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We compute the space S2(K(N)) of weight 2 Siegel paramodular cusp forms of squarefree
level N < 300. In conformance with the paramodular conjecture of Brumer and Kramer,
the space is only the additive (Gritsenko) lift space of the Jacobi cusp form space Jcusp

2,N
except for N = 249, 295, when it further contains one nonlift newform. For these two
values of N , the Hasse–Weil p-Euler factors of a relevant abelian surface match the spin
p-Euler factors of the nonlift newform for the first two primes p �N .
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1. Introduction

The paramodular conjecture of Brumer and Kramer [3] says, in slight paraphrase
and restricted to the case of abelian surfaces:

For any positive integer N, there is a one-to-one correspondence
between isogeny classes of abelian surfaces A over Q of conduc-
tor N with EndQ(A) = Z, and lines Cf for nonlift degree 2 Siegel

∗Corresponding author.
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paramodular Hecke newforms f of weight 2 and level N having
rational eigenvalues. Moreover, the Hasse–Weil L-function of A
and the spin L-function of f should match, and the �-adic repre-
sentation of T�(A) ⊗ Q� should be isomorphic to those associated
to f for any � prime to N .

Here, the lift space is Grit(Jcusp
2,N ), the Gritsenko (additive) lift of the Jacobi cusp

form space of weight 2 and indexN . This lift space lies inside the Siegel paramodular
cusp form space S2(K(N)) — the subscript 2 indicates the weight, and K(N) denotes
the paramodular group of degree 2 and level N ; the degree is omitted from the
notation because all Siegel modular forms in this paper have degree 2. Newforms
on K(N) are by definition Hecke eigenforms orthogonal to the images of level-raising
operators from paramodular forms of lower levels [23]. Notation and terminology
will be reviewed in Sec. 2.

In [21], the first and third authors of this paper studied S2(K(N)) for prime
levels N < 600. Because dimS2(K(N)) is unknown in general, algorithms were
used to bound this dimension by working in S4(K(N)), whose dimension is
known for prime N by work of Ibukiyama [12, 14]. The algorithms proved that
S2(K(N)) = Grit(Jcusp

2,N ) for all primes N < 600 other than the exceptional cases
N = 277, 349, 353, 389, 461, 523, 587, precisely the primes N < 600 for which rele-
vant abelian surfaces exist. Also, S2(K(277)) contains one nonlift dimension Cf277,
and Brumer and Voight and the first and third authors of this paper have shown that
the equality of L(f277, s, spin) and L(A277, s,Hasse–Weil) holds conditionally on the
existence of certain Galois representations [25]. A nonlift eigenform in S2(K(587))−

has been constructed as well [10]. We are currently working on constructing nonlift
forms in the remaining levels.

In [2], Breeding and the first and third authors of this paper showed that
S2(K(N)) = Grit(Jcusp

2,N ) for all N ≤ 60. A key method here was Jacobi restric-
tion, to be described briefly in Sec. 2, and see also [16]. The paper [2] established a
sufficient number of Fourier–Jacobi coefficients necessary to make Jacobi restriction
rigorous at a given level. Running Jacobi restriction to this many coefficients was
tractable for levels up to 60. One idea of the present paper is that new algorithms
reduce the number of Fourier–Jacobi coefficients known to be sufficient to certify
Jacobi restriction, making the number small enough that running Jacobi restriction
with that many coefficients is tractable for higher levels.

This paper reports our investigation for squarefree composite levels N < 300,
necessarily using different methods from [21]. Among these levels that are also odd,
isogeny classes of abelian surfaces exist only for N = 249 and N = 295, and at those
two levels, the one known isogeny class contains Jacobians of hyperelliptic curves.
Specifically, we may take A249 to be the Jacobian of y2 = x6 + 4x5 + 4x4 + 2x3 + 1
andA295 to be the Jacobian of y2 = x6 − 2x3 − 4x2 + 1 [3]. Our computations affirm
that indeed S2(K(N)) contains one nonlift dimension for N = 249, 295, but other-
wise is only the lift space Grit(Jcusp

2,N ). For N = 249, 295, we construct the nonlift
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eigenform as the sum of a Borcherds product and a Gritsenko lift, and we show that
its first two good spin p-Euler factors match the Hasse–Weil p-Euler factors of the
relevant abelian surface. Thus, the main result of this paper is as follows.

Theorem 1.1. For all composite squarefree N < 300 except N = 249 and N = 295,
S2(K(N)) = Grit(Jcusp

2,N ). For N = 249 and N = 295, S2(K(N)) contains one nonlift
newform dimension CfN beyond Grit(Jcusp

2,N ). For the abelian surfaces A249 and A295

defined in the previous paragraph, the p-Euler factor of L(f249, s, spin) matches the
p-Euler factor of L(A249, s,Hasse–Weil) for p = 2 and p = 5, and the p-Euler factor
of L(f295, s, spin) matches the p-Euler factor of L(A295, s,Hasse–Weil) for p = 2
and p = 3.

For the level 249 nonlift newform, let ϑ(τ, z) be Jacobi’s odd theta function and
let ϑr(τ, z) = ϑ(τ, rz) for r ∈ Z≥1, and introduce a product of quotients of theta
functions,

ψ249 =
ϑ8

ϑ1

ϑ18

ϑ6

ϑ14

ϑ7
.

The nonlift newform of S2(K(249)) is then

f249 = 14 Borch(ψ249)

− 6 Grit(TB(2; 2, 3, 3, 4, 5, 6, 7, 9, 10, 13))

− 3 Grit(TB(2; 2, 2, 3, 5, 5, 6, 7, 9, 11, 12))

+ 3 Grit(TB(2; 1, 3, 3, 5, 6, 6, 6, 9, 11, 12))

+ 2 Grit(TB(2; 1, 1, 2, 3, 4, 5, 6, 9, 10, 15))

+ 7 Grit(TB(2; 1, 2, 3, 3, 4, 5, 6, 9, 11, 14)),

where “Borch” and “Grit” and “TB” respectively denote the Borcherds product,
the Gritsenko lift, and the theta block construction. This will be explained further
in Sec. 8. Thus, f249 is congruent to a Gritsenko lift modulo 14, and we note that
the two isogenous Jacobians of genus 2 curves of conductor 249 defined over Q have
torsion groups Z/14Z and Z/28Z, as shown at lmfdb.org.

Again with dimS2(K(N)) unavailable, we used algorithms to bound this dimen-
sion by working in S4(K(N)), whose dimension is known by work of Ibukiyama and
Kitayama [15]. These algorithms require spanning most of the weight 4 space but
not necessarily all of it: the requisite spanned subspace can fall short essentially
by the dimension of the Jacobi cusp form space Jcusp

2,N , which is known by work of
Skoruppa and Zagier [4, 24]. Thus, our major computational challenge was to span
enough of S4(K(N)). This space presents various impediments to diverse spanning
methods, so we had to employ a range of approaches. The methods that worked for
prime N generally did not help for composite squarefree N : Hecke spreading, which
spanned the Fricke plus space for large prime levels, is obstructed for composite
levels by the various Atkin–Lehner signatures that are possible; and theta tracing,
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which spanned the Fricke plus space for small prime levels and the Fricke minus
space for large prime levels, appears to be more expensive computationally for com-
posite levels. For composite squarefree N , our methods are to trace (Grit(Jcusp

2,Nq))
2

and Grit(Jcusp
4,Nq) down to level N from level Nq for a small prime q that does not

divide N , to Hecke spread (Grit(Jcusp
2,N ))2 at level N , and to compute Borcherds

products in the Fricke plus and minus spaces at level N . When enough of the
weight 4 space is spanned, the algorithms for weight 2 show that Jacobi restriction
computations with only a small number of Fourier–Jacobi coefficients are rigorous,
and these computations give the results.

See the website [26] for reports on the computations that this paper discusses.
For example, we sketch the online report for level N = 286, which the reader could
examine alongside this paragraph. The space S4(K(286)) has 189 dimensions, of
which the lift space Grit(Jcusp

4,286) comprises 48. Jacobi restriction heuristically finds
113 more Fricke plus space dimensions, giving 161 Fricke plus space dimensions
altogether, and 28 Fricke minus space dimensions. This heuristic information is
essential for targeting our constructions, e.g., deciding when to switch from one
method to another. Tracing the weight 4 Gritsenko lifts and the twofold products
of weight 2 Gritsenko lifts from level 1430 = 286 · 5 down to level 286 and then
adding the twofold products of weight 2 Gritsenko lifts at level 286 gives 157 plus
space dimensions and no minus space dimensions. Hecke spreading gives 8 minus
dimensions. Adding in Borcherds products raises the spanned plus and minus space
dimensions to 161 and 27, so one dimension is missing and we think that it lies in the
minus space. This gives enough of the weight 4 space to run our weight 2 diagnostic
tests, to be described in Sec. 4. The H4(286, 3, 1)+ test says that weight 2 Jacobi
restriction to two or more terms gives a dimension upper bound of the Fricke plus
space S2(K(286))+. Thus, weight 2 Jacobi restriction to five terms, which we have
carried out, correctly bounds the dimension of the Fricke plus space by 3, the dimen-
sion of the lift space Grit(Jcusp

2,286); this shows that these two spaces are equal. The
H4(286, 1, 1)− test says that the Fricke minus space is 0. So altogether S2(K(286))
is the lift space. Whereas the H4(286, 3, 1)+ test says that Jacobi restriction to two
or more terms gives a Fricke plus space dimension upper bound, the theoretical
bound used in [2] says this only for 24 or more terms. This improvement is crucial:
running Jacobi restriction systematically across many levels to the number of terms
required by the bound used in [2] is computationally unviable for now.

The Borcherds products used in the computation at level N = 286 are given at
the website [26]. For the Fricke plus space, the relevant file at the website explains
that 60 Borcherds products Borch(ψ) were used to find the additional four dimen-
sions reported; each ψ lies in the space Jw.h.

