TOPOLOGY QUALIFYING EXAM

August 1994

Work as many problems as you can. Give complete explanations, but try not to waste time verifying obvious details.

- 1. Suppose $f: X \to Y$ is a bijection, and $f(\overline{A}) = \overline{f(A)}$ for every $A \subset X$. Show that f is a homeomorphism.
- 2. Suppose X is compact and A is an infinite subset. Show directly from the definitions that A must have a limit point.
- 3. Let $\mathbb{R}^2_+ = \{(x, y) : y > 0\}$, and set

 $A = \{(x, y) \in \mathbb{R}^2_+ : (x, y) \text{ lies on a line of irrational slope passing through } (0, 0)\}$

- $B = \{(x, y) \in \mathbb{R}^2_+ : (x, y) \text{ lies on a line of irrational slope passing through } (1, 0)\}$
- a. Show $A \cup B$ is connected.
- b. Prove that every component of $\mathbb{R}^2_+ \smallsetminus (A \cup B)$ is a single point.
- 4. Let X be a Hausdorff space. Prove that X is normal if and only if given any closed subset F and any open set \mathcal{O} such that $F \subset \mathcal{O}$, there exists an open set \mathcal{U} such that $F \subset \mathcal{U} \subset \overline{\mathcal{U}} \subset \mathcal{O}$.
- 5. Let $X = \prod_{i=1}^{\infty} [0, 1]$, and let $Y = \{x \in X \mid \pi_i(x) = 0 \text{ except for finitely many } i\}$. a. Determine whether Y is compact when X is given the product topology.
 - b. Determine whether Y is compact when X is given the box topology.
- 6. Suppose X is normal, and $A \subset X$ is closed.
 - a. Prove that if $f: A \to \mathbb{R}^n$, then f extends continuously to X.
 - b. Now suppose A is simply connected. Prove that if $f: A \to S^1$, then f extends continuously to X. (*Hint:* What is the universal cover of S^1 ?)
- 7. Let $X \subset \mathbb{R}^2$ be the set of vertical lines with integer *x*-intercepts.
 - a. Describe the construction of \hat{X} , the one-point compactification of X, and explain its topology.
 - b. Determine whether \widehat{X} is homeomorphic to the Hawaiian earring, that is, the union of all circles in \mathbb{R}^2 with center (1/n, 0) and radius 1/n where n is a positive integer.
 - c. Determine whether \widehat{X} is homeomorphic to \mathbb{R}/\mathbb{Z} , that is, \mathbb{R} with \mathbb{Z} identified to a point.

1

Do two of the following three problems.

8. Let X denote the space resulting from the identification of the edges of a two-dimensional hexagon as indicated in the diagram below. Use Van Kampen's theorem to compute $\pi_1(X)$.

- 9. Let C(Y,Z) be the space of continuous maps from Y to Z. Given $f: X \times Y \to Z$, define $\tilde{f}: X \to C(Y,Z)$ by $\tilde{f}(x)(y) = f(x,y)$. Show that if f is continuous then \tilde{f} is continuous.
- 10. Let Y be locally path connected. Suppose $f: X \to Y$ is a local homeomorphism and that f has the path lifting property. Show that f is a covering map.