S j,k ; in other words, we consider only the part of

S j,k which satisfies the Ramanujan conjecture. Counterexamples to the Ramanujan
conjecture arise from the Saito–Kurokawa lifting: for a cusp eigenform f of
weight 2k for SL(2,Z), where k is odd, there is attached a scalar-valued Siegel
cusp form of weight k+1 for Sp(4,Z) whose attached `-adic Galois representation
has the form

Q`(−k+ 1)⊕ ρ f ⊕Q`(−k),

where ρ f is the Galois representation of weight 2k−1 attached to f . By [Weissauer
2009b, Theorem 3.3], these are in fact the only Siegel cusp forms violating the
Ramanujan conjecture. Thus, S j,k = S j,k unless j = 0 and k is even, in which case
S j,k is obtained from S j,k by removing the two summands of Tate type from each
Saito–Kurokawa lift.

Note that the definitions of sk , Sk , s j,k and S j,k used in [Faber and van der
Geer 2004] are different from ours: theirs is not only a sum over cusp forms, but
includes in the case k = 2 (resp. j = 0, k = 3) the contribution from the trivial
automorphic representation. This allows for a compact expression for the virtual
Galois representation

∑
i (−1)i [H i

c (A2,Va,b)] but will not be used here.

Theorem 2.1. Suppose (a, b) 6= (0, 0), and that a+ b is even. Then:

(1) H k
c (A2,Va,b) vanishes for k /∈ {2, 3, 4}.

(2) In degree 4 we have

H 4
c (A2,Va,b)=

{
sa+b+4Q`(−b− 2) if a = b even,
0 otherwise.
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(3) In degree 3 we have, up to semisimplification,

H 3
c (A2,Va,b)= Sa−b,b+3+ sa+b+4Sa−b+2(−b− 1)+ Sa+3

+

{
s ′a+b+4Q`(−b− 1) if a = b even,
sa+b+4Q`(−b− 1) otherwise,

+

{
Q` if a = b odd,
0 otherwise,

+

{
Q`(−1) if b = 0,
0 otherwise.

.

(4) In degree 2 we have, again up to semisimplification, that

H 2
c (A2,Va,b)= Sb+2+ sa−b+2Q`

+

{
s ′a+b+4Q`(−b− 1) if a = b even,
0 otherwise,

+

{
Q` if a > b > 0 and a, b even,
0 otherwise.

To exemplify the notation: sa+b+4Sa−b+2(−b− 1) means a direct sum of sa+b+4

copies of the Galois representation Sa−b+2, Tate twisted b+ 1 times.
As remarked earlier, it is conjectured that both occurrences of s ′k in the above

theorem can be replaced by 0.

Remark 2.2. It will be clear from the proof that the result is valid (and even a
bit easier) also in the category of mixed Hodge structures. Harder’s computation
of the Eisenstein cohomology is valid in this category, and our computation of
the inner cohomology identifies it with the cuspidal cohomology, which obtains a
natural Hodge structure from the bigrading on (g, K )-cohomology. This bigrading
is compatible with the one obtained using the “filtration bête” and the BGG-complex
of [Faltings and Chai 1990, Theorem VI.5.5.].

Remark 2.3. It is conjectured that the Galois representations H k
c (A2,Va,b) are

not semisimple in general. Suppose that a = b = 2k − 1. Then our expression
for the semisimplification of H 3

c (A2,Va,b) contains the terms s4k+2Q`(−2k) and
S4k+2, the latter being the “Saito–Kurokawa” summand of S0,2k+2. Harder [1993,
pp. 81–82] has conjectured that they form a nontrivial extension

0→ s4k+2Q`(−2k)→ M→ S4k+2→ 0.

Note that if f is a Hecke eigenform of weight 4k+ 2 and ρ f is the attached Galois
representation (or “motive”), then conjectures of Deligne, Bloch and Beilinson
[Gross 1994, Section 1] predict that

dim Ext1(Q`(−2k), ρ f )= ords= 1
2

L( f, s),
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and the functional equation for L( f, s) forces it to vanish at s = 1
2 . Here the Ext

group is computed either in the category of `-adic Galois representations, or (even
better) in the category of mixed motives. I do not know whether there exists a cusp
form for the full modular group whose L-function vanishes to more than first order
at the central point.

Application to dimension formulas for Siegel modular forms. A consequence of
Remark 2.2 is that our main theorem can be applied to produce dimension formulas
for vector-valued Siegel modular forms. Let i : A2 ↪→ Ã2 be a toroidal compact-
ification. Let V j,k for j , k ∈ Z, j ≥ 0, be the vector bundle on Ã2 whose global
sections are vector-valued Siegel modular forms of type Sym j

⊗ detk . Similarly,
let V j,k(−D∞) be the vector bundle of Siegel cusp forms. The BGG-complex
(resp. the dual BGG-complex) is a resolution of i∗Va,b ⊗C (resp. i!Va,b ⊗C) in
terms of the vector bundles V j,k (resp. V j,k(−D∞)). Then [Faltings and Chai 1990,
Theorem VI.5.5] asserts that the hypercohomology spectral sequence of the BGG-
complex degenerates, and that the Hodge filtration on the cohomology of Va,b can
be defined in terms of a filtration of the BGG-complex. There is also an analogous
statement for the dual BGG-complex and the compactly supported cohomology.
Specialized to our case, their theorem (in the case of the dual BGG-complex) asserts
the following (see [Getzler 1998, Theorem 17]):