0,286 of weight 0, index 286 weakly holo-
morphic Jacobi forms, and is a linear combination of a basis of Jcusp

12,286/∆12 where
∆12 ∈ Jcusp

12,0 is the classical discriminant function. The basis of Jcusp
12,286/∆12, built

from theta blocks, is given at the end of the file. The website’s file for the Fricke
minus space is similar, explaining that 22 Borcherds products Borch(ψ) were used to
find the additional 19 dimensions reported, with each ψ now the sum of a quotient
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φ|V2/φ and a linear combination of the basis of Jcusp
12,286/∆12; here φ is a theta block

and V2 is an index-raising Hecke operator. Our Borcherds product files will be
described further in Sec. 7.

Section 2 gives background for this paper. Section 3 shows that for low or odd
weight and squarefree level, either all Siegel paramodular forms are cusp forms or
the vanishing of a Siegel paramodular form’s constant term suffices to make it a cusp
form. Section 4 establishes the algorithms that study weight 2 Siegel paramodular
cusp forms by working in weight 4. Section 5 describes our tracing down method,
and Sec. 6 describes our use of Hecke spreading. Section 7 gives a result that certain
conditions suffice for a Borcherds product of low weight and squarefree level to be
a Siegel paramodular cusp form. Finally, Sec. 8 describes how we used this result
to construct the weight 2 nonlift newforms at levels N = 249 and N = 295.

2. Background

We introduce notation and terminology for Siegel paramodular forms. The degree 2
symplectic group Sp(2) of 4×4 matrices is defined by the condition g′Jg = J , where
the prime denotes matrix transpose and J is the skew form

[
0 −1
1 0

]
with each block

2 × 2. The Klingen and Siegel parabolic subgroups of Sp(2) are respectively

P2,1 =






∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗




, P2,0 =






∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗




.

For P2,1, the three zeros on the bottom row force the other two zeros in consequence
of the matrices being symplectic. For any positive integer N , the paramodular group
K(N) of degree 2 and level N is the group of rational symplectic matrices that
stabilize the column vector lattice Z ⊕ Z ⊕ Z ⊕NZ. In coordinates,

K(N) =







∗ ∗N ∗ ∗
∗ ∗ ∗ ∗/N
∗ ∗N ∗ ∗
∗N ∗N ∗N ∗


 ∈ Sp2(Q) : all ∗ entries integral


.

Here the upper right entries of the four subblocks are “more integral by a factor
of N” than implied immediately by the definition of the paramodular group as a
lattice stabilizer, but as with P2,1 the extra conditions hold because the matrices
are symplectic.

Let H2 denote the Siegel upper half space of 2× 2 symmetric complex matrices
that have positive definite imaginary part. Elements of this space are notated

Ω =
[
τ z

z ω

]
∈ H2,

and also, letting e(z) = e2πiz for z ∈ C, the notation

q = e(τ), ζ = e(z), ξ = e(ω)
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is standard. The real symplectic group Sp2(R) acts on H2 via fractional linear trans-
formations, g(Ω) = (aΩ+ b)(cΩ+ d)−1 for g =

[
a b
c d

]
, and the factor of automorphy

is j(g,Ω) = det(cΩ + d). Fix an integer k. Any function f : H2 → C and any
real symplectic matrix g ∈ Sp2(R) combine to form another such function through
the weight k operator, f [g]k(Ω) = j(g,Ω)−kf(g(Ω)). A Siegel paramodular form
of weight k and level N is a holomorphic function f : H2 → C that is [K(N)]k-
invariant; the Köcher Principle says that for any positive 2 × 2 real matrix Yo, the
function f [g]k is bounded on {Im(Ω) > Yo} for all g ∈ Sp2(Q). The space of weight k,
level N Siegel paramodular forms is denoted Mk(K(N)). Dimension formula meth-
ods for Mk(K(N)) based on the Riemann–Roch theorem or trace formulas are not
available for k = 2.

The Witt map ι∗ takes functions f : H2 → C to functions ι∗f : H × H →
C, with (ι∗f)(τ × ω) = f([ τ 0

0 ω ]). Especially, the Witt map takes Mk(K(N)) to
Mk(SL2(Z))⊗Mk(SL2(Z))[[ N 0

0 1 ]]k. Siegel’s Φ map takes any holomorphic function
that has a Fourier series of the form f(Ω) =

∑
t a(t; f) e(〈t,Ω〉), summing over

matrices t = [ n r
r m ] with n,m ∈ Q≥0, r ∈ Q, and nm − r2 ≥ 0, to the function

(Φf)(τ) = limω→i∞(ι∗f)(τ, ω). A Siegel paramodular form f in Mk(K(N)) is a cusp
form if Φ(f [g]k) = 0 for all g ∈ Sp2(Q); the space of such forms is denoted Sk(K(N)).
The dimension of Sk(K(N)) is known for squarefree N and k ≥ 3 [12, 14, 15].

Every Siegel paramodular form of weight k and level N has a Fourier expansion

f(Ω) =
∑

t∈X2(N)semi

a(t; f) e(〈t,Ω〉),

where X2(N)semi =
{[

n r/2
r/2 mN

]
: n,m ∈ Z≥0, r ∈ Z, 4nmN − r2 ≥ 0

}
and 〈t,Ω〉 =

tr(tΩ). A Siegel paramodular form is a cusp form if and only if its Fourier expan-
sion is supported on X2(N), defined by the strict inequality 4nmN − r2 > 0;
this description of cusp forms does not hold in general for groups commensurable
with Sp2(Z), but it does hold for K(N). Consider any Sp2(R) matrix of the form
g = d∗�d =

[
d∗ 0
0 d

]
with d ∈ GL2(R), where the superscript asterisk denotes matrix

inverse-transpose. Introduce the notation t[u] = u′tu for compatibly sized matri-
ces t and u. Then we have f [g]k(Ω) = (det d)−k

∑
t∈X2(N)semi[d∗] a(t[d

′]; f) e(〈t,Ω〉)
for any Siegel paramodular form f , and especially if g normalizes K(N) so that
f [g]k is again a Siegel paramodular form then a(t; f [g]k) = (det d)−ka(t[d′]; f)
for t ∈ X2(N)semi. Let Γ0±(N) denote the subgroup of GL2(Z) defined by the con-
dition b = 0 mod N . For d ∈ Γ0±(N), the matrix g = d−1 � d′ lies in K(N) and
we get a(t[d]; f) = (det d)ka(t; f) for t ∈ X2(N)semi. Our programs handle Fourier
coefficient indices at the level of Γ0

±(N)-equivalence classes, each class having a
canonical representative of the form to × vo with to ∈ X2(1)semi Legendre reduced
and with vo ∈ Z/NZ ⊕ Z/NZ.

For each positive divisor c of N such that gcd(c,N/c) = 1, let ĉ be a multi-
plicative inverse of N/c modulo c. Introduce the cth cusp representative matrix rc
and a translation matrix βc and their product, the cth Atkin–Lehner matrix
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αc = rcβc,

rc =
[

1 0
N/c 1

]
, βc =

1√
c

[
c − ĉ

0 1

]
, αc =

1√
c

[
c − ĉ

N 1 − (N/c)ĉ

]
.

The Atkin–Lehner matrix normalizes the level N Hecke subgroup Γ0(N) of SL2(Z),
and it squares into Γ0(N); these properties hold for all of Γ0(N)αcΓ0(N), any
of which may be taken as αc instead. For c = 1, we take r1 = β1 = α1 = 12. For c =
N , we modify the Atkin–Lehner matrix, multiplying it from the right by [ 1 0

N 1 ] to get
the traditional Fricke involution, αN = 1√

N

[
0 −1
N 0

]
: τ �→ − 1

Nτ . Each Atkin–Lehner
matrix αc has a corresponding paramodular Atkin–Lehner matrix µc = α∗

c �αc that
normalizes K(N) and squares into K(N). For c = 1, we take µ1 = 14. For c = N , the
paramodular Fricke involution is µN = 1√

N
(
[

0 −N
1 0

]
�
[

0 −1
N 0

]
) : [ τ z

z ω ] �→
[

ωN −z
−z τ/N

]
.

The space Sk(K(N)) decomposes as the direct sum of the Fricke eigenspaces for
the two eigenvalues ±1, Sk(K(N)) = Sk(K(N))+ ⊕Sk(K(N))−. More generally, the
Atkin–Lehner involutions satisfy [αc]k[αc̃]k = [αcc̃]k for coprime divisors c and c̃

of N , and so they commute. Thus, Sk(K(N)) decomposes as a direct sum of spaces
Sk(K(N))v where v is a vector of ± entries indexed by the prime divisors of the
level N . Such a vector is called an Atkin–Lehner signature.

The Fourier–Jacobi expansion of a Siegel paramodular cusp form f ∈
Sk(K(N)) is

f(Ω) =
∑
m≥1

φm(f)(τ, z)ξmN , Ω =
[
τ z

z ω

]
, ξ = e(ω)

with Fourier–Jacobi coefficients

φm(f)(τ, z) =
∑

t=

»
n r/2

r/2 mN

–
∈X2(N)

a(t; f)qnζr , q = e(τ), ζ = e(z).

Here the coefficient a(t; f) is also written c(n, r;φm). Each Fourier–Jacobi coef-
ficient φm(f) lies in the space Jcusp

k,mN of weight k, index mN Jacobi cusp forms,
whose dimension is known (for the theory of Jacobi forms, see [4, 8, 24]). These are
Jacobi forms of level one — this is an advantage of the paramodular group over the
Hecke subgroup Γ(2)

0 (N) of Sp2(Z) — and trivial character, both omitted from the
notation. The additive (Gritsenko) lift Grit : Jcusp

k,N → Sk(K(N))ε ⊂ Sk(K(N)) for
ε = (−1)k is a section of the map Sk(K(N)) → Jcusp

k,N that takes each f to φ1(f),
i.e. φ1(Grit(φ)) = φ for all φ ∈ Jcusp

k,N .
Jacobi restriction is described briefly in [2, Sec. 5], and we sketch it here as well.

