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Research Statement

1. Background. My area of research is the representation theory of reductive p-
adic groups. Specifically I am interested in how Bushnell-Kutzko’s theory of types
and covers can be used to obtain explicit results on the reducibility of parabolically
induced representations.

Representation theory is a central area of modern mathematics. In particular, the
representation theory of reductive p-adic groups is central to the web of conjectures
known as the Langlands program whose influence pervades current research in auto-
morphic forms and number theory. The origins of representation theory go back to
Frobenius and others in the 1890s in the study of finite groups. A key tool introduced
by Frobenius is the method of induction, a way of building representations of a group
from representations of subgroups. To make this an effective means of constructing or
classifying representations, one needs to be wise in the choice of both the subgroups
one induces from and the representations one induces.

In the case of reductive real or p-adic groups, it is natural to induce from what are
called parabolic subgroups. For general linear groups, these are (up to conjugacy) the
subgroups of invertible block upper-triangular matrices. A proper parabolic subgroup
is not reductive but admits a canonical reductive quotient. For example, in the
case of block upper-triangular matrices, this reductive quotient is isomorphic to the
corresponding group of block diagonal matrices. One takes a representation of this
reductive quotient, views it as a representation of the parabolic subgroup and then
induces. The whole process is called parabolic induction.

In contrast to reductive real groups, a central feature of reductive p-adic groups
is that there are irreducible representations that never occur as subrepresentations of
parabolically induced representations. These are the supercuspidal representations.
They serve as fundamental building blocks. Indeed, suppose Π is an irreducible repre-
sentation of a reductive p-adic group G. By insights of Harish-Chandra and others it is
known that there is a unique parabolic subgroup of G (up to conjugacy) and a unique
irreducible supercuspidal representation π of its reductive quotient (up to conjugacy)
such that Π occurs in the representation obtained from π via parabolic induction.
Moreover, only finitely many Π are related to the supercuspidal representation π in
this way.

Thus, a core problem in p-adic representation theory is to understand when and
how parabolically induced representations decompose, especially when the inducing
representation is supercuspidal. This is the problem I study in my thesis in a very
special situation.
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In the case of finite groups, Mackey theory provides an efficient way of decom-
posing induced representations through the action of certain intertwining operators.
The same operators can be used to study parabolically induced representations for
p-adic groups. Their construction, however, is considerably more subtle and involves
a process of analytic continuation. By work of Langlands and Shahidi [12], one knows
that properties of these intertwining operators give rise to local L-functions and that
these L-functions are the key to many reducibility questions. In [13] Shahidi studies
certain reducibility questions in this way for the split classical groups.

Bushnell-Kutzko’s method of types and covers [3] provides another way of studying
reducibility questions. It relies on detailed knowledge of the internal structure of the
inducing representation and certain related constructions. In circumstances where
this is available, the method can lead to strikingly explicit results. Indeed, in [4]
Kutzko and Morris use the method to reconsider a special case of the situation studied
by Shahidi in [13] and obtain a sharper form of his results. In my thesis, I study a
situation that is analogous to the one considered by Kutzko and Morris. But I consider
a case of certain non-split classical groups. Pursuing the same basic strategy, I obtain
an explicit reducibility result as described in more detail below.

2. Question. Let F be a non-Archimedean local field of characteristic not equal
to 2 with uniformizer $F and finite residue field kF of order q. Let D be the unique
quaternionic division algebra of degree 4 over F . Then the residue field kD of D has
order q2 and we have the ring of integers OD with unique maximal ideal pD. We then
have the usual involution on D: x 7→ x̄. For ε = ±1 we let

Jε =

(
0 In
εIn 0

)
and define the group

Gε = {g ∈ GL2n(D) | g∗Jεg = Jε}

where for g = (gij), g
∗ = (gij)

> = (gji). Then G1 is an inner form of Sp4n(F ) and
G−1 is an inner form of SO4n(F ). Because the final result will be independent of ε,
we write G for Gε in what follows. However, we point out that the two cases ε = ±1
are treated separately in many proofs.

Let P be the Siegel parabolic subgroup of G with Levi-factor L ' GLn(D) and
unipotent radical U . Let π be an irreducible unitary supercuspidal representation
of L of depth zero. That π has depth zero means that π contains an irreducible
representation ρL of the compact open subgroup K = GLn(OD) of L where ρL is
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inflated from an irreducible cuspidal representaion of the finite quotient GLn(kD)
such that

π = indLeK ρ̃L.
Here K̃ is some compact-mod-center extension of K and ρ̃L is a suitable extension
of ρL to K̃. We can now form the normalized parabolically induced representation
ιGP (π) and ask the question:

When is ιGP (π) reducible?

3. Answer. With ωπ being the central character of π the answer is

Theorem 3.1. The induced representation ιGP (π) is reducible if and only if π is self-
dual and ωπ($F ) = −1.

In [8] Muić and Savin have criteria for reducibility of ιGP (π) without the restriction
that π has depth zero. Their approach uses global methods and the result is expressed
in terms of the Jacquet-Langlands correspondence. Specific information about this
correspondence is required to make their result explicit. This is not hard to do in our
depth zero case, but it is also not trivial. I have adopted a local approach answering
the question using Bushnell and Kutzko’s method of types and covers described in [3].
The method translates the problem into one about certain Hecke algebra modules.

