Attempt all six questions. There is an average of 30 minutes per question, so time your answers accordingly.

- **Q1.** (a) Define what it means for a topological space to be *compact*.
 - (b) Define what it means for a topological space to be *Hausdorff*.
 - (c) Prove that the continuous image of a compact space is compact.
 - (d) What can you conclude about a continuous bijection from a compact space to a Hausdorff space? (no proof necessary)
 - (e) Give the definition of the quotient topology.
 - (f) Give the unit disk $D^2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$ and its boundary circle $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ the subspace topology from \mathbb{R}^2 . Give a detailed proof that the quotient space D^2/S^1 (obtained by identifying all points of S^1 to a single point) is homeomorphic to the sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ with the subspace topology inherited from \mathbb{R}^3 . Identify (by name or brief statements) the results that you use in your proof.
- **Q2.** Let X be a topological space and $A \subset X$ be a subspace.
 - (a) Define what it means for A to be a retract of X.
 - (b) Define what it means for A to be a deformation retract of X.
 - (c) Is $\{0,1\}$ with the discrete topology a retract of the unit interval [0,1] with the usual topology (as a subspace of \mathbb{R})? Give a reason for your answer.
 - (d) Is the unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ with the usual topology (as a subspace of \mathbb{R}^2) a retract of the unit disk $D^2 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\}$ with the usual topology (as a subspace of \mathbb{R}^2)? Give a reason for your answer.
 - (e) Let $S^1 \vee S^1$ denote the CW complex consisting of one 0-cell and two 1-cells, and let S^1 denote the subcomplex consisting of one 0-cell and one 1-cell. Is S^1 a retract of $S^1 \vee S^1$? Give a reason for your answer.
 - (f) Let $S^1 \subset S^1 \vee S^1$ be as described in the previous part. Is S^1 a deformation retract of $S^1 \vee S^1$? Give a reason for your answer.
- **Q3.** Let $\{X_{\alpha} \mid \alpha \in J\}$ be an indexed collection of topological spaces X_{α} .
 - (a) Define the product $\prod_{\alpha \in J} X_{\alpha}$ as a set.
 - (b) Define the product topology on $\prod_{\alpha \in J} X_{\alpha}$.
 - (c) Prove that the projection maps $P_{\alpha}: \prod_{\alpha \in J} X_{\alpha} \to X_{\alpha}$ are continuous.
 - (d) Prove that a function $f: Z \to \prod_{\alpha \in J} X_{\alpha}$ is continuous iff $P_{\alpha} \circ f$ are continuous.
 - (e) If each of the X_{α} are connected, is $\prod_{\alpha \in J} X_{\alpha}$ necessarily connected?

- Q4. Let S_{Ω} denote a well-ordered set whose order type is the first uncountable ordinal Ω . Give $S_{\Omega} \cup \{\Omega\}$ the ordering in which every element of S_{Ω} is less than Ω , and consider the corresponding order topology.
 - (a) Describe basis elements of the order topology which contain the point Ω .
 - (b) Prove that Ω is a limit point of S_{Ω} .
 - (c) Prove that every countable subset $A \subset S_{\Omega}$ has an upper bound in S_{Ω} .
 - (d) Prove that no sequence in S_{Ω} converges to Ω .
 - (e) Is $S_{\Omega} \cup \{\Omega\}$ with the order topology metrizable? Give a reason for your answer.
- Q5. State the fundamental theorem (Galois correspondence) about the existence of covering spaces of a space X and their connection with subgroups of $\pi_1(X)$.
 - (a) Recall that the free group $F_{\{a,b\}}$ is the fundamental group of a wedge of two circles $S_a^1 \vee S_b^1$. Use the fundamental theorem to prove that every subgroup of the free group $F_{\{a,b\}}$ is free.
 - (b) Draw covering spaces of $S_a^1 \vee S_b^1$ corresponding to the following subgroups of $F_{\{a,b\}}$.
 - i. $\langle a \rangle$
 - ii. $\langle a, b^2, bab \rangle$
 - iii. ker(f) where $f : F_{\{a,b\}} \to \langle t | \rangle$ is defined by f(a) = t and f(b) = 1. Here $\langle t | \rangle$ denotes the infinite cyclic group generated by t and 1 denotes the identity element.
 - iv. ker(h) where $h: F_{\{a,b\}} \to S_3$ is the homomorphism to the symmetric group $S_3 = Perm(\{1,2,3\})$ defined by h(a) = (12) and h(b) = (23). Note that (12) and (23) are cycle notation descriptions of permutations of the set $\{1,2,3\}$.
 - (c) Write down subgroups of $F_{\{a,b\}}$ corresponding to the following two based covering spaces of $S_a^1 \vee s_b^1$. Note that the base point is indicated by a heavy dot in each case.

- (d) Prove that a nontrivial, normal subgroup of $F_{\{a,b\}}$ which is of infinite index is not finitely generated. Say where all the hypotheses in the statement fit into your proof.
- (e) Give examples of finitely generated subgroups of $F_{\{a,b\}}$ which satisfy two of the three hypotheses above (you should give three examples in all).

Q6. (a) Let X be the cell complex obtained by attaching the 2–cell in the figure below to the wedge of three circles, $S_a^1 \vee S_b^1 \vee S_t^1$. Use van Kampen's theorem to compute $\pi_1(X)$.

- (b) Say whether the group $\pi_1(X)$ is finite or infinite. Give a reason for your answer.
- (c) Say whether the group $\pi_1(X)$ is abelian or not. Give a reason for your answer.
- (d) Is there a retraction from X to $S_a^1 \vee S_b^1$? Construct an explicit retraction (quoting whatever theorems from general topology that may be necessary to perform the construction), or prove that none exists.
- (e) Is there a retraction from X to S_t^1 ? Construct an explicit retraction (quoting whatever theorems from general topology that may be necessary to perform the construction), or prove that none exists.