Taking an even weight k for simplicity, the coefficients of a Siegel paramodular Fricke
eigenform f ∈ Sk(K(N))ε satisfy the Siegel consistency relations c(n, r;φm) =
c(n′, r′;φm′) for

[
n′ r′/2

r′/2 m′N

]
∈
[

n r/2
r/2 mN

]
[Γ0±(N)], and they satisfy the Fricke eigen-

form relations c(n, r;φm) = εc(m,−r;φn). For a chosen value mmax, define a sub-
space V (mmax) of

⊕mmax
m=1 Jcusp

k,mN by imposing any subset of the just-mentioned
linear relations on the coefficients c(n, r;φm) with m ≤ mmax. Thus, V (mmax)
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contains the image of the map Sk(K(N))ε →
⊕mmax

m=1 Jcusp
k,mN that takes each f to

(φ1(f), . . . , φmmax(f)). In particular, dimSk(K(N))ε ≤ dimV (mmax) for mmax large
enough to make the map inject; theoretical estimates formmax in [2] guarantee injec-
tivity, but they can be too big for practical use. For values of k and improved values
of mmax relevant to this paper, we can span the spaces Jcusp

k,mN for m ≤ mmax with
theta blocks, and so we can compute dim V (mmax). For any prime q, if we have bases
of the Jacobi form spaces over the field Fq of q elements then the same computation
modulo q gives the bound dimSk(K(N))ε ≤ dimFq V (mmax). Jacobi restriction is
remarkably tractable, and it often gives optimal dimension upper bounds for values
of mmax much smaller than the theoretical estimates. Even when we do not know
thatmmax is large enough to guarantee the bounds given by Jacobi restriction, those
bounds are still very useful heuristic estimates. For example, our weight 4 compu-
tations that made up the bulk of the project being described in this paper were
not viable until we used such estimates from Jacobi restriction to decide how many
Fourier coefficients the computations should track, and also our work in weight 4 at
a given level often involved a confident decision between searching for more Fricke
plus space dimensions or more Fricke minus space dimensions based on the heuristic
dimensions of the two eigenspaces.

The Dedekind eta function and the odd Jacobi theta function are

η(τ) = q1/24
∏

n∈Z≥1

(1 − qn),

ϑ(τ, z) =
∑
n∈Z

(−1)nq(n+1/2)2/2ζn+1/2.

Let ϑr(τ, z) = ϑ(τ, rz) for any r ∈ Z≥1. Quotients ϑr/η are the basic ingredients
of the theta block “without denominator” (see [11]) associated to any finitely sup-
ported function ϕ : Z≥0 → Z with ϕ(r) ≥ 0 for r ≥ 1,

TB(ϕ)(τ, z) = η(τ)ϕ(0)
∏

r∈Z≥1

(ϑr(τ, z)/η(τ))ϕ(r).

Any such theta block transforms as a Jacobi form of weight k = 1
2ϕ(0) and of

index m = 1
2

∑
r∈Z≥1

r2ϕ(r), and when 1
24ϕ(0) + 1

12

∑
r∈Z≥1

ϕ(r) ∈ Z it has triv-
ial character. The theta block TB(ϕ) need not be a Jacobi cusp form, but the
“without denominator” stipulation that ϕ(r) ≥ 0 for r ≥ 1 makes it lie in the
space Jw.h.

k,m of weakly holomorphic weight k, index m Jacobi forms, whose Fourier
expansions ψ(τ, z) =

∑
n,r c(n, r)q

nζr are supported on n 
 −∞. We show that
equivalently, the support can be taken to be 4nm − r2 
 −∞. The index m

Jacobi form transformation law ψ(τ, λτ + z)qλ2mζ2λm = ψ(τ, z) for any λ ∈ Z

shows that c(n − λr + λ2m, r − 2λm) = c(n, r) for all (n, r) and λ, and also
4(n− λr + λ2m)m− (r − 2λm)2 = 4nm− r2. Thus, for a given value of 4nm− r2,
we may consider only coefficients c(n, r) with |r| ≤ m. If for some no, all coefficients
c(n, r) where n < n0 are 0, then all coefficients c(n, r) where 4nm− r2 < 4nom−m2

are 0; indeed, we may take |r| ≤ m, giving 4nm −m2 ≤ 4nm − r2 < 4nom −m2
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and thus n < no, so c(n, r) = 0 as claimed. Conversely, if for some d0, all coeffi-
cients c(n, r) where 4nm− r2 < do are 0, then also c(n, r) = 0 for all n < do/(4m).
Thus, the weight k, index m weakly holomorphic Jacobi forms can be defined by
the condition c(n, r) = 0 either for n 
 −∞ or for 4nm − r2 
 −∞, as claimed.
Furthermore, given a weakly holomorphic Jacobi form of index m, its coefficients
c(n, r) where 4nm− r2 ≤ 0 are entirely determined by the finitely many such coef-
ficients indexed by (n, r) such that n ≤ m/4 and |r| ≤ m. This holds because
c(n, r) = c(ñ, r̃) for some (ñ, r̃) with |r̃| ≤ m and 4ñm − r̃2 = 4nm − r2; thus
4ñm − m2 ≤ 4ñm − r̃2 = 4nm − r2 ≤ 0, and the claimed inequality ñ ≤ m/4
follows.

Some functions ϕ : Z≥0 → Z that do not take Z≥1 to Z≥0 still produce weakly
holomorphic Jacobi forms under the formula in the previous display. These are theta
blocks “with denominator”. Our algorithm and program to find Borcherds products
to help span spaces S4(K(N)) involved theta blocks without denominator, while our
construction of the nonlifts in S2(K(N)) for N = 249, 295 used theta blocks with
denominator.

The theory of Borcherds products for paramodular forms is given by Gritsenko
and Nikulin in [8].

3. Cuspidality for Odd or Low Weight and Squarefree Level

Our computation used the following cuspidality test. Specifically, the test will be
used in the proof of Corollary 7.2, which identifies some Borcherds products as
paramodular cusp forms.

Proposition 3.1. Let N be a squarefree positive integer, and let k be a positive
integer. If k = 2 or k is odd then Mk(K(N)) = Sk(K(N)). If k = 4, 6, 8, 10, 14 then
for all f ∈ Mk(K(N)), f ∈ Sk(K(N)) if and only if a(0; f) = 0.

Proof. Recall the matrices rc, αc, βc, and µc = α∗
c � αc from Sec. 2. For any

squarefree positive integer N , every divisor c of N satisfies the Atkin–Lehner con-
dition gcd(c,N/c) = 1, and so Reefschläger’s decomposition ([22], and see [20,
Theorem 1.2]) Sp2(Q) =

⊔
0<c|N K(N)(r∗c � rc) P2,1(Q) combines with the rela-

tions αc = rcβc to give Sp2(Q) =
⊔

0<c|N K(N)µc(β′
c � β−1

c ) P2,1(Q). Thus, any
g ∈ Sp2(Q) is g = κµcuc where κ ∈ K(N) and 0 < c | N and uc ∈ P2,1(Q(

√
N/c)),

and consequently Φ(f [g]k) = Φ(f [µc]k[uc]k). Let u1,c ∈ GL2(R) denote the 2 × 2
matrix of upper left entries of the four blocks of uc. For any f ∈ Mk(K(N)), a com-
putation shows that Φ(f [µc]k[uc]k) = (mΦ(f [µc]k))[u1,c]k, where m is a nonzero
constant that depends on uc. Thus, to show that f is a cusp form, it suffices to
show that Φ(f [µc]k) = 0 for all 0 < c | N . Note that to do so, we need to consider
the Siegel Φ map only on Mk(K(N)). Recall that the Witt map on Mk(K(N)) has
codomain Mk(SL2(Z)) ⊗Mk(SL2(Z))[[ N 0

0 1 ]]k.
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If k = 2 or k is odd then Mk(SL2(Z)) ⊗Mk(SL2(Z))[[ N 0
0 1 ]]k = 0, making the

Witt map on Mk(K(N)) zero and hence making the Siegel Φ map on Mk(K(N))
zero. This proves the first statement.

If k = 4, 6, 8, 10, 14 then Mk(SL2(Z)) ⊗ Mk(SL2(Z))[[ N 0
0 1 ]]k = Cϕ with

ϕ(τ, ω) = Ek(τ)Ek [[ N 0
0 1 ]]k(ω). The Witt map image of any f in Mk(K(N)) has the

same constant term as f . Thus, letting co denote the constant term of Ek[[ N 0
0 1 ]]k,

the Witt map is f �→ (a(0; f)/co)ϕ and Siegel’s Φ map is f �→ a(0; f)Ek. To prove
the nontrivial part of the second statement, we take any f ∈ Mk(K(N)) with
a(0; f) = 0 and show that Φ(f [µc]k) = 0 for 0 < c |N , making f a cusp form.
The Fourier coefficients of f [µc]k are a(t; f [µc]k) = a(t[α′

c]; f), so in particular
a(0; f [µc]k) = a(0; f) = 0. Thus Φ(f [µc]k) = a(0; f [µc]k)Ek = 0, as desired.

4. Analyzing Weight 2 via Weight 4

Let N be a positive integer. This section presents four tests to study S2(K(N))
based on computations in S4(K(N)). A main point is that the tests can certify that
the results of Jacobi restriction are rigorous even when the restriction is carried
out only to a few terms. We begin by introducing subspaces of S2(K(N)) whose
vanishing connotes the correctness of Jacobi restriction.