Theorem 2.4 (Faltings–Chai). The cohomology groups H •

c (A2,Va,b⊗C) have a
Hodge filtration with Hodge numbers in the set {a + b+ 3, a + 2, b+ 1, 0}. The
associated graded pieces satisfy

gr0
F H •

c (A2,Va,b⊗C)∼= H •(Ã2,Va−b,−a(−D∞)),

grb+1
F H •

c (A2,Va,b⊗C)∼= H •−1(Ã2,Va+b+2,−a(−D∞)),

gra+2
F H •

c (A2,Va,b⊗C)∼= H •−2(Ã2,Va+b+2,1−b(−D∞)),

gra+b+3
F H •

c (A2,Va,b⊗C)∼= H •−3(Ã2,Va−b,b+3(−D∞)).

We record three immediate consequences of this theorem combined with our
main theorem. The first of these is a proof of a conjecture of Ibukiyama, whereas
the second two are new proofs of results which are already known (by admittedly
much more direct arguments).

(1) The bundles V j,k(−D∞) have no higher cohomology for any j ≥ 0, k ≥ 3, with
the sole exception of H 3(Ã2,V0,3(−D∞))∼= C. (To prove this, consider gra+b+3

F .)
An explicit formula for the Euler characteristic of the vector bundles V j,k(−D∞)
was calculated in [Tsushima 1983] using Hirzebruch–Riemann–Roch; thus, we
obtain a dimension formula for vector-valued Siegel cusp forms for all j ≥ 0, k ≥ 3.
Tsushima himself proved that these bundles have no higher cohomology when k ≥ 5
using the Kawamata–Viehweg vanishing theorem, and conjectured that it can be
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improved to k ≥ 4. The fact that this vanishing result can be extended to k ≥ 3 is
particular to the case of the full modular group and was conjectured in [Ibukiyama
2007b, Conjecture 2.1]. The resulting dimension formula for k = 3 can be stated as∑

j≥0

s j,3x j
=

x36

(1− x6)(1− x8)(1− x10)(1− x12)
.

This result has also been proven in [Taïbi 2014, Section 5].

(2) There are no vector-valued Siegel modular forms of weight 1 for the full modular
group. (Put b = 0 and consider gra+2

F to prove the case Sym j
⊗ det with j ≥ 2; the

cases j < 2 require a separate (easy) argument.) This result was previously known
by [Ibukiyama 2007a, Theorem 6.1].

(3) The Siegel 8-operator is surjective for any j ≥ 0, k ≥ 3. Recall that the 8-
operator maps Siegel modular forms of type Sym j

⊗ detk to elliptic modular forms
of weight j+k, and that the image of8 consists only of cusp forms if j>0. Now, the
dimension of the part of gra+b+3

F H 3(A2,Va,b⊗C) given by Eisenstein cohomology
is exactly the dimension of the image of the 8-operator for Syma−b

⊗ detb+3, since
the part given by inner cohomology coincides with the dimension of the space of
cusp forms. But the dimension of this part of Eisenstein cohomology is sa+3 unless
a = b is odd, in which case it is sa+3+ 1. The result follows from this. Surjectivity
of the 8-operator is known more generally for arbitrary level when k ≥ 5 and j > 0
by [Arakawa 1983]. The scalar-valued case is a classical theorem of Satake. The
case k = 4 (and k = 2) is [Ibukiyama and Wakatsuki 2009, Theorem 5.1].

Only Siegel modular forms of weight two are inaccessible via the cohomology
of local systems. In a sequel to this paper we will use similar arguments to derive
dimensional results for Siegel modular forms with nontrivial level.

3. Résumé of automorphic representations

In this section I briefly recall some (mostly standard) facts from the theory of
automorphic representations that are needed for this paper. Rather than providing
detailed references everywhere, I will give general references at the beginning of
each subsection.

Automorphic representations. See [Borel and Jacquet 1979; Cogdell et al. 2004].
Let G be a reductive connected group over Q. Let A = Afin × R be the ring of
(rational) adèles. Let Z be the center of G, and ω a unitary character of Z(A)/Z(Q).
We define L2(G(Q)\G(A), ω) to be the space of measurable functions f on
G(Q)\G(A) which are square-integrable with respect to a translation-invariant
measure, and which satisfy f (zg) = ω(z) f (g) for any z ∈ Z(A). The group
G(A) acts on this space by right translation. A representation of G(A) is called
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automorphic if it is a subquotient of L2(G(Q)\G(A), ω) for some ω. We call ω
the central character of the automorphic representation.

The space L2(G(Q)\G(A), ω) contains a maximal subspace which is a direct
sum of irreducible representations. This subspace is called the discrete spectrum,
and an automorphic representation occurring here is called discrete. The orthogonal
complement of this subspace is the continuous spectrum. Langlands identified the
continuous spectrum with “Eisenstein series”; it is the direct integral of families of
representations induced from parabolic subgroups of G(A). The discrete spectrum,
in turn, also decomposes as the direct sum of the cuspidal and the residual spectrum.
The cuspidal spectrum is defined as the subspace spanned by functions f such that
the integral over N (Q)\N (A) of f , and all its translates under G(A), vanishes for
N the unipotent radical of any proper parabolic subgroup. Langlands proved that the
residual spectrum is spanned by the residues of Eisenstein series, and that all residual
representations are quotients of representations induced from a parabolic subgroup.

