Ph. D. Qualifying Examination in Topology

August 1998

Instructions: Work as many problems as you can. Justify your answers with clear and concise arguments.

- 1. Suppose that X has a subspace D which is uncountable, and such that the subspace topology on D is the discrete topology. Prove that X is not second countable.
- 2. Let X be the space of continuous functions from \mathbb{R} to \mathbb{R} , with the compact-open topology. For $n \geq 1$, define $f_n: \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \cos(x/n)$. Prove that the sequence $\{f_n\}_{n=1}^{\infty}$ converges.
- 3. Let U be the open covering $\{(n-1, n+1) \mid n \in \mathbb{Z}\}$ of the real line. Find an explicit partition of unity subordinate to U.
- 4. Let $f: \overline{S_{\Omega}} \to \mathbb{R}$ be continuous. Prove that there exists $x \in S_{\Omega}$ such that the restriction of f to $[x, \Omega]$ is constant.
- 5. Let $f: S^1 \to T$ be an imbedding from the unit circle S^1 into the 3-dimensional torus $T = S^1 \times S^1 \times S^1$. Let C be the image of f. Let $g: S^1 \to \mathbb{R}^3$ be an imbedding, whose image is a trefoil knot K. Define $h: C \to K$ by $h(x) = gf^{-1}(x)$. Prove that there exists a continuous map $H: T \to \mathbb{R}^3$ so that the restriction of H to C equals h.
- 6. Let X be a space which is not connected, and let Y be $\prod_{i=1}^{\infty} X$, with the product topology. Let $y = (x_i)_{i=1}^{\infty}$ be a point in Y. Prove that Y is not locally connected at y.
- 7. Let $X \subset \mathbb{R}$ be the subspace of rational numbers. Prove that there is no complete metric inducing the topology on X.
- 8. Let $X \subset \mathbb{R} \times \mathbb{R}$ be the subspace $\{\frac{1}{n} \mid n = 1, 2, 3, ...\} \times (-2, 2)$. For $n \geq 1$ let $x_n = (\frac{1}{n}, (-1)^n)$. Let \widehat{X} be the 1-point compactification of X. Prove that the sequence $\{x_n\}_{n=1}^{\infty}$ converges to ∞ in \widehat{X} .
- 9. Let X_1 and X_2 be two disjoint copies of the 2-sphere, and for i = 1, 2, let $x_{i,N}$ be the north pole of X_i and let $x_{i,S}$ be the south pole of X_i . Form a quotient space Yfrom the disjoint union $X_1 \coprod X_2$ by identifying $x_{1,N}$ with $x_{2,N}$, and $x_{1,S}$ with $x_{2,S}$. Prove that Y is not simply-connected. (Hint: Retract Y to a subspace which is not simply-connected.)
- 10. Let $X = \prod_{i=1}^{\infty} \mathbb{Z}$ with the product topology. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of points in X, and denote the i^{th} coordinate of x_n by $x_{n,i}$. Let $S \subseteq \mathbb{Z}$ be the set of integers that appear as the coordinate of some x_n , that is, $S = \{m \in \mathbb{Z} \mid \text{ for some } n \text{ and some } i, m = x_{n,i}\}$. Let $f: X \to \mathbb{R}$ be a continuous function. Prove that if the set of values $\{f(x_n) \mid n \geq 1\}$ is not a bounded subset of \mathbb{R} , then S is not a bounded subset of \mathbb{Z} .