Definition 4.1. For any d ∈ Z≥1 define

S2(K(N))(d) =


f ∈ S2(K(N)) : f(Ω) =

∑
m≥d

φm(f)(τ, z)ξmN


.

Also define

S2(K(N))ε(d) = S2(K(N))(d) ∩ S2(K(N))ε, ε = ±1.

We say that elements of a space S2(K(N))(d) are d-docked , because their
Fourier–Jacobi coefficients before φd vanish; in particular, 1-docked connotes no
conditions and 2-docked means that φ1(f) = 0. Any f ∈ S2(K(N))(d) has
Fourier coefficients a(t; f) = 0 for all t =

[
n r/2

r/2 mN

]
∈ X2(N) such that m < d,

and so it has Fourier coefficients a(t[γ]; f) = 0 for all such t and for all γ ∈ Γ0±(N)
because its Fourier coefficients are Γ0

±(N) class functions, as discussed in Sec. 2.
If S2(K(N))(d) = 0, so that S2(K(N))±(d) = 0, then running Jacobi restriction
out to d − 1 terms or more produces rigorous upper bounds of dimS2(K(N))±.
If S2(K(N))+(d) = 0 then running Jacobi restriction out to d − 1 terms or more
produces a rigorous upper bound of dimS2(K(N))+, and similarly with “−” in
place of “+”. Note, however, that the conditions S2(K(N))±(d) = 0 need not imply
S2(K(N))(d) = 0 for d ≥ 2. Note also that S2(K(N))(d)∩Grit(Jcusp

2,N ) = 0 for d ≥ 2.
We make two observations to be used in the analysis.

Lemma 4.2. (a) Let f ∈ S2(K(N)) be nonzero, and let {gi : i ∈ I} be a basis
of Grit(Jcusp

2,N ). The set {fgi : i ∈ I} is linearly independent in S4(K(N)), and if f
is a nonlift then the set

{
f2, fgi : i ∈ I

}
is linearly independent as well.
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(b) We have the equivalence

S2(K(N))+ = Grit(Jcusp
2,N ) ⇔ S2(K(N))+(2) = 0,

and the same equivalence holds with S2(K(N)) in place of S2(K(N))+.

Proof. (a) Because there is no nontrivial linear relation among {gi : i ∈ I}, there is
no such relation among {fgi : i ∈ I} either, because the graded ring of paramodular
forms has no zero divisors. The same argument shows that if f is a nonlift then
there is no nontrivial linear relation among

{
f2, fgi : i ∈ I

}
.

(b) A nonzero element of S2(K(N))+(2) is an element of S2(K(N))+ but not
of Grit(Jcusp

2,N ), and an element of S2(K(N))+ that is not an element of Grit(Jcusp
2,N )

can be translated by an element of Grit(Jcusp
2,N ) to produce a nonzero element of

S2(K(N))+(2). The argument for S2(K(N)) is the same.

To study S2(K(N))(d) and S2(K(N))ε(d) for ε = ±1, we introduce subspaces
of S4(K(N)) and S4(K(N))ε that are generated by products of S2(K(N))-elements
subject to docking and Fricke eigenspace conditions.

Definition 4.3. For any d ∈ Z≥1, define the following subspaces of S4(K(N)).

H4(N, d, d)+ = 〈f1f2 : f1, f2 ∈ S2(K(N))ε(d) for one of ε = ±1〉,

H4(N, d, 1) = 〈f1f2 : f1 ∈ S2(K(N))(d), f2 ∈ S2(K(N))〉,

H4(N, d, 1)+ = 〈f1f2 : f1 ∈ S2(K(N))ε(d), f2 ∈ S2(K(N))ε for one of ε = ±1〉,

H4(N, d, 1)− =
〈
f1f2 : f1 ∈ S2(K(N))ε(d), f2 ∈ S2(K(N))−ε for one of ε = ±1

〉
.

Dimension bounds of the weight 4 spaces H4(N) combine with Lemma 4.2(a)
to give information about the docked weight 2 spaces as follows.

Lemma 4.4. Let d be a positive integer.

(1) If H4(N, d, d)+ = 0 then S2(K(N))±(d) = 0.

(2) If dimH4(N, d, 1) < dim Jcusp
2,N + 1 then S2(K(N))(d) ⊂ Grit(Jcusp

2,N ).

(3) If dimH4(N, d, 1)+ < dim Jcusp
2,N + 1 then S2(K(N))+(d) ⊂ Grit(Jcusp

2,N ).

(4) If dimH4(N, d, 1)− < dim Jcusp
2,N then S2(K(N))−(d) = 0.

Proof. (1) Every f ∈ S2(K(N))ε(d) for either of ε = ±1 squares into H4(N, d, d)+,
which is 0, so S2(K(N))±(d) = 0.

(2) If some f ∈ S2(K(N))(d) is a nonlift then the linear independence of{
f2, fgi : i ∈ I

}
gives dimH4(N, d, 1) ≥ dim Jcusp

2,N + 1, and so the result follows
by contraposition.

This same argument, but with plus spaces, gives (3).
(4) If some f ∈ S2(K(N))−(d) is nonzero then the linear independence of

{fgi : i ∈ I} gives dimH4(N, d, 1)− ≥ dim Jcusp
2,N , and so the result follows by con-

traposition.
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A crucial idea is that we can establish computable dimension estimates for the
H4(N) spaces of Definition 4.3. The Fourier coefficient formula for the product of
two weight 2 paramodular forms f1, f2 ∈ S2(K(N)) is

a(t; f1f2) =
∑

t1,t2∈X2(N)
t1+t2=t

a(t1; f1)a(t2; f2), t ∈ X2(N).

Recall that the Fourier coefficients of f1 and f2 are Γ0±(N) class functions. For

any t ∈ X2(N), let mN (t) = min
{
m :

[
n r/2

r/2 mN

]
∈ t[Γ0±(N)]

}
. (The “m” in this

function’s name stands for “minimum function,” although also the quantity being
minimized is named m). Computing mN (t) is a finite process, because for any
given m we may take |r| ≤ mN , then search for matrices

[
n r/2

r/2 mN

]
such that

4nmN − r2 = 4 det t, and then check whether each such matrix lies in t[Γ0
±(N)].

Consider an index t ∈ X2(N), and let d be a positive integer. Suppose that for
any pair t1 × t2 of X2(N) matrices such that t1 + t2 = t, necessarily mN (t1) < d

or mN (t2) < d. This condition combines with the previous display to say that
a(t; f1f2) = 0 for every generating product f1f2 of H4(N, d, d)+, and consequently
a(t; f) = 0 for all f ∈ H4(N, d, d)+. Similarly, if for any pair t1 × t2 such that
t1 + t2 = t, necessarily mN (t1) < d, then a(t; f) = 0 for all f ∈ H4(N, d, 1).

In the next proposition, typewriter font is used to denote variables that we
compute in practice. We remind the reader that dimS4(K(N)) and dim Jcusp

2,N are
known [4, 15, 24], but not currently dimS4(K(N))±.

Proposition 4.5. Let N be a positive integer. Let S± be subspaces of S4(K(N))±,
and let S = S+ ⊕ S− ⊂ S4(K(N)). For each s in {+,−, empty character} , let {gs

i }
be a basis of Ss. Let d be a positive integer. For each δ in {d, 1} and each s as above,
let T (Ss) be a determining set of Fourier coefficient indices for Ss, and let

T (Ss, d, δ) =

{
t ∈ T (Ss) :

(
if t = t1 + t2 where t1, t2 ∈ X2(N)

then mN (t1) < d or mN (t2) < δ

)}
.

(For δ = 1, the condition mN (t2) < δ is impossible, leaving a condition on t1).
Define the dim Ss×|T (Ss, d, δ)| matrix M(Ss, d, δ) = [a(t; gs

i )]. We have the following
bounds.

(1) dimH4(N, d, d)+ ≤ dimS4(K(N)) − dim S− − rankM(S+, d, d),
(2) dimH4(N, d, 1) ≤ dimS4(K(N)) − rankM(S, d, 1),
(3) dimH4(N, d, 1)+ ≤ dimS4(K(N)) − dim S− − rank M(S+, d, 1),
(4) dimH4(N, d, 1)− ≤ dimS4(K(N)) − dim S+ − rank M(S−, d, 1).

Proof. We prove the first bound. An element of H4(N, d, d)+ either lies outside
S+ or it lies in S+ and its Fourier series expansion truncation is 0 on T (N, d, d).
Thus, dimH4(N, d, d)+ is at most the sum of dimS4(K(N))+ − dim S+ and the left
nullity of M(S+, d, d). But dimS4(K(N))+ ≤ dimS4(K(N)) − dim S− and the left

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

17
.1

3:
26

27
-2

65
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
O

K
L

A
H

O
M

A
 o

n 
08

/2
7/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 4, 2017 15:11 WSPC/S1793-0421 203-IJNT 1750146

Paramodular forms of weight 2 and squarefree level 2639

nullity is dim S+ − rank M(S+, d, d), so the stated bound follows. The other three
bounds are established similarly.

In practice, we grow our spanned subspaces S± of S4(K(N))± until dim S =
dimS4(K(N)) if Jcusp

2,N = 0, or dimS4(K(N)) − dim S < dim Jcusp
2,N if Jcusp

2,N �= 0. As
d grows, we expect rank M(Ss, d, δ) to grow toward dim Ss, making all four bounds
in Proposition 4.5 decrease toward dimS4(K(N)) − dim S, and so we expect the
conditions of Lemma 4.4 to apply for large enough d. Building on Lemma 4.4 and
Proposition 4.5, we have diagnostic tests for the weight 2 spaces as follows.

Proposition 4.6. Let S± and S be as in Proposition 4.5. Let d be a positive integer,
and let M(S+, d, d), M(S, d, 1), and M(S±, d, 1) be as in Proposition 4.5.

