Detailed Syllabus for 2003 Qualifying Exam in Topology

References.

- Topology, 2nd ed., by J. R. Munkres. Prentice Hall (2000).
- Chapter 1 of Algebraic Topology, by A. Hatcher.
- Algebraic Topology: an introduction, by W. S. Massey. Springer GTM #56.
- 1. Basics
 - (a) Topology on a set, basis, subbasis
 - (b) Continuity, homeomorphism, using maps to induce topologies on new spaces
 - (c) Subspace topology, product topology, quotient topology
 - (d) Closure, interior, limit points, convergence of sequences
 - (e) Metric spaces, metric topology
- 2. Connectedness
 - (a) Connectedness, and behavior under continuous maps, unions, products etc
 - (b) Local connectedness, components
 - (c) Path connectedness, path components
 - (d) Connectedness in linear continua, IVT
- 3. Compactness
 - (a) Compactness, open covers, continuous maps, subspaces, etc
 - (b) Compact metric spaces, Lebesgue numbers, sequential compactness
 - (c) Compactness in \mathbb{R}^n , EVT, Uniform continuity theorem.
 - (d) Limit point compactness
 - (e) Local compactness, one point compactifications
 - (f) (Wright's proof of the) Tychonoff Theorem
- 4. Separation and Countability Axioms, Basic Metrization Results
 - (a) First and second countable spaces, Lindeloff spaces
 - (b) Hausdorff, regular, normal
 - (c) Urysohn lemma, Teitse extension theorem
 - (d) Urysohn metrization, embedding compact manifolds in \mathbb{R}^n , partitions of unity
- 5. Homotopy and the Fundamental Group
 - (a) Homotopies, homotopies of paths, fundamental group, induced homomorphisms
 - (b) π_1 is a functor
 - (c) Fundamental group of the circle (via covering spaces)
 - (d) Homotopy type, retracts, deformation retracts

6. Preliminary Applications

- (a) Brouwer fixed point and no retraction theorems
- (b) Fundamental theorem of algebra
- (c) Borsuk-Ulam, and applications (Ham sandwich theorem)
- (d) $\pi_1(S^n)$
- (e) Fundamental group of a union of two spaces when the intersection has more than one path component
- (f) Jordan separation and Jordan curve theorems
- (g) Embedding graphs in the plane
- (h) Winding numbers

7. Some Group Theory

- (a) Free products of groups, existence and universal property, uniqueness
- (b) Reduced word description of elements, centralizers, centers and torsion elements in free products, free groups
- (c) Commutators, commutator subgroups, abelianizations, free abelian groups
- (d) Finitely generated and finitely presented groups, a presentation of a group
- (e) Teitze transformations, manipulating presentations (converting between the Wirtinger and $a^p = b^q$ presentations of a (p, q)-torus knot complement group).
- 8. Seifert-van Kampen Theorem and applications
 - (a) Seifert-van Kampen theorem, statement and sketch of proof
 - (b) Applications of S-vK: fundamental groups of graphs, 2-complexes, n-complexes.
 - (c) The effect of attaching a 1-cell, a 2-cell, an *n*-cell (n > 2)
 - (d) Presentation 2-complexes, Cayley complexes, Cayley graphs
 - (e) (p,q)-torus knots, and their groups
 - (f) The Wirtinger presentation for general link complements
 - (g) The Conway Zip proof of the classification of closed surfaces, using π_1 to distinguish between closed surfaces

9. Covering Spaces

- (a) The homotopy lifting property: HLP, and its consequences; the path lifting property and the path-homotopy lifting property.
- (b) General lifting criterion. Uniqueness of lifts.
- (c) Existence of universal covering spaces.
- (d) The Galois correspondence between based covers of X and subgroups of $\pi_1(X)$.
- (e) Regular covering spaces and deck transformations. Group actions.
- (f) Examples: Cayley complexes, manifold examples.
- (g) Permutation representations and covering spaces. Examples and applications to branched covers.