Any irreducible automorphic representation π of G(A) is a completed (restricted)
tensor product of local representations πp of G(Qp), where p ranges over the prime
numbers, and an archimedean component π∞. Let K p ⊂ G(Qp) be a special
maximal compact subgroup. We say that π is spherical at p if πp contains a
nonzero vector fixed by K p, in which case this vector will be unique up to a nonzero
scalar. The representation π is spherical at all but finitely many primes. The word
“restricted” in the first sentence of this paragraph means that the component of
the representation at p should be equal to the spherical vector for all but finitely
many p.

The archimedean component π∞ can be identified with an irreducible (g, K∞)-
module, where g is the Lie group of G(R) and K∞ ⊂ G(R) is a maximal compact
subgroup. The center of the universal enveloping algebra of g acts by a scalar
on π∞. The resulting map Z(Ug)→ C is called the infinitesimal character of π .

Local factors. See [Borel 1979]. Suppose π is spherical at p. We define the
spherical Hecke algebra HG,K p to be the convolution algebra of K p-bi-invariant,
Q-valued functions on G(Qp). This algebra acts on the one-dimensional space of
spherical vectors, and πp is uniquely determined by this action. Hence, specifying
a spherical representation is equivalent to specifying a homomorphism HG,K p→C.
We should therefore understand the ring HG,K p , and this we can do via the Satake
isomorphism. For this we need the notion of the dual group. If G is defined by
a root datum, then the dual group Ĝ is obtained by switching roots and coroots,
and characters and 1-parameter subgroups. The Satake isomorphism states that the
Hecke algebra HG,K p and the ring of virtual representations K0(Rep(Ĝ)) become
isomorphic after an extension of scalars: one has

HG,K p ⊗C∼= K0(Rep(Ĝ))⊗C.



LOCAL SYSTEMS ON THE MODULI OF P.P. ABELIAN SURFACES 47

In particular, a homomorphism HG,K p → C is identified with a homomorphism
K0(Rep(Ĝ))→ C. But the latter is determined by a semisimple conjugacy class
cp in Ĝ(C). (You evaluate such a class on a representation V via Tr(cp|V ).)

Now suppose instead that we have an `-adic (or λ-adic) representation

ρ : Gal(Q/Q)→ Ĝ(Q`).

For all but finitely many primes, ρ is going to be unramified, which means in
particular that the expression ρ(Frobp) is well defined up to conjugacy. If we choose
an isomorphism C∼=Q`, then it makes sense to ask whether cp and ρ(Frobp) are
conjugate for almost all p. If this holds, then we say that ρ is attached to the
automorphic representation π . We remark that this definition would make sense
also if we replaced Gal(Q/Q) by the absolute Weil group, or the conjectural global
Langlands group, as in both cases ρ(Frobp) should be well defined up to conjugacy
at unramified primes.

By the Chebotarev density theorem, there is at most one Galois representation
attached to a given automorphic representation. The strong multiplicity one theorem
shows the converse when G = GL(n), but in general there will be several automor-
phic representations with the same attached Galois representation. Conjecturally,
two automorphic representations will have the same attached Galois representation
if and only if they lie in the same “L-packet”. However, the notion of a packet has
not been rigorously defined in general.

One of many conjectures within the Langlands program says roughly that there
should in fact be a bijection between packets of automorphic representations for G
and `-adic Galois representations into the dual group. As stated, this conjecture is
however false, and making the conjecture precise is a rather delicate matter. For
a formulation in terms of the hypothetical Langlands group, see [Arthur 2002],
and for a more restrictive formulation only in terms of Galois representations, see
[Buzzard and Gee 2014].

Often one fixes once and for all r : Ĝ ↪→ GL(n). Then the conjugacy class cp

can be described by specifying an n × n diagonal matrix diag(t1, . . . , tn). The
numbers ti are called the Langlands parameters of π at p. Moreover, one can then
attach an L-function to any automorphic representation. At a prime p where π is
spherical, the local L-factor is given by

det(1n − p−sr(cp))
−1.

On the other hand, given r we also obtain from ρ an n-dimensional `-adic Galois
representation, which also has an attached L-function. Thus, the Langlands pa-
rameters can be identified with the Frobenius eigenvalues of the attached Galois
representations. Usually the notion of ρ being attached to π is defined in terms of
an equality of L-functions, but L-functions will play only a minor role in this paper.
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Shimura varieties. See [Deligne 1979; Harder 1993, Kapitel II]. For G as above,
suppose that h : ResC/R Gm→ G/R is a homomorphism satisfying axioms 2.1.1.1–
2.1.1.3 of [Deligne 1979]. Let K∞ be the stabilizer of h in G(R). Let Kfin be
any compact open subgroup of G(Afin). For K = Kfin× K∞, we can consider the
quotient

SK = G(Q)\G(A)/K = G(Q)\X ×G(Afin)/Kfin,

the Shimura variety associated to K . Here X = G(R)/K∞. For Kfin small enough,
SK is, in fact, a smooth algebraic variety which is naturally defined over a number
field (the reflex field), but in the case we will consider in this paper we will actually
need to think of SK as an orbifold or Deligne–Mumford stack.

Example 3.1. Siegel modular varieties are Shimura varieties. Let G = GSp(2g)
and put

h(x + iy)=
[

x Ig y Ig

−y Ig x Ig

]
.