(1) Suppose that dimS4(K(N)) = dim S− + rankM(S+, d, d). If d = 1 then
S2(K(N)) = 0; if d = 2 then S2(K(N))+ = Grit(Jcusp

2,N ) and S2(K(N))−(2) = 0;
if d ≥ 3 then S2(K(N))±(d) = 0.

(2) Suppose that dimS4(K(N)) − rank M(S, d, 1) < dim Jcusp
2,N + 1. If d = 1, 2 then

S2(K(N)) = Grit(Jcusp
2,N ); if d ≥ 3 then S2(K(N))±(d) = 0.

(3) Suppose that dimS4(K(N))−dim S−−rankM(S+, d, 1) < dim Jcusp
2,N +1. If d = 1, 2

then S2(K(N))+ = Grit(Jcusp
2,N ); if d ≥ 3 then S2(K(N))+(d) = 0.

(4) Suppose that dimS4(K(N)) − dim S+ − rank M(S−, d, 1) < dim Jcusp
2,N . If d = 1

then S2(K(N))− = 0. If d ≥ 2 then S2(K(N))−(d) = 0.

We reiterate that the conclusion S2(K(N))−(2) = 0 in the first case implies
that Jacobi restriction to one or more terms produces a rigorous upper bound of
dimS2(K(N))−, and similarly for the other cases.

Before proving the proposition, we note that in the first case, the condition can
hold only if dim S = dimS4(K(N)), so this equality should be checked before com-
puting rankM(S+, d, d), and when this equality does hold, the condition simplifies
to rankM(S+, d, d) = dim S+. Similarly, in the second and third cases, the condition
can hold only if dimS4(K(N)) − dim S < dim Jcusp

2,N + 1, and this inequality should
be checked before computing rank M(S, d, 1) or rankM(S+, d, 1). In the fourth case,
the condition can hold only if dimS4(K(N)) − dim S < dim Jcusp

2,N , and this should
be checked before computing rank M(S−, d, 1).

Proof. For (1), by Lemma 4.4 and Proposition 4.5, S2(K(N))±(d) = 0. For d = 1
these equalities give S2(K(N)) = 0, and for d = 2 the first equality implies that
S2(K(N))+ = Grit(Jcusp

2,N ) by Lemma 4.2(b).
For (2), by Lemma 4.4 and Proposition 4.5, S2(K(N))(d) ⊂ Grit(Jcusp

2,N ). For
d = 1 this containment gives S2(K(N)) = Grit(Jcusp

2,N ). For d = 2 it says that

S2(K(N))(2) = 0 because S2(K(N))(2) ∩ Grit(Jcusp
2,N ) = 0, and so S2(K(N)) =

Grit(Jcusp
2,N ) by Lemma 4.2(b). For d ≥ 3 it says that S2(K(N))(d) = 0 because

S2(K(N))(d) ∩ Grit(Jcusp
2,N ) = 0.
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The same argument, but with plus spaces, gives (3).
For (4), by Lemma 4.4 and Proposition 4.5, S2(K(N))−(d) = 0.

We have run Jacobi restriction to five or more terms for all of the spaces
S2(K(N))± where the level N is composite and squarefree in {62, . . . , 299}. If one of
the tests above applies for some d ≤ 6 then the corresponding dimension upper esti-
mate provided by Jacobi restriction to five or more terms is rigorous. The heuristic
upper bounds provided by Jacobi restriction for the just-mentioned levels N are

dimS2(K(N))+ ≤ dim Jcusp
2,N for N �= 249, 295,

dimS2(K(N))+ ≤ dim Jcusp
2,N + 1 for N = 249, 295,

dimS2(K(N))− = 0 for all N.

Thus, our tests to certify that Jacobi restriction to five terms gives rigorous upper
bounds are as follows.

H4(N,d,d)+ test, can succeed only if dim S = dimS4(K(N)): For d = 1, . . . , 6,
if rankM(S+, d, d) = dim S+ then

S2(K(N)) = Grit(Jcusp
2,N ) if d = 1 or 2, or d ≥ 3 and N �= 249, 295,


 dimS2(K(N))+ ≤ dim Jcusp

2,N + 1

and S2(K(N))− = 0


 if d ≥ 3 and N = 249, 295.

For d = 1 this test can conclude that S2(K(N)) = 0, but the given conclusion is all
that we need.

H4(N,d,1) test, can succeed only if dimS4(K(N))−dim S < dim Jcusp
2,N +1: For

d = 1, . . . , 6, if dimS4(K(N)) − rank M(S, d, 1) < dim Jcusp
2,N + 1 then

S2(K(N)) = Grit(Jcusp
2,N ) if d = 1 or 2, or d ≥ 3 and N �= 249, 295,


 dimS2(K(N))+ ≤ dim Jcusp

2,N + 1

and S2(K(N))− = 0


 if d ≥ 3 and N = 249, 295.

H4(N,d,1)+ test, can succeed only if dimS4(K(N)) − dim S < dim Jcusp
2,N + 1:

For d = 1, . . . , 6, if dimS4(K(N)) − dim S− − rank M(S+, d, 1) < dim Jcusp
2,N + 1 then

S2(K(N))+ = Grit(Jcusp
2,N ) if d = 1 or 2, or d ≥ 3 and N �= 249, 295,

dimS2(K(N))+ ≤ dim Jcusp
2,N + 1 if d ≥ 3 and N = 249, 295.

H4(N,d,1)− test, can succeed only if dimS4(K(N)) − dim S < dim Jcusp
2,N : For

d = 1, . . . , 6, if dimS4(K(N)) − dim S+ − rank M(S−, d, 1) < dim Jcusp
2,N then

S2(K(N))− = 0.
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5. Tracing Down

Let N be a squarefree positive integer, and let q be a prime that does not divide N .
We define and compute an averaging trace down operator

TrDn : Sk(K(Nq)) → Sk(K(N)).

Here K(Nq) is not a subgroup of K(N), but we have the configuration of groups
(in which Γ′

0(N) denotes K(N) ∩ Sp2(Z) and similarly for Γ′
0(Nq))

K(Nq)

�����������
K(N)

K(Nq) ∩ K(N)

�����������
Γ′

0(N)

Γ′
0(Nq).

�����������

We will find representatives {g1i} of the quotient space Γ′
0(Nq)\Γ′

0(N) and rep-
resentatives {g2j} of the quotient space Γ′

0(N)\K(N), so that altogether K(N) =⊔
i,j Γ′

0(Nq)gij with gij = g1ig2j for all i, j. Further, because Nq is squarefree,
so that K(Nq) has only one 0-cusp, we can decompose each coset representative
g = gij as g = κu with κ ∈ K(Nq) and u ∈ P2,0(Q). Thus, overall the quotient
space Γ′

0(Nq)\K(N) is K(N) =
⊔

Γ′
0(Nq)κu, and because each κ lies in K(Nq) the

trace down operator is

TrDn f =
∑

u

f [u]k, f ∈ Sk(K(Nq)).

Some of the results in this section are well known, but we assemble them here for
the sake of a complete discussion in one place.

First, we study Γ′
0(Nq)\Γ′

0(N). Let P3(Z/qZ) = (Z/qZ)4prim/(Z/qZ)× where
(Z/qZ)4prim consists of all vectors (a, b, c, d) ∈ (Z/qZ)4 such that the ideal of Z/qZ

generated by the entries a, b, c, d is all of Z/qZ; here the overbar denotes reduction
of integers modulo qZ. We show that P3(Z/qZ) parametrizes Γ′

0(Nq)\Γ′
0(N).

Proposition 5.1. Let N be a positive integer and let q be a prime that does not
divide N .

(1) Each element π of P3(Z/qZ) has a representative (a, b, c, d) ∈ Z4 such that the
vector vπ = (aN, bN, cN, d) is primitive, i.e. gcd(aN, bN, cN, d) = 1.

(2) Each such vπ is the bottom row of a matrix gπ in Γ′
0(N).

(3) The map P3(Z/qZ) → Γ′
0(Nq)\Γ′

0(N) that takes π to Γ′
0(Nq)gπ is well defined.

That is, the coset Γ′
0(Nq)gπ depends only on π, not on any choices made in

constructing vπ from π or gπ from vπ.
(4) The map is bijective. That is, if π and π′ are distinct in P3(Z/qZ) then Γ′

0(N)gπ

and Γ′
0(N)gπ′ are distinct in Γ′

0(Nq)\Γ′
0(N), and cosets Γ′

0(Nq)gπ constitute
all of Γ′

0(Nq)\Γ′
0(N). Thus, [Γ′

0(N) : Γ′
0(Nq)] = |P3(Z/qZ)| = 1 + q + q2 + q3.
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Proof. (1) Consider any element π = (α, β, γ, δ)(Z/qZ)× of P3(Z/qZ). Take a
representative (α, β, γ, δ + mq) such that gcd(δ + mq,N) = 1, and then divide
through by the greatest common divisor of the entries; because q cannot divide
all four entries, this has no effect on the element π represented. We now have the
desired representative (a, b, c, d) of π such that gcd(aN, bN, cN, d) = 1.

