
Math 4073: Polynomial Lagrange Interpolation

Interpolation is the filling-in of missing data; from just a few samples of an otherwise unknown function
we try to reconstruct that unknown function. In some sense this must be impossible but nevertheless we
can do very well in practice! We start by looking at the Lagrange interpolating polynomial.1

constant n = 0:

linear n = 1:

quadratic n = 2:

Setup and notation Let Πn = {real polynomials of degree ≤ n}. Problem: given
scalar data fi at distinct scalar xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we find a
polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the data.

Theorem: ∃pn ∈ Πn such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof (Constructive!) Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1. Now define

pn(x) =

n∑
k=0

fkLn,k(x) ∈ Πn. (2)

Now this implies that

pn(xi) =

n∑
k=0

fkLn,k(xi) = fi, for i = 0, 1, . . . , n. �

The polynomial (2) is the Lagrange interpolating polynomial. The cardinal polynomials for n = 3 look like:

Theorem: The interpolating polynomial of degree ≤ n (through n+ 1 points) is unique.

Proof “One root too many”. Consider two interpolating polynomials pn, qn ∈ Πn. Difference dn =
pn − qn ∈ Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n, i.e., dn is a polynomial of degree at most n but has
at least n+ 1 distinct roots. Fundamemtal Theorem of Algebra =⇒ dn ≡ 0 =⇒ pn = qn. �

Demos: demo 03 lagrange.m and demo 03 lagrange construct.m.

Data from a smooth function Suppose that f(x) has at least n+1 smooth derivatives in the interval
(x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn be the Lagrange interpolating polynomial for the
data (xk, fk), k = 0, 1, . . . , n.

Error: how large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem: For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x) := f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(ξ)

(n+ 1)!
,

where f (n+1) is the (n+ 1)-st derivative of f .

Proof (sketch) Trivial for x = xk, k = 0, 1, . . . , n because e(x) = 0 by construction. So suppose x 6= xk.
Key idea is to define

φ(t) := e(t)− e(x)

π(x)
π(t),

1Some material adapted from Ch. 6 of the numerical analysis textbook by Süli and Mayers.
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where π(t) := (t− x0)(t− x1) · · · (t− xn) = tn+1 + · · · ∈ Πn+1. Now count at how many points φ vanishes.
Note φ′ must vanish at one fewer points. Continue recursively until there is only a single root.

Error for equispaced points Common in practice to want to use an equispaced grid with spacing
h = xn−x0

n . In this case the error formula becomes

|f(x)− pn(x)| ≤ hn+1

4(n+ 1)
max

ξ∈[x0,xn]
f (n+1)(ξ).

But be careful! There are two terms there: how do they balance as n gets large?

Runge phenomenon Famous example due to Carl Runge (1901); the error from the interpolating poly-
nomial approx. to f(x) = (1 +x2)−1 for n+ 1 equally-spaced points on [−5, 5] diverges near ±5 as n tends
to infinity: try demo 03 runge.m.

Practical advice So polynomial interpolation in a large number of equispaced points is a bad idea!
Exception: periodic functions. Instead, if you can control the grid, use special “clustered” points such as
Chebyshev points (see Runge demo and “Chebfun” software). Or use smaller number of points (n ≤ 8),
in a local piecewise fashion: e.g., interp in Matlab/Octave, also “splines”.

For uniform grids of samples (e.g., from meshgrid), polynomial interpolation can be applied in a dimension-
by-dimension fashion (interp2/interp3). For scattered data, see e.g., Radial Basis Functions.

Computer implementation The Barycentric Formula for Lagrange Interpolation gives a more stable and
cheaper way of implementing interpolation (compared to working with the cardinal polynomials directly):

pn(x) =

n∑
k=0

wk
(x− xk)

f(xk)

n∑
k=0

wk
(x− xk)

, (3)

where wk = 1
(xk−x0)...(xk−xk−1)(xk−xk+1)...(xk−xn) . Note: can still suffer from Runge phenomenon.

Building Lagrange interpolating polynomials from lower degree ones

Notation: let Qi,j be the interpolating polynomial at xk, k = i, . . . , j.

Theorem:

Qi,j(x) =
(x− xi)Qi+1,j(x)− (x− xj)Qi,j−1(x)

xj − xi
(4)

Proof: Let s(x) denote the right-hand side of (4). Because of uniqueness, we wish to show that s(xk) = fk
and that the s(x) is of the correct degree; left as exercises. �
This can be used as the basis for constructing interpolating polynomials. In many textbooks (e.g., Burden
and Faires) you’ll find topics such as the Newton form and divided differences.

Generalization: Hermite interpolation Given data fi and gi at distinct xi, i = 0, 1, . . . , n, with
x0 < x1 < · · · < xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi? Yes, there is such a
unique polynomial p2n+1 ∈ Π2n+1:

Construction: given Ln,k(x) in (1), let Hn,k(x) = [Ln,k(x)]2(1 − 2(x − xk)L
′
n,k(xk)) and Kn,k(x) =

[Ln,k(x)]2(x− xk). Then the Hermite interpolating polynomial

p2n+1(x) =
n∑
k=0

[fkHn,k(x) + gkKn,k(x)] (5)

interpolates the data as required.

What’s next? We can use pn(x) as a proxy for the (unknown) f(x): numerical integration/differentiation.
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