Algebra Qualifier

August 24, 1990

Instructions: Do as many of the problems as you can. Try at least one from each section: Group Theory, Ring Theory, Module Theory, Field Theory and one from the Elective section.

I. Group Theory

- 1. Let G = AB be the semi-direct product of a group A by a group B (i.e. $B \triangleleft G$, G = AB and $A \cap B = 1$). Let [A, B] denote the subgroup of G generated by all commutators $[a, b] = a^{-1}b^{-1}ab$ where $a \in A, b \in B$.
 - (a) Prove that [A, B] is a normal subgroup of G contained in B;
 - (b) Prove that $G/[A, B] \cong A \times (B/[A, B])$.
- 2 Let S be the set of Sylow 7-subgroups in a simple group G of order 168. If $S \in S$, show that S acts transitively on $S \setminus \{S\}$ by conjugation.

1

II. Ring Theory

- 3. Let p be a prime ideal in a commutative ring R with 1. Let $S = R \setminus p$.
 - (a) Show S is a multiplicative subset of R
 - (b) Show that $S^{-1}Rp$ is the unique maximal ideal in $S^{-1}R$.
- 4. Let k[x, y] be the polynomial ring in two indeterminants x, y over a field k. Show that k[x, y] is a unique factorization domain but k[x, y] is not a principal ideal domain.
- 5. Let k be a field and $T_2(k)$ the ring of 2×2 upper triangular matrices.
 - (a) Show that $T_2(k)$ contains a unique maximal nilpotent 2-sided ideal. Find it explicitly.
 - (b) Formulate a generalization of (a) and try to prove it.

III. Module Theory

- 6. Let A be a finite dimensional algebra over a field k. If e is an idempotent in A show that the left A-module $(eA)^*$ is injective. (Here $(eA)^*$ is the dual space $\operatorname{Hom}_k(eA, k)$ and eA is a right A-module where A acts by right multiplication.) *Hint:* Show first that the right A-module eA is projective.
- 7. Let k be an algebraically closed field of prime characteristic p > 0. Let G be a cyclic group of prime order q.
 - (a) Show the group algebra k[G] is isomorphic to $k[x]/(x^q 1)$ where k[x] is the polynomial ring in one variable. (Recall k[G] is the ring whose elements are the linear combinations $\sum_{g \in G} a_g g$ with $a_g \in k$ and where multiplication is given
 - by

$$\left(\sum_{g\in G} a_g g\right) \left(\sum_{g\in G} b_g g\right) = \sum_{h\in G} \left(\sum_{mn=h} a_m a_n\right) h.$$

- (b) Show that if $q \neq p$, then every finite dimensional k[G]-module is projective.
- 8. Let M be a left A-module for a ring A with 1. Show that the functor $-\otimes_A M$ from the category of right A-modules to the category of abelian groups is right exact. Give an example of a ring A and an exact sequence of right A-modules

$$0 \to U \to V \to W \to 0$$

and a left A-module M such that the sequence

$$0 \to U \otimes_A M \to V \otimes_A M \to W \otimes_A M \to 0$$

is *not* exact.

IV. Field Theory

9. (a) Give an example of a finite separable field extension E/k which is not Galois. Prove your answer is correct.

(b) Give an example of a finite purely inseparable field extension E/k. Prove your answer is correct.

- 10. Let p > q be primes. Let G be a non-abelian group of order pq. If E/k is a Galois extension with group G discuss the subfields of E.
- 11. Let k(x) be the quotient field of the polynomial ring in one indeterminant x. Prove that every element r(x) = p(x)/q(x) which is not in k is transcendental over k. What can you say about the extension k(x)/k(r)?

V. Electives

- 12. Let k be an algebraically closed field of characteristic p > 0. Let V be a vector space over k whose dimension is at most 4. Let T be a linear transformation on V whose minimum polynomial divides $x^p 1$. What are the possible Jordan canonical forms for T?
- 13. Suppose V is a finite dimensional vector space over the field \mathbb{Q} of rational numbers. Let $T: V \to V$ be a \mathbb{Q} -linear transformation on V and assume T has minimum polynomial $(x-1)^3(x-2)^2$. Find subspaces V_1, V_2 satisfying the conditions:
 - (a) $T(V_i) \subseteq V_i$;
 - (b) The minimum polynomial of T on V_1 is $(x-1)^3$;
 - (c) The minimum polynomial of T on V_2 is $(x-2)^2$.
 - Your answer should express V_i in terms of T and V.