(2) Because the first three entries of vπ are multiples of N , and because any
Sp2(Z) matrix with such a bottom row lies in Γ′

0(N), it suffices to review the
standard fact that any primitive vector r4 ∈ Z4 is the bottom row of a matrix
in Sp2(Z). There exists r2 ∈ Z4 such that r2Jr′4 = −1. Take a primitive r3 such
that r3Jr′2 = r3Jr

′
4 = 0, and then take ρ1 such that ρ1Jr

′
3 = −1. Let r1 = ρ1 +

(ρ1Jr
′
4)r2 − (ρ1Jr

′
2)r4. Thus, r1Jr′3 = −1 and r1Jr′2 = r1Jr

′
4 = 0. The matrix with

rows r1 through r4 lies in Sp2(Z).
(3) Consider any two Γ′

0(N) matrices gπ and g̃π arising from the same element π
of P3(Z/qZ). We want to show that g̃πg

−1
π lies in Γ′

0(Nq). Because Γ′
0(N) is a group,

all that needs to be shown is that the first three entries of the bottom row of g̃πg
−1
π

are multiples of q. The matrices gπ and g̃π have bottom rows r4 = (αN, βN, γN, δ)
and r̃4 = (α̃N, β̃N, γ̃N, δ̃) with (α̃, β̃, γ̃, δ̃) = λ(α, β, γ, δ) mod q for some λ coprime
to q, and so working modulo q we may replace the bottom row r̃4 of g̃π by λr4, a
scalar multiple of the bottom row of gπ. Thus, the bottom row of g̃πg

−1
π is a multiple

modulo q of the bottom row (0, 0, 0, 1) of gπg
−1
π = 14, and we are done.

(4) For injectivity, consider any π ∈ P3(Z/qZ) and consider a matrix gπ ∈
Γ′

0(N), whose bottom row is (αN, βN, γN, δ) where π = (α, β, γ, δ)(Z/qZ)×. Any
h ∈ Γ′

0(Nq) has bottom row (aNq, bNq, cNq, d), with q � d, and so the product
hgπ has bottom row (dαN + ∗Nq, dβN + ∗Nq, dγN + ∗Nq, dδ + ∗Nq), which is
((dα+ ∗q)N, (dβ+ ∗q)N, (dγ+ ∗q)N, dδ+ ∗q). This shows that the coset Γ′

0(Nq)gπ

consists entirely of matrices gπ′ . For surjectivity, any element g of Γ′
0(N) has bottom

row (aN, bN, cN, d) with the vector primitive. Thus, (a, b, c, d) is primitive as well,
and so it represents an element π of P3(Z/qZ), and g takes the form g = gπ. The
index [Γ′

0(N) : Γ′
0(Nq)] = |P3(Z/qZ)| follows from the bijectivity.

Next, we study Γ′
0(N)\K(N). Let Γ0(N) denote the subgroup of SL2(Z)

defined by the condition b = 0 mod N . We show that Γ0(N)\ SL2(Z) parametrizes
Γ′

0(N)\K(N).

Proposition 5.2. For each matrix go =
[

a b
c d

]
of SL2(Z), define a corresponding

matrix

g = ι
(
12, [ 1 0

0 N ] go

[
1 0
0 1/N

])
=




1 0 0 0
0 a 0 b/N

0 0 1 0
0 cN 0 d


.

Then g lies in K(N), and the map Γ0(N)go �→ Γ′
0(N)g from Γ0(N)\ SL2(Z)

to Γ′
0(N)\K(N) is well defined and bijective. Thus, [K(N) : Γ′

0(N)] = [SL2(Z) :
Γ0(N)] = N

∏
p|N (1 + 1/p).
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Proof. One readily checks that g ∈ K(N) and that the map Γ0(N)go �→ Γ′
0(N)g is

well defined and injective. For surjectivity, consider any element h of K(N) that does
not lie in Γ′

0(N), and let h−1 have last column (∗, βo/N, ∗, δo)′. Note that βo �= 0,
because otherwise h−1 lies in Γ′

0(N) and hence so does h. Let ε = gcd(βo, δo).
There is an element ho =

[
αo βo/ε
γo δo/ε

]
of SL2(Z); let go = h−1

o =
[

δo/ε −βo/ε
−γo αo

]
, and

let g correspond to go as above. The (2, 4)-entry of gh−1 is the inner product of
(0, δo/ε, 0,−βo/(εN)) and (∗, βo/N, ∗, δo), which is 0. Thus, gh−1 ∈ K(N)∩Sp2(Z) =
Γ′

0(N) and so Γ′
0(N)h = Γ′

0(N)g.

Third, we study upper triangular representatives. [20, Theorem 1.4] (see also
[13]) specializes to show for squarefree Nq that Sp2(Q) = K(Nq)P2,0(Q) where
P2,0(Q) is the Siegel parabolic group of rational symplectic matrices having c-
block 0. Furthermore, the proof of the theorem can be made algorithmic, and
doing so is especially easy for squarefree N . With representatives {g1i} and {g2j}
of Γ′

0(Nq)\Γ′
0(N) of Γ′

0(N)\K(N) at hand, we thus have an algorithm to decom-
pose the representatives {gij} = {g1,ig2,j} of Γ′

0(Nq)\K(N) as {κijuij} with each
κij ∈ K(Nq) and each uij ∈ P2,0(Q). We made no attempt to optimize the compu-
tation of κ and µ, and the expense of computing the (1+q+q2+q3)N

∏
p|N (1+1/p)

decompositions g = κu led us to use small values of q whenever possible. On
the other hand, we needed q large enough to make tracing down hit the bulk
of S2(K(N))+. We proceeded by a mixture of experiment and feel, with the exper-
imental attempts to span a large subspace of S2(K(N))+ time-consuming because
tracing down ran slowly even with parallel computing. Our values of q for tracing
down ranged from 3 to 11.

The trace down operator from Sk(K(Nq)) to Sk(K(N)) is

f �→
∑
i,j

f [uij ]k.

Fix i and j, and let uij = u =
[

d∗ b
0 d

]
. By a familiar computation, f [u]k has Fourier

coefficients a(t; f [u]k) = (det d)−ke(tr(td′b))a(t[d′]; f), and so the Fourier coeffi-
cients of the trace down image are

a(t; TrDnf) =
∑
i,j

(det dij)−ke(tr(td′ijbij))a(t[d
′
ij ]; f).

6. Hecke Spreading

We used Hecke operators mainly to create elements of the Fricke minus space
S4(K(N))− from elements of the plus space. For this section, let G denote the
subspace Grit(Jcusp

2,N ) of S2(K(N))+. A Hecke operator T of S4(K(N)) need not
respect ring structure, and so even though T (G) ⊂ G and G ·G ⊂ S4(K(N))+, the
space T (G · G) need not lie in S4(K(N))+. Indeed, for prime divisors p of N , the
operator T (p2) can take elements of G ·G into S4(K(N))−. Here the operators T (n)
for n coprime to N are standard [21], and we let T (p) and T (p2) for p |N denote
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the operators T0,1 and T1,0 of [23]; explicit single coset decomposition formulas for
these operators appear in [17]. We increased our span of S4(K(N)) with T (G · G)
for various T .

Our computations represented elements of S4(K(N))± as vectors of Fourier coef-
ficients indexed by Γ0

±(N)-equivalence classes in X2(N), with a cap on the deter-

minants of the class representatives
[

n r/2
r/2 mN

]
, i.e. 4nmN − r2 ≤ d. The cap was

determined from the results of Jacobi restriction on S4(K(N))+, the larger of the
two Fricke eigenspaces for our range of N -values. However, for a Hecke operator
T (n) to return a Fourier coefficient vector indexed by such a determinant-shell of
class representatives, it needs for its input a Fourier coefficient vector indexed by
class representatives out to determinant n2d. Depending on various parameters, this
can raise the vector length from hundreds to hundreds of thousands, or even well
over a million. Computing a basis ofG ·G to so many terms was a significant compu-
tational expense, generally limiting our Hecke spreading to T (n) for n = 4, 8, 9, 12.
For N coprime to 6, Hecke spreading was not available to us as a method to span
any of S4(K(N))−. Also, Hecke spreading had little to start with for levels N at
which G is small, and indeed it had nothing to start with when G = 0. Furthermore,
Hecke spreading into S4(K(N))+ can produce only forms having Atkin–Lehner sig-
natures already in G · G, and Hecke spreading seems unable to reach old forms in
either Fricke eigenspace when they come from minus forms. When tracing down
and Hecke spreading did not give us enough dimensions, we searched for Borcherds
products in the space, usually in the Fricke minus space but sometimes in the Fricke
plus space as well. We next proceed to a discussion of these matters.

7. Borcherds Products

The following theorem gives sufficient conditions for a Borcherds product to be a
Siegel paramodular Fricke eigenform; it is a special case of [9, Theorem 3.3], which
in turn is quoted from [5, 7, 8] and relies on the work of R. Borcherds. The corollary
to follow will give sufficient conditions for such a Borcherds product furthermore to
be a cusp form when its weight is odd or low and its level is squarefree.

Theorem 7.1. Let N be a positive integer. Let ψ ∈ Jw.h.
0,N be a weakly holomorphic

weight 0, degree N Jacobi form, having Fourier expansion

ψ(τ, z) =
∑

n,r∈Z
n�−∞

c(n, r)qnζr where q = e(τ), ζ = e(z).

Define

A =
1
24
c(0, r) +

1
12

∑
r∈Z≥1

c(0, r), B =
1
2

∑
r∈Z≥1

r c(0, r),

C =
1
2

∑
r∈Z≥1

r2c(0, r), D0 =
∑

n∈Z≤−1

σ0(|n|)c(n, 0).
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Suppose that the following conditions hold :

(1) c(n, r) ∈ Z for all integer pairs (n, r) such that 4nN − r2 ≤ 0,
(2) A ∈ Z,

(3)
∑

j∈Z≥1
c(j2nm, jr) ≥ 0 for all primitive integer triples (n,m, r) such that

4nmN − r2 < 0 and m ≥ 0.

Then for weight k = 1
2c(0, 0) and Fricke eigenvalue ε = (−1)k+D0 , the Borcherds

product Borch(ψ) lies in Mk(K(N))ε. For sufficiently large λ, for Ω = [ τ z
z ω ] ∈ H2

and ξ = e(ω), the Borcherds product has the following convergent product expression
on the subset {Im(Ω) > λI2} of H2:

Borch(ψ)(Ω) = qAζBξC
∏

n,m,r∈Z, m≥0
if m = 0 then n ≥ 0

if m = n = 0 then r < 0

(1 − qnζrξmN )c(nm,r).