Then X = Hg t Hg is the union of Siegel’s upper half-space and its complex
conjugate. If we choose Kfin = G(Ẑ), then G(Afin)= G(Q) · Kfin and

SK = G(Q)\X ×G(Afin)/Kfin ∼= (G(Q)∩ Kfin)\X = G(Z)\X.

Now G(Z)\X is naturally isomorphic to the stack Ag parametrizing principally
polarized abelian varieties of dimension g. Had we chosen Kfin smaller, SK would
instead be a disjoint union of finite covers of Ag, parametrizing abelian varieties
with “Kfin-level structure”.

Let V be an irreducible finite-dimensional rational representation of G. To V

we can attach a local system on SK , which we also denote by V. As the reader
may already have noticed, we (sloppily) use “local system” as a catch-all term to
describe several different structures: we obtain a locally constant sheaf of Q-vector
spaces on the topological space SK (C) which in a natural way underlies a variation
of Hodge structure; moreover, V⊗Q` can (for any `) be identified with the base
change of a smooth `-adic sheaf on SK over the reflex field. The étale cohomology
groups of said `-adic sheaves are (after base changing to C) related to the ordinary
singular cohomology groups by a comparison isomorphism, and we may think
informally of V as a “motivic sheaf” and H •(SK ,V) as a “mixed motive” with a
compatible system of `-adic and Hodge-theoretic realizations.

Decomposing cohomology. See [Arthur 1996]. In this subsection we will find
the need to compare several different cohomology theories. We will use the
phrase “ordinary cohomology” to refer to the usual cohomology of the topological
space SK (C).
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The spectral decomposition of L2(G(Q)\G(A)) contains much information
about the cohomology of Shimura varieties for G. The connection to automorphic
representations is most transparent if we work transcendentally and consider the
sheaf V⊗ C on SK (C). Then, instead of the usual de Rham complex, one can
consider the complex of forms ω such that ω and dω are square-integrable; the
cohomology of this complex is called the L2-cohomology. The L2-cohomology
has an interpretation in terms of (g, K∞)-cohomology:

H •

(2)(SK (C),V⊗C)∼= H •
(
g, K∞;V⊗ L2(G(Q)\G(A))Kfin

)
.

According to [Borel and Casselman 1983, Section 4], the contribution from the
continuous spectrum to the (g, K∞)-cohomology vanishes in many natural cases
(including all Shimura varieties); in fact, the contribution is nonzero if and only
if the L2-cohomology is infinite-dimensional. In particular, we may in our case
replace L2(G(Q)\G(A)) by the direct sum

⊕
π m(π)π over the discrete spectrum,

giving instead the expression

H •

(2)(SK (C),V⊗C)∼=
⊕
π disc.

m(π)πKfin
fin ⊗ H •(g, K∞;V⊗π∞).

In this decomposition, each πKfin
fin is a module over the Hecke algebra, giving the

cohomology a Hecke action. Each H •(g, K∞;V ⊗ π∞) has a natural (p, q)-
decomposition, defining a pure Hodge structure on each cohomology group
H k
(2)(SK (C),V).
We say that an automorphic representation π is cohomological if there exists

a representation V for which H •(g, K∞;V⊗ π∞) 6= 0. Wigner’s lemma gives a
necessary condition for this nonvanishing of (g, K∞)-cohomology, namely that
π∞ and V∨ (denoting the contragredient) have the same infinitesimal character.
For cohomological representations, the infinitesimal character is the bookkeeping
device that tells you to which local system the automorphic representation will
contribute L2-cohomology.

The natural map from L2-cohomology to ordinary cohomology is in general nei-
ther injective nor surjective. One can however also define the cuspidal cohomology
as the direct summand

H •

cusp(SK (C),V⊗C)∼=
⊕
π cusp.

m(π)πKfin
fin ⊗ H •(g, K∞;V⊗π∞)

of the L2-cohomology, and it injects naturally into the ordinary cohomology [Borel
1981, Corollary 5.5].

Finally, one can consider the inner cohomology, which is defined as

H •

!
(SK ,V)= Image(H •

c (SK ,V)→ H •(SK ,V)).



50 DAN PETERSEN

When we extend scalars to C, the inner cohomology is sandwiched between the
cuspidal and the L2-cohomology. Indeed, the map from compactly supported
cohomology to ordinary cohomology always factors through the L2-cohomology,
since the orthogonal projection of a closed, compactly supported form to the space
of harmonic forms is square-integrable. This shows that the inner cohomology is a
subquotient of the L2-cohomology. On the other hand, the aforementioned result
of Borel shows that the cuspidal cohomology injects into the inner cohomology.

The “complement” of the inner cohomology is called the Eisenstein cohomology.
Formally, it is defined as the cokernel of H •

c (SK ,V)→ H •(SK ,V). One could also
consider the kernel, which gives the compactly supported Eisenstein cohomology.
We denote these H •

Eis and H •

c,Eis, respectively. We will consider G = GSp(2g),
in which case each local system V is isomorphic to its dual, up to a twist by the
multiplier. Indeed, the restriction of the representation V to Sp(2g) satisfies V∼=V∨,
with the symplectic pairing providing the isomorphism. In this case, we see that
either one of H •

Eis and H •

c,Eis determines the other via Poincaré duality.
The Zucker conjecture, proven independently in [Looijenga 1988; Saper and

Stern 1990], gives an isomorphism between the L2-cohomology of SK and the
intersection cohomology of the Baily–Borel–Satake compactification SK :

H •

(2)(SK (C),V⊗C)∼= H •(SK (C), j!∗V⊗C),

where j : SK → SK is the inclusion and j!∗ denotes the intermediate extension.
This isomorphism is compatible with the Hecke algebra action. But the intersection
cohomology makes sense algebraically, and we can decompose the intersection
cohomology of V into irreducible Hecke modules already over some number field F .
We thus get a decomposition

H •(SK , j!∗V⊗ F)=
⊕
πfin

π
Kfin
fin ⊗ H •(πfin).

