Syllabus for 2005 Qualifying Examinations in Topology

The Fall, 2004 and Spring, 2005 graduate topology courses are based on the book *Topology: A Geometric Approach*, by Terry Lawson. Since the text was followed rather loosely, however, the best guide to the qualifying examinations is the material available on the course websites:

http://www.math.ou.edu/~dmccullough/teaching/f04-5853/ http://www.math.ou.edu/~dmccullough/teaching/s05-5863/

This material includes homework problems, solutions to many of the homework problems, and the exams, for which complete solutions are posted.

- I. Topologies
 - 1. Metric spaces, the metric topology
 - 2. Definition of a topology, key examples such as the discrete topology, the standard topology on \mathbb{R}^n , the cofinite topology, the lower limit topology on \mathbb{R}^n
 - 3. Basis for a topology, recognition of bases, second countable spaces
 - 4. Subspace topology
 - 5. Closed sets, closure and interior, limit points
 - 6. Separation properties: Hausdorff, regular, normal
 - 7. Sequences and convergence, dense subsets, separable spaces
- II. Continuous maps
 - 1. Definitions of continuity, continuity and convergent sequences
 - 2. Piecing together continuous maps on open covers and locally finite closed covers
 - 3. Homeomorphisms
 - 4. Isometries of the plane
 - 5. Barycentric coordinates and affine homeomorphisms of the plane
- III. Compactness
 - 1. Definition and basic properties of compactness
 - 2. Compact subsets of \mathbb{R}^n
 - 3. Properties equivalent to compactness in metrizable spaces
 - 4. Lebesgue numbers
 - 5. The Extreme Value Theorem
 - 6. Compactification
 - 7. Local compactness, the one-point compactification, stereographic projection of \mathbb{R}^n
 - 8. The Tychonoff Theorem, statement and applications (not the proof)

IV. Product topology

- 1. Definition of the product topology
- 2. Continuous maps into products
- 3. The product topology for infinite products

- V. Connectedness
 - 1. Definition and basic properties of connectedness
 - 2. The Intermediate Value Theorem
 - 3. Path-connectedness and path components
 - 4. Local path-connectedness
- VI. Urysohn's Lemma and the Tietze Extension Theorem
 - 1. Statements of Urysohn's Lemma and the Tietze Extension Theorem
 - 2. Uniform convergence of sequences of continuous functions
- VII. Quotient topology
 - 1. Definition of the quotient topology
 - 2. The universal mapping property of quotients
 - 3. Identification spaces
- VIII. Manifolds
 - 1. Definition of manifold, boundary of a manifold, examples of manifolds
 - 2. The Collar Theorem, Invariance of Domain
 - 3. Handles, handle decompositions of surfaces
 - 4. Homotopy and isotopy, sliding handles
 - 5. Classification of 2-manifolds up to homeomorphism
 - 6. Orientable and nonorientable 2-manifolds, Euler characteristic
- IX. Fundamental groups
 - 1. Definition of $\pi_1(X, *)$, change of basepoints
 - 2. The covering map $p: \mathbb{R} \to S^1$ and the fundamental group of the circle
 - 3. Simply-connected spaces, S^n is simply-connected for $n \ge 2$
 - 4. Basic applications
 - 5. Homotopy equivalences
- X. Function spaces (a reference for this is *Topology: A First Course*, by James Munkres)
 - 1. Definition and basic properties of the compact-open topology
- XI. Covering spaces
 - 1. Definition of covering spaces, basic examples
 - 2. The Lifting Criterion
 - 3. Covering transformations, regular coverings and normal subgroups
 - 4. The universal covering space
 - 5. The Galois correspondence between covering spaces of X and subgroups of $\pi_1(X, *)$