Also, let ϕ(r) = c(0, r) for r ∈ Z≥0, and recall the corresponding theta block,

TB(ϕ)(τ, z) = η(τ)ϕ(0)
∏

r∈Z≥1

(ϑr(τ, z)/η(τ))ϕ(r) where ϑr(τ, z) = ϑ(τ, rz).

On {Im(Ω) > λI2} the Borcherds product is a rearrangement of a convergent infinite
series,

Borch(ψ)(Ω) = TB(ϕ)(τ, z)ξC exp (−Grit(ψ)(Ω)).

We make some remarks about the theorem.

• A, B, C, and D0 are finite sums. Indeed, if the Fourier series expansion of ψ is
supported on n ≥ no then it is supported on 4nN−r2 ≥ 4noN−N2, so especially
c(0, r) = 0 if r2 > N2−4n0N . Also, conditions (1) and (3) in the theorem are finite
to verify, (1) because the coefficients c(n, r) where 4nN − r2 ≤ 0 are determined
by the coefficients such that furthermore n ≤ N/4 and |r| ≤ N , and (3) because
ψ is supported on the pairs (n, r) such that 4nN − r2 
 −∞.

• The quantity A is often written as (1/24)
∑

r∈Z c(0, r) and the condition A ∈ Z

is often phrased that
∑

r∈Z c(0, r) is an integer multiple of 24. We phrased the
theorem to make clear that the qA in the product expression of Borch(ψ) can
be read off from the theta block in the series representation, as can the ζB. The
integrality of the coefficients and the condition A ∈ Z make k integral because
c(0, 0) + 2

∑
r∈Z≥1

c(0, r) is a multiple of 24, and so c(0, 0) is even.
• The divisor of Borch(ψ) is a sum of Humbert surfaces with multiplicities, the mul-

tiplicities necessarily nonnegative for holomorphy. Let K(N)+ denote the super-
group of K(N) obtained by adjoining the paramodular Fricke involution. The sum
in item (3) is the multiplicity of the following Humbert surface in the divisor,

Hum(r2 − 4nmN, r) = K(N)+
{
Ω ∈ H2 :

〈
Ω
[

n r/2
r/2 mN

]〉
= 0
}
.

This surface lies in K(N)+\H2. As the notation in the display suggests, this sur-
face depends only on the discriminant d = r2−4nmN and on r, and furthermore
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it depends only on the residue class of r modulo 2N ; this result is due to Grit-
senko and Hulek [6]. We use it to parametrize Humbert surfaces as Hum(d, r),
taking for each such surface a suitable

[
n r̃/2

r̃/2 mN

]
with gcd(n,m, r̃) = 1 and m ≥ 0

and r̃2 − 4nmN = d and r̃ = r mod 2N .
• The series representation of Borch(ψ) in the theorem gives an experimental algo-

rithm for the construction of holomorphic Borcherds products, based on using the
series to calculate an initial portion of the Fourier–Jacobi expansion of Borch(ψ).
The algorithm and computer program for searching for suitable ψ will be cov-
ered in a paper being prepared [19]; we used a comparatively simple part of the
algorithm and program for the computation being reported in this paper. Our
website for this paper certifies the Borcherds products that we constructed, as
will be discussed below.

• The condition ε = (−1)k+D0 where k is the weight says in particular that for
even k the Fricke eigenvalue of Borch(ψ) is 1 if ψ has principal part 0 and is −1
if ψ has principal part 1/q. In our computation, we used such ψ to create Fricke
plus and minus eigenforms in spanning the spaces S4(K(N)).

For odd or low weight, Theorem 7.1 and Proposition 3.1 let us determine when
a given weakly holomorphic Jacobi form of weight 0 and squarefree index N gives
rise through its Borcherds product to a cusp form.

Corollary 7.2. Let N be a squarefree positive integer, let k be an odd positive
integer or let k be one of {2, 4, 6, 8, 10, 14}, and let ε = ±1. Let ψ, A, B, C, D0 be

as in Theorem 7.1, with k = 1
2c(0, 0) and ε = (−1)

1
2 c(0,0)+D0 . Suppose that the three

conditions of the theorem hold :

(1) c(n, r) ∈ Z for all integer pairs (n, r) such that 4nN − r2 ≤ 0,
(2) A ∈ Z,

(3)
∑

j∈Z≥1
c(j2nomo, jro) ≥ 0 for all primitive integer triples (no,mo, ro) such that

4nomoN − r2o < 0 and mo ≥ 0.

If k is odd or k = 2, or if k ∈ {4, 6, 8, 10, 14} and C > 0, then the Borcherds product
Borch(ψ) of Theorem 7.1 lies in the cusp form space Sk(K(N))ε and its first nonzero
Fourier–Jacobi coefficient has index C > 0.

Proof. The Borcherds product Borch(ψ) lies in Mk(K(N))ε. The product expres-
sion and the series representation of Borch(ψ) both show that its first nonzero
Fourier–Jacobi coefficient has index C. If k is odd or k = 2 then Proposition 3.1
says that Borch(ψ) is a cusp form. If k ∈ {4, 6, 8, 10, 14} and C > 0 then because
the Borcherds product is a multiple of qAζBξC , the constant term a(0; Borch(ψ))
is 0, and again Proposition 3.1 says that Borch(ψ) is a cusp form. If Borch(ψ) is
a cusp form then the index matrix [A B/2

B/2 C ] of its term qAζBξC must be positive,
requiring C > 0.
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To create weight 4 Borcherds products for the computation being reported in
this paper, we used two constructions of Jacobi forms ψ ∈ Jw.h.

0,N that are amenable to
Corollary 7.2. For S4(K(N))+ Borcherds products, we used quotients ψ = ψ12/∆12

where ψ12 ∈ Jcusp
12,N and ∆12 ∈ Jcusp

12,0 is the classical discriminant function. For each
level N at which we used such Borcherds products Borch(ψ), a “BP+” file at our
website [26] gives the singular part of each ψ that we used, so that the conditions
of Corollary 7.2 can be verified for it; also the file gives the leading Fourier–Jacobi
coefficient φ of each Borcherds lift, and the file describes each ψ as a linear combi-
nation of a basis of Jcusp

12,N , giving the linear combination vector and then giving the
basis. For S4(K(N))− Borcherds products Borch(ψ), a construction φ �→ φ|V2/φ for
φ ∈ Jcusp

4,N , where V2 is an index-raising Hecke operator [4], also contributes to ψ;
this construction is central in [9], and it gives a weakly holomorphic Jacobi form
with integral Fourier coefficients when φ is a theta block without denominator. For
each level N at which we used such Borcherds products, a “BP−” file at our website
again gives the singular part of each ψ, then φ, which is again the leading Fourier–
Jacobi coefficient of the Borcherds product, then the linear combination vector, and
then the basis.

8. Construction of the Nonlift Newforms

At level N = 249 and at level N = 295, Jacobi restriction gives a truncated Fourier–
Jacobi expansion of a putative weight 2 Fricke plus space nonlift bN with first
Fourier–Jacobi coefficient 0, i.e. bN (Ω) = φ2(τ, z)ξ2N + φ3(τ, z)ξ3N + · · · . Because
the first Fourier–Jacobi coefficient is 0, this bN is a nonlift in S2(K(N))+ if it exists
in S2(K(N))+ at all. We hope to show that bN exists in S2(K(N))+ by showing
that it takes the form bN = Borch(ψN ) for some ψN ∈ Jw.h.

0,N , though there is no
guarantee that this happens even if bN exists in S2(K(N))+. The infinite series
form of Borch(ψN ) in Theorem 7.1 shows that necessarily ψN = −φ3/φ2. Thus,
we make an educated guess at an element ψN of Jw.h.

0,N that has the same initial
Fourier expansion as −φ3/φ2 would if φ3 were divisible by φ2. If bN indeed exists as
a Borcherds product Borch(ψN ) and we guess ψN well then Corollary 7.2 confirms
that bN exists in S2(K(N))+, and Jacobi restriction has helped us find our desired
nonlift. A paper being prepared on general methods for constructing nonlifts [18]
will give details on how to identify a candidate weakly holomorphic weight 0 Jacobi
form as arising from a quotient of dilated theta functions that demonstrably lies
in Jw.h.

0,N . In this paper, we simply present ψN as a product of quotients of dilated
theta functions for N = 249, 295.

Consider the following product of quotients of dilated theta functions:

ψ249 =
ϑ8

ϑ1

ϑ18

ϑ6

ϑ14

ϑ7
.

Each quotient in the previous display takes the form ϑd/ϑe with e | d; this divisibility
makes the quotient a weakly holomorphic Jacobi form of weight 0 and index (d2 −
e2)/2, and thus altogether ψ249 ∈ Jw.h.

0,249. The singular part of ψ249 up to q	249/4
,
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Table 1. Humbert surface multiplicities of Borch(ψ249).

(d, r) md,r

(1,1) 22
(1,167) 10
(3,2) 10

(4,164) 4
(9,3) 7

(12,192) 1
(16,4) 4

(16,170) 1
(21,207) 0

(d, r) md,r

(25,5) 3
(25,161) 1
(33,45) 2
(36,6) 4

(40,232) 1
(49,7) 2
(61,71) 1
(64,8) 1
(81,9) 1

(d, r) md,r

(84,84) 1
(100,10) 1
(108,78) 1
(121,11) 1
(121,155) 1
(132,90) 1
(144,12) 1
(169,13) 1

which determines all of the singular part, is

4 + ζ−13 + ζ−12 + ζ−11 + ζ−10 + ζ−9 + ζ−8 + 2ζ−7 + 3ζ−6 + 2ζ−5 + 2ζ−4

+ 2ζ−3 + 2ζ−2 + 3ζ−1 + 3ζ + 2ζ2 + 2ζ3 + 2ζ4 + 2ζ5 + 3ζ6 + 2ζ7 + ζ8

+ ζ9 + ζ10 + ζ11 + ζ12 + ζ13 + q2(ζ45 + ζ−45) + q5(ζ71 + ζ−71)

+ q6(ζ78 + ζ−78) + q7(ζ84 + ζ−84) + q8(ζ90 + ζ−90)

+ q24(ζ155 + ζ−155) + q26(ζ161 + ζ−161) + q28(ζ167 + ζ−167)

− q43(ζ207 + ζ−207) + q54(ζ232 + ζ−232).

