Qualifying/Review Exam in Topology 5-18-90

PART I. State the following theorems:

(a) Tietze Extension Theorem (b) Brouwer Fixed Point Theorem

- PART II. Let $f : X \to Y$ be a continuous surjection between topological spaces. Which of the following properties hold for Y whenever they hold for X? (Give a proof or a counterexample with justification.) (a) compact (b) normal (c) connected
- PART III. Choose four of the following six problems to work:
 - 1. Let X be a Hausdorff space.
 - (a) If $S \subset X$ is a finite set then there is a collection $\{U_s \mid s \in S\}$ of pairwise disjoint open sets in X for which $s \in U_s$.
 - (b) If S is infinite then the conclusion of part (a) may or may not be true.
 - 2. (a) Let X be a topological space and let ~ be an equivalence relation on X. Describe the quotient topology on the set of equivalence classes X/~.
 (b) For x, y ∈ R² {0} put x ~ y if and only if x and y lie on a line through the origin. Show that R² {0}/~ with the quotient topology is homeomorphic to S¹.
 - 3. Let (X,d) be a metric space and let $f: X \to X$ be a continuous function which has no fixed points.

(a) If X is compact then there is an $\epsilon > 0$ such that $d(x, f(x)) > \epsilon$ for all $x \in X$. (Be sure to clearly identify any criteria for compactness which you use.)

- (b) Show that the result of (a) is false when compactness is not assumed.
- 4. Let \mathcal{B} be the collection of lines in \mathbb{R}^2 with slope equal to 1.
 - (a) Show that $\mathcal B$ forms a basis for a topology au on R^2 .
 - (b) Describe the subspace topology which τ induces on the *x*-axis.
 - (c) Prove that (R^2, τ) is homeomorphic to $(R, \tau_d) \times (R, \tau_i)$ where τ_d denotes the discrete topology and τ_i denotes the indiscrete topology.
- 5. Let X be a topological space with subspaces A, B, D.
 - (a) Suppose that D is dense in X. Is every element of X a limit point of D?
 - (b) Let $A \subset B$. Show that if A is dense in B then it is dense in \overline{B} .
 - (c) Show that if D is dense in X then $D \cap A$ need not be dense in A.
 - (d) If the only dense subset of X is X itself what can be said about X?
- 6. For each $\alpha \in J$ let X_{α} be a topological space whose topology is τ_{α} , and which contains at least two elements.
 - (a) Describe the product topology on $\prod_{\alpha \in J} X_{\alpha}$.
 - (b) Show that each projection map $\pi_{\beta}: \prod_{\alpha \in J} X_{\alpha} \to X_{\beta}$ is an open map.

(c) Establish necessary and sufficient conditions on the collection $\{(X_{\alpha}, \tau_{\alpha})\}$ so that $\prod_{\alpha \in J} X_{\alpha}$ is discrete.

 $\operatorname{PART}\ \operatorname{IV}.$ Work two of the following three problems:

- 1. Let $f:(X,x) \to (Y,y)$ be continuous.
 - (a) Describe $f_*: \pi(X, x) \to \pi(Y, y)$ and verify that it is well-defined.
 - (b) Give examples showing that if f is surjective then f_* may or may not be surjective.
 - (c) Give examples showing that if f is injective then f_* may or may not be injective.
- 2. (a) Define contractibility of a space X. (b) Show that if X is contractible then every continuous function $f: Y \to X$ is homotopic to a constant function.

(c) If X is a space with a contractible universal covering space and $f: (Y,y) \to (X,x)$ is a continuous function whose induced homomorphism $f_*: \pi(Y,y) \to \pi(X,x)$ is trivial then f is homotopic to a constant map.

- 3. (a) Define the term *n*-manifold. (b) Let M be an *n*-manifold where $n \ge 3$ and let x and y be distinct points in M. Show that $\pi(M, x) \cong \pi(M - y, x)$.
- $\operatorname{PARt}\ V.$ Work one of the following three problems:
 - 1. (a) Show that a connected locally path-connected space is path-connected.
 - (b) Show that in a locally path-connected space the path components are both open and closed.
 - (c) If the path components of a space are open does that imply that the space is locally path-connected?
 - 2. (a) A subspace of a locally compact Hausdorff space X is locally compact if and only if it is of the form U ∩ C where U is open and C is closed (in X).
 (b) N is the state of the
 - (b) Neither the rationals nor the irrationals is locally compact with the Euclidean topology.
 - 3. Prove that neither \overline{S}_{Ω} nor S_{Ω} are metrizable, but both are regular. Also determine which of them are Lindelöf.