With R(G) being the category of all smooth representations of G, we consider
a certain subcategory Rs(G). The different Rs(G) are the factors in the Bernstein
decomposition of R(G). We likewise get a category RsL(L) of certain smooth repre-
sentations of the fixed Levi-factor L. With this notation we have normalized parabolic
induction

ιGP : RsL(L)→ Rs(G).

We now have the Siegel parahoric

P =

(
OD OD

pD pD

)
∩G.

With U− being the opposite of U we use the Iwahori decomposition

P = (P ∩ U−)(P ∩ L)(P ∩ U)
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to extend ρL from K ' P ∩ L to a representation ρ of P by defining it to be trivial
on P ∩ U− and P ∩ U .

Part of the theory of types and covers are functors

mG : Rs(G) −→ H(G, ρ)−Mod and

mL : RsL(L) −→ H(L, ρL)−Mod.

Here the Hecke algebra H(G, ρ) is defined by

H(G, ρ) = {f : G→ EndC(ρ) | supp(f) is compact and

f(p1gp2) = ρ(p1)f(g)ρ(p2) ∀pi ∈ P, g ∈ G},

and H(L, ρL) is defined likewise. We are suppressing the technical details, but from
them follow a key component of the theory of types and covers, namely that both of
these functors are equivalences of categories. This all means that we get the following
commutative diagram which allows us to transfer the question at hand to a question
about modules over Hecke algebras. We have

Rs(G) //H(G, ρ)−Mod

RsL(L) //

ιGP

OO

H(L, ρL)−Mod

(tP )∗

OO

where (tP )∗ is the map induced by an embedding of C-algebras tP : H(L, ρL) ↪→
H(G, ρ). All of this comes from Bushnell and Kutzko’s theory. The real work is
trying to find the Hecke algebras.

Relying on work by Lusztig (see [5]), we prove:

Theorem 3.2. The Hecke algebra H(G, ρ) has the presentation

H(G, ρ) ' H = 〈s1, s2 | s2
i = 1 + (qn − q−n)si〉.

In addition to this, it is readily known that H(L, ρL) ' D = C[d, d−1] where
d is an indeterminate. Composing maps we then get equivalences of categories
MG : Rs(G) −→ H − Mod and ML : RsL(L) −→ D − Mod. And so induction
corresponds to a map

ι∗ : D−Mod→ H −Mod.

The irreducible representations in RsL(L) are

Irr RsL(L) = {πχ = π ⊗ χ | χ unramified character of L}.
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With D being commutative, we have that irreducible D−modules are characters
ψ : D→ C. And each such character is determined by its value at d. For ψ unitary,
it is well-known that ι∗(ψ) is reducible if and only if ψ(d) = −1.

Lemma 3.3.

ML(πχ)(d) = ωπ1($F )χ($F ).

Noting that π1 = π we finally have that ιGP (π) is reducible if and only if ι∗(ML(π)) is
reducible if and only if

ML(π)(d) = ωπ($F ) = −1.

From [8] and [10] we get the necessary condition that π be self-dual for ιGP (π) to be
reducible. Using this we can state the above slightly differently: ιGP (π) is reducible if
and only if

π is self-dual and ωπ 6= 1.
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4. Future questions. I plan to use the method of types and covers to look at
other reducibility questions for depth zero representations. By work of Morris [6], the
relevant types are known. Moreover Morris in [7] has also described the corresponding
Hecke algebras. To use these results to study reducibility problems one would need
to make parts of this description explicit. In particular, one would need to know the
precise parameters that control the quadratic relations in the Hecke algebras. These
can be extracted from Lusztig’s work. There are subtleties, however, in using this
work in the p-adic setting (as in the critical sign εG of [4]).

A natural case to examine is that of p-adic unitary groups. These are (outer) forms
of general linear groups. I plan to look at reducibility questions for these groups where
the inducing representation is supercuspidal of depth zero but without the restriction
that the inducing parabolic be (proper) maximal.

The arguments in my thesis rely heavily on the hypothesis that the inducing
representation π has depth zero. I am interested in trying to remove this assumption.
Sécherre and Stevens have constructed types for the supercuspidal representations of
general linear groups over division algebras [11]. I would need to construct covers
for these types in the setting of quaternionic hermitian and anti-hermitian groups
and would then need to describe the corresponding Hecke algebras. I have no direct
experience, however, in the construction of types. As a first step in this problem, I
plan to look at the 2 × 2 case. Many of the complications of the general case are
absent here as the Siegel Levi is GL1(D) whose irreducible representations can be
described in a straightforward manner (see chapter 13 in [1]).

I am also interested in using the method of types and covers to obtain explicit
Plancherel formulas for depth zero representations. This is an interesting question
in its own right but is also closely related to reducibility questions. In [2], Bushnell,
Henniart and Kutzko establish a framework that allows the transfer of Plancherel
measure from the Hecke algebra of a type to the corresponding p-adic group. Opdam
and others have done extensive work on general Plancherel formulas for affine Hecke
algebras (see [9]). By combining some of this work with explicit descriptions of the
Hecke algebras in [6], my hope is to in certain cases give a full Plancherel formula
for the depth zero spectrum. In particular, I plan to study this problem for unitary
groups.
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