Here the sum runs over the finite parts of all discrete automorphic representations,
and H •(πfin)⊗F C is isomorphic to

⊕
π∞

m(πfin⊗π∞)H •(g, K∞;V⊗π∞). For any
nonarchimedean place λ of F we also get a structure of λ-adic Galois representation
on each H •(πfin)⊗ Fλ by a comparison isomorphism with the étale intersection
cohomology. If we do not insist on a decomposition into absolutely irreducible
Hecke modules we can take F = Q, as in Theorem 2.1, where we, for example,
consider a summand corresponding to all cusp forms of given weight, instead of a
decomposition into Galois representations attached to individual cusp forms. See
[Blasius and Rogawski 1994, Conjecture 5.2] for a conjectural formula expressing
H •(πfin)⊗ Fλ in terms of Galois representations attached to π .
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4. The case of A2

Consider again the stack A2 of principally polarized abelian surfaces. As in
Example 3.1, we may think of it as a Shimura variety for GSp(4). However,
we would prefer to work with G = PGSp(4), and there is a minor issue here. If we
put Kfin = G(Ẑ), then the corresponding Shimura variety is

SK = PGSp(4,Z)\(H2qH2),

which fails to be isomorphic to A2 as a stack. Indeed every point of A2 has ±1 in
its isotropy group, but a general point of SK has trivial isotropy. The projection
GSp(4)→ PGSp(4) defines a map π : A2→ SK which induces an isomorphism
on coarse moduli spaces, but which is a µ2-gerbe in the sense of stacks.

The finite-dimensional irreducible representations of G are indexed by integers
a ≥ b ≥ 0 for which a + b is even. The local systems on SK obtained in this
way are strongly related to the local systems Va,b that we defined in Section 2.
Specifically, if a+b is even, then we may Tate twist the local system Va,b on A2 to
be a weight-zero variation of Hodge structure/`-adic sheaf; its pushforward under π
is the one that is naturally attached to an irreducible representation of PGSp(4).
Since Rπ∗Va,b = π∗Va,b, it will suffice to compute the cohomology of the local
systems on SK . From now on we tacitly identify the local systems on A2 and on SK

with each other.
In this section we will see how the results in [Flicker 2005] allow the computation

of the cuspidal and intersection cohomology of these local systems on A2. Let me
emphasize that, as mentioned in the above paragraph, by our definition the Va,b are
Weil sheaves of weight a+ b; this is the cohomological normalization, which is
the most natural from the point of view of algebraic geometry. There is also the
unitary normalization, where Va,b has weight 0, which is used in Flicker’s work. If
a+ b is even, as in our case, then the two differ only by a Tate twist. We will from
now on always make this Tate twist whenever we quote results from Flicker’s book,
without explicitly mentioning it.

Since A2 is the complement of a normal crossing divisor in a smooth proper
stack over Spec(Z), and the local systems Va,b are also defined over Spec(Z), the
cohomology groups H •(A2,Va,b ⊗Q`) must define Galois representations of a
very special kind: they are unramified at every prime p 6= ` and crystalline at `.
The same phenomenon is clear also on the automorphic side. If πKfin

fin 6= 0 and
Kfin = G(Ẑ), then πfin must be spherical at all primes by definition, since G(Zp)

is a special maximal compact subgroup of G(Qp). Conversely, if πfin is spherical
everywhere then πKfin

fin is exactly one-dimensional.
Considering PGSp(4) rather than GSp(4) is the same as only considering auto-

morphic representations of GSp(4) with trivial central character. The reason we
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can do this is that we are considering only the completely unramified case (i.e., the
case of the full modular group); in general, the image of a congruence subgroup of
GSp(4) in PGSp(4) will no longer be a congruence subgroup. We restrict ourselves
to PGSp(4) in this paper as this is the situation considered in [Flicker 2005].

We note that Flicker’s work assumes that all automorphic representations π
occuring are elliptic at at least three places. This is explained in Section I.2g of
Part 1 of the book. This assumption is present in order to replace Arthur’s trace
formula with the simple trace formula of [Flicker and Kazhdan 1988]. However, he
also notes that this assumption is only present in order to simplify the exposition —
the same results can be derived assuming only that π is elliptic at a single real
place, using the same ideas used to derive the simple trace formula in [Flicker
and Kazhdan 1988], as detailed in [Laumon 1997; 2005]. In particular, Flicker’s
classification of the cohomological part of the discrete spectrum carries through
(an archimedean component which is cohomological is elliptic).

We begin by determining H •(A2, j!∗Va,b). This amounts to determining all
representations in the discrete spectrum of PGSp(4) which are spherical at every
finite place and cohomological, and the corresponding Galois representation H •(π f )

for each of them. All these things are described very precisely by Flicker. Then we
shall see that H •

cusp(A2,Va,b) is well defined as a subspace of the étale intersection
cohomology, and that it coincides with the inner cohomology.

