ALGEBRA

Qualifying Exam

May 1999

Instructions: Do as many problems as you can. Please justify your answers and show your work. All rings are associative with 1.

1. Prove or disprove:

- (a) If every subgroup of a group G is normal, then G is abelian.
- (b) If D is PID then so is D[x].

(c) If \mathbb{E}/\mathbb{K} and \mathbb{K}/\mathbb{F} are finite Galois extensions then \mathbb{E}/\mathbb{F} is also Galois.

- 2. Let p be a prime number and G be a group with $|G| = p^n$. Show:
 - (a) The center of G is non-trivial.
 - (b) For each $k \leq nG$ has a normal subgroup H of order p^k .
- (3) Prove:
 - (a) If G is a group of order 12 then G is not simple.

(b) If G is a group of order p^2q , where p and q are distinct primes, then G is not simple.

4. If I and J are ideals of a ring R and I+J=R, prove that $R/I \cap J$ is isomorphic to $R/I \bigoplus R/J$.

5. Show that an element *a* of a commutative ring *A* is nilpotent (i.e., $a^k = 0$ for some positive integer *k*) if and only if *a* is contained in every prime ideal of *A*.

6. If M is a finitely generated module over a Noetherian ring and $f: M \to M$ is an epimorphism, prove that f is an automorphism.

7. Classify, up to similarity, all 3×3 matrices T satisfying $T^3 = T$ over an arbitrary field \mathbb{F} .

8. Prove:

(a) If G is a finite non-cyclic abelian group then there is a positive integer k < |G| such that $g^k = e$ (e is the identity of G), for every $g \in G$.

(b) Every finite multiplicative subgroup of the group of non- zero elements of a field is cyclic.

9. Let \mathbb{E} be the splitting field of $x^4 - x^2 + 2$ over \mathbb{Q} . Find all intermediate fields \mathbb{K} between \mathbb{E} and \mathbb{Q} .

10. Let \mathbb{E} be a finite extension of \mathbb{F}_q (the finite field with q elements). Show that \mathbb{E} is Galois over \mathbb{F}_q and $Gal(\mathbb{E}/\mathbb{F}_q)$ is cyclic.