Qualifying Exam in Topology, Spring 2021

1. Concepts

Answer all the questions in this section.

- 1. Prove or give a counter-example: If *X* is a topological space and $f : X \to \mathbb{R}$ is a continuous function, then the closure of the subset $\{x \in X \mid f(x) > 0\}$ equals $\{x \in X \mid f(x) \ge 0\}$.
- 2. Let \mathcal{B} be the collection of subsets $\{[a, b) | a, b \in \mathbb{R}, a < b\}$ in \mathbb{R} . Prove that \mathcal{B} is a basis for a topology. Prove or disprove that \mathbb{R} is connected in this topology.
- 3. Prove or disprove that the map $f : [0, 1] \to S^1$ defined by $f(t) = e^{2\pi i t}$ is a covering map.
- 4. Suppose a subspace $X \subset \mathbb{R}^n$ has a point $x \in X$ with the following property: for every $y \in X$, the line segment from y to x lies in X. Prove, directly from the definition of π_1 , that $\pi_1(X, x) = 1$, i.e. the fundamental group is trivial.

2. Point Set Topology (Mostly)

Solve 3 of the following problems. In your answers, indicate which theorems you are using. If you are using a theorem you found in the book that you are using for the exam, give the theorem number or the section it's in plus the page number. If you are using a theorem/result that you remember from class, then describe what the theorem/result says.

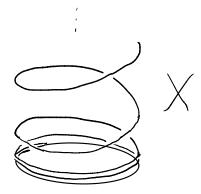
(1) Prove that there is a continuous surjective map $[0,1] \rightarrow S^2$. Prove that any such map is a quotient map. (Yes, that is really [0,1] and not $[0,1]^2$.)

(2) Suppose {X_i}_{i∈I} is a collection of topological spaces. Suppose we choose a subspace A_i ⊆ X_i for all i ∈ I. Let Y = ∏_{i∈I} X_i with the product topology.
(i) Prove that ∏_{i∈I} A_i is a closed subset of Y if A_i is closed in X_i for all i.
(ii) Prove that ∏_{i∈I} A_i = ∏_{i∈I} A_i.

(3) Let $X \subseteq \mathbb{R}^3$ be the subspace

$$X = S^1 \times \{0\} \cup \{(\cos t, \sin t, e^t) \mid t \in \mathbb{R}\}$$

(See the figure below.) Prove that *X* is connected but not path-connected.



(4) Prove that the product $\prod_{n \in \mathbb{N}} S^n$ is metrizable (where $\prod_{n \in \mathbb{N}} S^n$ has the product topology).

3. Fundamental Group and Covering Spaces (Mostly)

Solve 3 of the following problems. In your answers, indicate which theorems you are using. If you are using a theorem you found in the book that you are using for the exam, give the theorem number or the section it's in plus the page number. If you are using a theorem/result that you remember from class, then describe what the theorem/result says.

(1) Use the fundamental group (of some space) to prove that S^2 and S^3 are not homeomorphic.

(2) (i) Among the spaces S^2 , $\mathbb{R}P^2$, T^2 , determine which can cover the other spaces. Justify your answer. (E.g. is there a covering map $S^2 \to \mathbb{R}P^2$? $S^2 \to T^2$? etc. Here T^2 denotes the 2-dimensional torus. You can state and use without proof what π_1 of these spaces are.

(ii) Prove that every map $\mathbb{R} \mathbb{P}^2 \to T^2$ is homotopic to a constant map.

(3) Let $X = S^1 \lor S^1 \lor S^2$.

(i) What are all the possible deck transformation groups (up to isomorphism) for a regular index 5 cover of *X*? Justify your answer.

(ii) Describe two non-isomorphic regular index 5 covers of *X* and how the deck transformation group acts on those covers.

(4) Let X be the topological space obtained by attaching two distinct tori at two of their respective points as indicated in the diagram. More precisely let

$$X = T^2 \times \{0\} \cup T^2 \times \{1\} / \sim$$

where $(x_1, 0) \sim (x_1, 1)$ and $(x_2, 0) \sim (x_2, 1)$ for distinct points x_1, x_2 in the 2-dimensional torus. Use Van Kampen's Theorem to determine $\pi_1(X, x)$. (Hint: Be careful of the subsets you use for Van Kampen.)