The Vogan–Zuckerman classification. Recall that an automorphic representation
πfin⊗π∞ is cohomological if π∞ has nonzero (g, K∞)-cohomology with respect
to some finite-dimensional representation V. If π∞ is in the discrete series, then π
is always cohomological. The cohomological representations which are not in the
discrete series can be determined by [Vogan and Zuckerman 1984]. We recall from
[Taylor 1993, p. 293] the result for GSp(4):

In the regular case there are no cohomological ones apart from the two discrete
series representations, which we denote by πH and πW (we omit the infinitesimal
character from the notation). The former is in the holomorphic discrete series and
the latter has a Whittaker model. Both have 2-dimensional (g, K∞)-cohomology,
concentrated in degree 3: their Hodge numbers are (3, 0) and (0, 3), and (2, 1)
and (1, 2), respectively.

The representations π with π∞ = πH correspond bijectively to cuspidal Siegel
modular eigenforms. If F is a holomorphic modular form on Siegel’s upper half-
space of genus g, then by the strong approximation theorem it defines a function
on G(A), where G = GSp(2g). If it is modular for the full modular group, then
we obtain a function with trivial central character. The subspace spanned by all
right translates of this function is the sought-for automorphic representation (or a
sum of several copies of it). Conversely, any automorphic representation π with
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archimedean component in the holomorphic discrete series uniquely determines
a holomorphic vector-valued cusp form by considering the one-dimensional space
of lowest K∞-type in π∞, and πKfin

fin being one-dimensional forces it to be an
eigenvector for all Hecke operators. See [Asgari and Schmidt 2001] for more details.

For singular weights there are further possibilities. If b = 0 there is a unitary
representation π1 whose (g, K∞)-cohomology is 2-dimensional in degrees 2 and 4,
with Hodge types (2, 0), (0, 2), (3, 1) and (1, 3).

If a = b there are two unitary representations π2+ and π2−. One is obtained
from the other by tensoring with the sign character. Both have one-dimensional
(g, K∞)-cohomology in degrees 2 and 4, with Hodge types (1, 1) and (2, 2).

Finally if a=b=0 we must in addition consider one-dimensional representations,
which have cohomology in degrees 0, 2, 4 and 6; we will ignore this case.

Packets and multiplicities. In Flicker’s book, the discrete spectrum of PGSp(4) is
partitioned into “packets” and “quasipackets”, and he conjectures that these coincide
with the conjecturally defined L-packets and A-packets. However, in the totally
unramified case the situation simplifies. In general, the (conjectural) A-packets
are products of local A-packets, which specify the possible local components πv.
The local packets at nonarchimedean v are expected to have exactly one spherical
member. Since we are only going to consider representations which are spherical
at every finite place, we thus see that π and π ′ will be in the same A-packet if and
only if they are in the same L-packet if and only if πfin

∼= π ′fin. For this reason we
simply write packet everywhere in what follows.

In Flicker’s classification there are five types of automorphic representations in
the discrete spectrum. In the first three types, the corresponding packets are stable:
each representation in the packet occurs with multiplicity exactly 1 in the discrete
spectrum. Types 4 and 5, however, are unstable. This means that the multiplicities
are not constant over the packets: in general, some representations in the packet
occur with multiplicity 0 and others with multiplicity 1. Flicker [2005, Section 2.II.4]
gives explicit formulas for the multiplicities of the representations in the packet.

In general there are local packets at each prime p in the unstable case, which
consist of either one or two elements. We write such local packets as {5+p } and
{5+p ,5

−
p }, respectively. An element of the global packet is specified by choosing

an element of the local packet at each p. All but finitely many of the local packets
will be singletons, so each packet is finite. When p=∞ we always have 5−p = π

H .
If π lies in an unstable packet, its multiplicity in the discrete spectrum depends
only on the parity of the number of places p where πp =5

−
p .

However, as we have already mentioned, the local packet contains only one
element for a prime p where π is spherical. More generally, certain local represen-
tations need to be discrete series in order for 5−p to be nonzero. Since we are in
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the level 1 case, this means that the representations in the packet can differ only in
their archimedean component, and the multiplicity formulas simplify significantly:
they depend only on whether or not π∞ = πH .

To each discrete spectrum automorphic representation π , one can attach a 4-
dimensional Galois representation whose Frobenius eigenvalues at p are given by the
Langlands parameters at p of π . (Here we fix the 4-dimensional spin representation
of Spin(5), the dual group of PGSp(4).) If π is in a stable packet, then H •(πfin) is
4-dimensional and coincides with this attached representation. In the unstable case,
the attached Galois representation is always a sum of two 2-dimensional pieces,
and H •(πfin) is given by one of these two summands. Which of the two halves
contributes nontrivially is decided by a formula similar to the multiplicity formula;
see [Flicker 2005, Part 2, Section V.2]. In particular it again has the feature that
it depends on the parity of the number of places where πp =5

−
p , and simplifies

significantly in the completely unramified case.

The discrete spectrum of PGSp(4). The discrete spectrum automorphic representa-
tions which can contribute nontrivially to H •

(2)(A2,Va,b) have an archimedean com-
ponent with infinitesimal character (a, b)+(2, 1). A complete classification into five
types is given in [Flicker 2005, Theorem 2, pp. 213–216]. We deal with each type
separately. This classification is the same as the one announced by Arthur [2004]
for GSp(4), except that the ones of Howe–Piatetski-Shapiro-type do not appear.