This ψ249 satisfies the three conditions of Corollary 7.2: the Fourier coefficients of
the singular part are integers; A = 2; and Table 1 shows that the Humbert surface
multiplicity md,r is nonnegative for all possible (d, r) such that any term in the
(d, r)-multiplicity formula could be nonzero. Also, we have B = 63 and C = 498 and
D0 = 0. Because c(0, 0) = 4, the corollary says that Borch(ψ249) lies in S2(K(249))+,
and its first nonzero Fourier–Jacobi coefficient has index C = 2 · 249.

With the knowledge that running Jacobi restriction to five terms gives us a
basis of S2(K(249)), we can use the expansions of the basis to compute the action
of the Hecke operator T (2). This operator separates the space into one-dimensional
eigenspaces, with the space spanned by the nonlift eigenform f249 readily identifiable
because it does not lie in Grit(Jcusp

2,249). We have the first two Jacobi coefficients
of Borch(ψ249), and this is sufficient to express f249 as a linear combination of
Borch(ψ249) and a Gritsenko lift,

f249 = 14 Borch(ψ249)

− 6 Grit(TB(2; 2, 3, 3, 4, 5, 6, 7, 9, 10, 13))

− 3 Grit(TB(2; 2, 2, 3, 5, 5, 6, 7, 9, 11, 12))

+ 3 Grit(TB(2; 1, 3, 3, 5, 6, 6, 6, 9, 11, 12))

+ 2 Grit(TB(2; 1, 1, 2, 3, 4, 5, 6, 9, 10, 15))

+ 7 Grit(TB(2; 1, 2, 3, 3, 4, 5, 6, 9, 11, 14)).
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Here, TB(2; 2, 3, 3, 4, 5, 6, 7, 9, 10, 13) is the weight 2 theta block TB(ϕ) where
ϕ(r) = 1 for r = 2, 4, 5, 6, 7, 9, 10, 13 and ϕ(3) = 2 and ϕ(r) = 0 for all other r ∈ Z≥1,
and similarly for the other theta blocks. Many Fourier coefficients of f249 are given
at our website [26]. Thus, f249 is congruent to a lift modulo 14, and as noted ear-
lier in this paper, the two isogenous Jacobians of genus 2 curves of conductor 249
defined over Q have torsion groups Z/14Z and Z/28Z.

Because S2(K(3)) = 0, and because S2(K(83)) is spanned by Gritsenko lifts
and level-raising operators take lifts to lifts, the nonlift eigenform f249 is in fact a
newform.

To compute the T (n)-action on f249 for n ≤ 25 coprime to 249, we expanded f249
to 25 Fourier–Jacobi coefficients. The relevant eigenvalues are λ2 = −2 and λ4 = 0,
λ5 = 0 and λ25 = −3, λ7 = −1, λ11 = 1, λ13 = 0, λ17 = −1, λ19 = −6, λ23 = 0.
These eigenvalues determine the spin p-Euler factor for p = 2, 5, because in general
for p � N the spin p-Euler factor for weight 2 is (see [1, Sec. 5.3], for example)

1 − λpT + (λ2
p − λp2 − 1)T 2 − λppT

3 + p2T 4.

The spin 2-Euler factor and the spin 5-Euler factor of f249 are

1 + 2T + 3T 2 + 4T 3 + 4T 4, 1 + 2T 2 + 25T 4,

and the reader can check at the online database lmfdb.org that these Euler factors
match those of the genus 2 curve class 249.a. The Jacobian of this curve is an
abelian surface of conductor 249 defined over Q, and it has the same Euler factors.
The spin p-Euler factors of f249 for p = 7, 11, 13, 17, 19, 23 are also compatible with
the 249.a L-factors at lmfdb.org, with a match depending on the uncomputed λp2

in each case.
Similarly, consider

ψ295 =
ϑ12

ϑ3

ϑ15

ϑ5

ϑ12

ϑ6

ϑ14

ϑ7
.

Here, ψ295 lies in Jw.h.
0,295, and its singular part up to q	295/4
 is

4 + ζ−16 + ζ−13 + ζ−11 + 2ζ−10 + ζ−9 + ζ−8 + 2ζ−7 + 2ζ−6 + 2ζ−5 + 2ζ−4

+ 3ζ−3 + 2ζ−2 + 2ζ−1 + 2ζ + 2ζ2 + 3ζ3 + 2ζ4 + 2ζ5 + 2ζ6 + 2ζ7 + ζ8

+ ζ9 + 2ζ10 + ζ11 + ζ13 + ζ16 + q4(ζ69 + ζ−69) − q7(ζ91 + ζ−91)

+ q10(ζ109 + ζ−109) + q11(ζ114 + ζ−114) + q12(ζ119 + ζ−119)

+ q25(ζ172 + ζ−172) + q27(ζ179 + ζ−179) + q28(ζ182 + ζ−182)

+ 2q29(ζ185 + ζ−185) − q37(ζ209 + ζ−209) + q41(ζ220 + ζ−220)

+ q42(ζ223 + ζ−223) + q44(ζ228 + ζ−228) + q46(ζ233 + ζ−233)

+ q59(ζ264 + ζ−264).
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Table 2. Humbert surface multiplicities of Borch(ψ295).

(d, r) md,r

(1,1) 22
(1,119) 10
(4,2) 10

(4,238) 4
(5,185) 3
(9,3) 6

(9,233) 2
(16,4) 4

(16,114) 2
(20,220) 1

(d, r) md,r

(21,91) 0
(21,209) 0
(25,5) 4
(36,6) 2
(41,69) 1
(49,7) 2
(64,8) 2

(64,228) 1
(76,264) 1
(81,9) 1

(d, r) md,r

(81,109) 1
(84,172) 1
(84,182) 1
(100,10) 2
(121,11) 1
(169,13) 1
(169,223) 1
(181,179) 1
(256,16) 1

This ψ295 satisfies the three conditions of Corollary 7.2, similarly to ψ249; here the
Humbert surface multiplicities are given in Table 2. In this case, A = 2 and B = 68
and C = 590 and D0 = 0. Again c(0, 0) = 4, so Borch(ψ295) lies in S2(K(295))+

and its first nonzero Fourier–Jacobi coefficient has index C = 2 · 295.
The Hecke operator T (2) separates S2(K(295)) into one-dimensional eigenspaces,

and we can identify the nonlift eigenform f295 and then express it as a linear com-
bination of Borch(ψ295) and a Gritsenko lift,

f295 = 7 Borch(ψ295)

+ 4 Grit(TB(2; 1, 1, 2, 3, 3, 4, 5, 10, 13, 16))

+ Grit(TB(2; 1, 1, 2, 3, 4, 7, 8, 10, 11, 15))

− 2 Grit(TB(2; 2, 3, 4, 4, 6, 7, 8, 10, 10, 14))

−Grit(TB(2; 1, 1, 5, 6, 7, 8, 8, 9, 10, 13))

− 3 Grit(TB(2; 1, 2, 3, 4, 5, 5, 8, 9, 13, 14)),

and many Fourier coefficients of f295 are at our website. Here the nonlift eigen-
form is congruent to a lift modulo 7, and one of the two isogenous Jacobians of
genus 2 curves of conductor 295 defined over Q has torsion group Z/7Z, as shown at
lmfdb.org. The nonlift eigenform f295 is a newform because S2(K(5)) = S2(K(59)) =
0. This time, after expanding f295 to 16 Fourier–Jacobi coefficients, our computed
Hecke eigenvalues of f295 are λ2 = −2 and λ4 = 0, λ3 = −1 and λ9 = 0, λ7 = 1,
λ11 = 2, λ13 = −2, excluding λ5 because 5 divides 295. The spin 2-Euler factor and
the spin 3-Euler factor of f295 are

1 + 2T + 3T 2 + 4T 3 + 4T 4, 1 + T + 3T 3 + 9T 4,

and these match the corresponding Euler factors of the genus 2 curve isogeny class
295.a at lmfdb.org. The Jacobian of this curve is an abelian surface of conductor 295,
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having the same Euler factors. The spin p-Euler factors of f295 for p = 7, 11, 13 are
also compatible with the 295.a L-factors at lmfdb.org, with a match depending on
the uncomputed λp2 in each case.
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[22] H. Reefschläger, Berechnung der Anzahl der 1-Spitzen der Paramodularen Gruppen

2-ten Grades, Ph.D. thesis, Georg-August-Universität zu Göttingen (1973).
[23] B. Roberts and R. Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathe-

matics, Vol. 1918 (Springer, Berlin, 2007).
[24] N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms, J. Reine Angew.

Math. 393 (1989) 168–198.
[25] D. S. Yuen, Modularity of the abelian surface of conductor 277 (2015);

https://icerm.brown.edu/video archive/#/play/779.
[26] , Degree 2 Siegel paramodular forms of weight 2 and squarefree composite level

(2016); http://siegelmodularforms.org/pages/degree2/paramodular-wt2-sqfree/.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

17
.1

3:
26

27
-2

65
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
O

K
L

A
H

O
M

A
 o

n 
08

/2
7/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


	Introduction
	Background
	Cuspidality for Odd or Low Weight and Squarefree Level
	Analyzing Weight 2 via Weight 4
	Tracing Down
	Hecke Spreading
	Borcherds Products
	Construction of the Nonlift Newforms

