Algebra Qualifying Exam — January 2022

Instructions

- Do as many problems as you are able to.
- Give full and clear justification of your solutions.
- Throughout, \mathbb{F}_p denotes a field with p elements, where p is a prime number.
- For a ring R, $M_n(R)$ denotes the ring of $n \times n$ matrices over R.

Problems

- 1. (a) State and prove the class equation for a finite group G. (This is the formula relating |G| to the sizes of centralizers.)
 - (b) Use (a) to prove that any nontrivial finite *p*-group has nontrivial center.
- 2. (a) True or false (prove your assertion): If p is a prime element of a commutative integral domain R, then p is irreducible.

(b) For $n \in \mathbb{Z}$, determine the set of prime ideals of $R = \mathbb{Z}/n\mathbb{Z}$.

- (c) True or false (prove your assertion): Every prime ideal of $\mathbb{Q}[x, y]$ is principal.
- 3. (a) Let R be a commutative ring, M and N be R-modules, and $\text{Hom}_R(M, N)$ be the set of R-module homomorphisms from M to N. Describe a natural R-module structure on $\text{Hom}_R(M, N)$.

(b) With notation as in (a), describe also a natural $\operatorname{End}_R(M)$ -module structure on $\operatorname{Hom}_R(M, N)$.

(c) Let M be the \mathbb{Z} -module $\mathbb{Z} \oplus 2\mathbb{Z}$, N be the \mathbb{Z} -module $\mathbb{Z} \oplus 3\mathbb{Z}$. Determine the structure of $\operatorname{Hom}_{\mathbb{Z}}(M, N)$ as a \mathbb{Z} -module.

- 4. Prove that, for any integer $n \ge 2$, there is a monic polynomial $f(x) \in \mathbb{Q}[x]$ of degree n with no rational or repeated roots, such that f(x) = 0 is solvable by radicals.
- 5. (a) Determine the number of irreducible quadratic polynomials over \mathbb{F}_p .
 - (b) Determine the number of quadratic field extensions E/\mathbb{F}_p (up to isomorphism).
 - (c) Let E/\mathbb{F}_p be a quadratic skew-field extension of \mathbb{F}_p , i.e., a division ring of order p^2 . Prove that \mathbb{F}_p embeds in E (as rings) and E is a 2-dimensional vector space over \mathbb{F}_p (justifying the term "extension").

(d) Determine the number of quadratic skew-field extensions E/\mathbb{F}_p (up to isomorphism).

- 6. Let S be the set of all irreducible monic polynomials $f(x) \in \mathbb{Q}[x]$ whose splitting field is isomorphic to $\mathbb{Q}(i, \sqrt{-3})$.
 - (a) Determine $\{\deg(f) : f \in S\}.$
 - (b) Construct some $f \in S$.

7. Consider the map $\iota(x) = (\operatorname{tr} x)I - x$ on $M_2(\mathbb{Q})$.

(a) Prove that ι is an involution of $M_2(\mathbb{Q})$, i.e., an additive map of order 2 which reverses the order of multiplication.

(b) Show $x \cdot \iota(x) = (\det x)I$ for $x \in M_2(\mathbb{Q})$.

(c) Suppose F is a subring of $M_2(\mathbb{Q})$ which is a field different from \mathbb{Q} . Prove that ι restricts to a nontrivial Galois automorphism of F.