We write in parentheses the names assigned to these families by Arthur.

Type 1 (general). These are exactly the ones that lift to cuspidal representations
of PGL(4).

Each of these lies in a packet of cardinality 2, where the elements in the packet are
distinguished by their archimedean component: one is in the holomorphic discrete
series and the other has a Whittaker model. Both elements of the packet occur with
multiplicity 1 in the discrete spectrum. Packets of this type correspond bijectively to
vector-valued cuspidal Siegel eigenforms which are neither endoscopic (a Yoshida-
type lifting) nor CAP (a Saito–Kurokawa-type lifting). The contribution from this
part of the discrete spectrum to H •(A2, j!∗Va,b) is concentrated in degree 3 and
is the sum of the Galois representations attached to the Siegel cusp forms. We
shall see that the Yoshida-type liftings do not occur in level 1. We denote this
contribution to the cohomology by S

gen
a−b,b+3.

Type 2 (Soudry). These packets are singletons, and the archimedean component is
π1, and will therefore not occur unless b = 0. Every packet is obtained by a lifting
from a cuspidal representation 5 of GL(2), corresponding to a cusp eigenform of
weight a+ 1 whose central character ξ is quadratic, ξ 6= 1, and ξ5=5. This is
obviously impossible in level 1 for several reasons: for one, a must be even, and
there are no modular forms of odd weight for SL(2,Z).



LOCAL SYSTEMS ON THE MODULI OF P.P. ABELIAN SURFACES 55

Type 3 (one-dimensional). These are the representations with π∞ one-dimensional
and will only occur when a = b = 0; for our purposes this case can clearly be
ignored.

Type 4 (Yoshida). This is the first unstable case. All these π have π∞ ∈ {πH , πW
}

and their L-function is the product of L-functions attached to cusp forms for GL(2).
For each pair of cuspidal automorphic representations 51 and 52 of PGL(2) whose
weights are a+ b+ 4 and a− b+ 2, respectively, there is a packet {π} of Yoshida
type. As explained earlier, the fact that we are in the unramified case implies that
members of the packet can only differ in their archimedean component, so we
should consider only πfin⊗π

H and πfin⊗π
W . The multiplicity formula simplifies

(since we are in the unramified case) to

m(πfin⊗π
H )= 0, m(πfin⊗π

W )= 1,

and so πfin ⊗ π
W will contribute a 2-dimensional piece of the cohomology in

degree 3. The trace of Frobenius on this part of cohomology is also calculated by
Flicker and we find the Galois representation ρ52 ⊗Q`(−b− 1), where ρ52 is the
2-dimensional representation attached to 52. Summing over all 51 and 52, this
part therefore contributes

sa+b+4Sa−b+2(−b− 1)

to H 3(A2, j!∗Va,b).
We note in particular that there are no Yoshida-type liftings to Siegel cusp forms

in level 1: these would correspond to a π with π∞ = πH and multiplicity 1.
The required liftings and multiplicity formulas for the endoscopic case have also

been established for GSp(4) in [Weissauer 2009a, Theorem 5.2].

Type 5 (Saito–Kurokawa). This case appears only when a = b. Here there are four
possible archimedean components: πH , πW , π2+ and π2−. Every packet contains
precisely one of π2+ and π2−. For each cuspidal automorphic representation 5 of
PGL(2) of weight a+ b+ 4 and for ξ ∈ {1, sgn}, we get a Saito–Kurokawa packet
{π}. Since we are in level 1, we can ignore the character ξ (it must be trivial),
which means that π2− will not appear.

I should also say that there is a minor error at this place in Flicker’s book. Flicker
states that the Langlands parameters at a place u are (his notation)

diag(ξuq1/2
u z1u, ξuq1/2

u z2u, ξuq−1/2
u z2u, ξuq−1/2

u z1u),

when they should be

diag(z1u, ξuq1/2
u , ξuq−1/2

u , z2u).
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Let us then consider the multiplicities, which again simplify since we are in the
level 1 case: we find

m(πfin⊗π∞)=
1
2

(
1+ ε

(
5, 1

2

)
· (−1)n

)
,

where n= 1 if π∞=πH and n= 0 otherwise, and ε
(
5, 1

2

)
= (−1)k if5 is attached

to a cusp form of weight 2k.
We thus see that, if a = b is odd, the only representation in the packet with

nonzero multiplicity is πfin⊗ π
H , which should correspond to a Siegel modular

form. The Siegel modular forms obtained in this way are precisely the classical
Saito–Kurokawa liftings, and the contribution in this case is exactly Sa+b+4.

For a= b even we could a priori have both πfin⊗π
W and πfin⊗π

2+ with nonzero
multiplicity. But we can see by studying the Frobenius eigenvalues that πW will not
appear. Indeed, the representation πfin⊗π

W would contribute to the intersection
cohomology in degree 3, as we see from the (g, K∞)-cohomology of πW . Then its
Frobenius eigenvalues are pure of weight a+ b+ 3. But the Frobenius eigenvalues
at p will be pb+1 and pb+2, as determined by Flicker, a contradiction. On the other
hand, we know that πfin⊗π

2+ is automorphic: it is the Langlands quotient of

IndPGSp(4,A)
P(A) (5⊗ 1),

where P is the Siegel parabolic (whose Levi component is PGL(2) × GL(1)),
and the multiplicity formula shows that it has multiplicity 1 in the discrete spec-
trum. The representations of this form will contribute a term sa+b+4Q`(−b− 1) to
H 2(A2, j!∗Va,b) and sa+b+4Q`(−b− 2) to H 4(A2, j!∗Va,b).

Remark 4.1. That π∞ = πW does not occur in the Saito–Kurokawa case is men-
tioned as a conjecture of Blasius and Rogawski in [Tilouine 2009, Section 6].
The argument above will prove this conjecture for PGSp(4). Probably a proof for
GSp(4) in general can be obtained by a similar argument, or by considering the
possible Hodge numbers of H •(πfin).

The inner cohomology and the proof of the main theorem. From what we have
seen so far, we can completely write down the L2-cohomology and the intersection
cohomology of any local system on A2. Summing up the contributions from all
parts of the discrete spectrum, we see that

H 3(A2, j!∗Va,b)∼= S
gen
a−b,b+3+ sa+b+4Sa−b+2+

{
Sa+b+4 if a = b odd,
0 otherwise.

The cohomology vanishes outside the middle degree in all cases except when a = b
is even, when we have

H 2(A2, j!∗Va,b)∼=

{
sa+b+4Q`(−b− 1) if a = b even,
0 otherwise,
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and H 4(A2, j!∗Va,b)∼= H 2(A2, j!∗Va,b)(−1).
Note that the sum

S
gen
a−b,b+3+

{
Sa+b+4 if a = b odd,
0 otherwise,

is exactly what was denoted Sa−b,b+3 in Theorem 2.1, since there are no Yoshida-
type liftings in our case.

If we wish to determine in addition the cuspidal cohomology, then we need to
understand which of the above representations are in the residual spectrum. The
residual spectrum of GSp(4) is completely described in [Kim 2001, Section 7].
We see that there is exactly one case above where the representation is residual:
namely, the Langlands quotient of IndPGSp(4,A)

P(A) (5⊗ 1) is residual if and only if
L
(
5, 1

2

)
is nonzero. We deduce that the cuspidal cohomology coincides with the

L2-cohomology except in degrees 2 and 4 when a = b is even, where we have

H 2
cusp(A2,Va,b)∼= s ′a+b+4Q(−b− 1)

(so, conjecturally, it vanishes) and similarly for H 4
cusp. We also observe that, for all

packets, either all discrete representations are cuspidal or all are residual, so that
the cuspidal cohomology makes sense also as a summand of the étale intersection
cohomology (a priori it is only a summand in the L2-cohomology), and we can talk
about the Galois representation on the cuspidal cohomology.

The Eisenstein cohomology of any local system on A2 has been completely
determined in any degree, considered as an `-adic Galois representation up to
semisimplification, in [Harder 2012]. From that paper and the above discussion we
may deduce the following:

Proposition 4.2. The natural map H •

cusp(A2,Va,b)→ H •

!
(A2,Va,b) is an isomor-

phism for any a, b.

Proof. Recall that one has

H k(A2, j!∗Va,b)= H k
cusp(A2,Va,b)⊕ H k

res(A2,Va,b)

and
Wk+a+b H k(A2,Va,b)= H k

!
(A2,Va,b)⊕Wk+a+b H k

Eis(A2,Va,b).

Moreover, the map H k(A2, j!∗Va,b)→Wk+a+b H k(A2,Va,b) is surjective and maps
the cuspidal cohomology into the inner cohomology. Hence, if H k

res(A2,Va,b) and
Wk+a+b H k

Eis(A2,Va,b) have the same dimension, H k
cusp(A2,Va,b)→ H k

!
(A2,Va,b)

is an isomorphism.
We have seen that H k

res(A2,Va,b) is nonzero only for k ∈ {2, 4} and a = b
even, so these are the only cases where H •

cusp(A2,Va,b)→ H •

!
(A2,Va,b) is not

automatically an isomorphism. The dimension of H k
res(A2,Va,b) is sa+b+4−s ′a+b+4
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in these cases. From [loc. cit.] we see that Wk+a+b H k
Eis(A2,Va,b) 6= 0 only for

k= 2 and a= b even, in which case its dimension, too, is sa+b+4−s ′a+b+4. But then
H 2

cusp(A2,Va,b)→ H 2
!
(A2,Va,b) is an isomorphism by the preceding paragraph,

and then it is an isomorphism also in degree 4 since both the cuspidal and the inner
cohomology satisfy Poincaré duality. �

Remark 4.3. The equality of dimensions above is not surprising, since Harder
explicitly constructs these pure Eisenstein cohomology classes as residues of Eisen-
stein series associated to cusp forms for SL(2,Z) with nonvanishing central value.
So, in a sense, the dimension argument in the preceding theorem is unnecessarily
convoluted. See also [Schwermer 1995], which describes in general all possible
contributions from the residual spectrum to the Eisenstein cohomology of a Siegel
threefold.

The main theorem of the paper follows from this result, as we now explain.

Proof of Theorem 2.1. Up to semisimplification we have

H •

c (A2,Va,b)= H •

!
(A2,Va,b)⊕ H •

c,Eis(A2,Va,b),

and H •

c,Eis(A2,Va,b) was — as already remarked — determined in [Harder 2012].
By the preceding proposition we have H •

!
(A2,Va,b) = H •

cusp(A2,Va,b), and the
latter has been determined already in this section. Summing up the Eisenstein
cohomology and the cuspidal contribution gives the result. �
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