ALGEBRA QUALIFYING EXAM - AUGUST 2024

INSTRUCTIONS

- Complete 6 problems including at least 1 problem from each of the 4 sections.
- You are welcome to complete more than 6 problems if you can't choose which 6 to do or want to demonstrate some additional understanding.
- All rings are assumed to have a 1.
- Good luck!

Problems

I. Groups.

- 1. (a) Let G be a group of finite order n, and let m be an integer coprime to n. Suppose $g, h \in G$ with $g^m = h^m$. Show that g = h.
 - (b) Let G be a group, and let H be a normal subgroup of index p. Let K be any subgroup of G which is not contained in H. Describe $K/(K \cap H)$. Justify your answer.
- 2. Let p be a prime. Let S be a set of cardinality p^b for some positive integer b. Suppose G is a finite group that acts transitively on S (i.e., if $s, t \in G$, then there exists some $g \in G$ such that gs = t). Let P be a Sylow p-subgroup of G. Prove that P acts transitively on S.

II. Rings.

3. Let R be a commutative ring, and let X be the set of prime ideals in R. Given a subset $A \subset R$, we define $V(A) \subset X$ to be the set of prime ideals in R which contain A. That is,

$$V(A) = \{ P \in X : P \supset A \}.$$

- (a) Describe $V(\{0\})$ and $V(\{1\})$.
- (b) Given subsets $A, B \subset R$, denote

$$AB \coloneqq \{ab \in R | a \in A, b \in B\}.$$

Prove that $V(AB) = V(A) \cup V(B)$.

- 4. (a) Is $\mathbb{Q}[W, X, Y, Z]$ a UFD (unique factorization domain)? Briefly justify your answer.
 - (b) Find an element of $R = \mathbb{Q}[W, X, Y, Z]/(WX YZ)$ which is irreducible but not prime. Briefly justify your answer.
 - (c) Is $R = \mathbb{Q}[W, X, Y, Z]/(WX YZ)$ a UFD? Briefly justify your answer.
 - (d) Show that the ideal I = (X, Y) in $R = \mathbb{Q}[W, X, Y, Z]/(WX YZ)$ is prime.

III. Modules.

- 5. (a) Let R be a commutative Noetherian ring. Prove that every surjective R-module homomorphism $\phi : R \to R$ is an automorphism.
 - (b) If R is any integral domain with quotient field F, show that $(F/R) \otimes_R (F/R) = 0$.
- 6. Let A be a matrix over a field F with characteristic polynomial $ch_A(x) = x^3 1$.
 - (a) For $F = \mathbb{C}$, give the rational canonical and Jordan canonical forms for A.
 - (b) What are the possible Jordan canonical forms for A when $F = \mathbb{Z}/3\mathbb{Z}$?

IV. Fields.

- 7. Let $f(x) = x^3 + 4x + 2 \in F[x]$ for a field F. Let K/F denote the splitting field of f(x).
 - (a) Show that f(x) is irreducible for:
 - (i) $F = \mathbb{Q}$,
 - (ii) $F = \mathbb{F}_5$.
 - (b) Describe $\operatorname{Gal}(K/F)$ for $F = \mathbb{Q}$. (Hint: It might help to find how many real roots there are. You can do this using calculus).
 - (c) For $F = \mathbb{F}_5$, describe K and $\operatorname{Gal}(K/F)$. Here, you should describe $\operatorname{Gal}(K/F)$ both as an abstract group and in terms of its action on K.
- 8. Fix a prime $p \ge 5$. Let $f(x) \in \mathbb{Q}[x]$ be irreducible with degree p. Let K/\mathbb{Q} be a splitting field for f(x).
 - (a) Show that p divides $[K : \mathbb{Q}]$.
 - (b) How do we know the following two facts:
 - (i) f(x) is separable.
 - (ii) K/\mathbb{Q} is Galois.
 - (c) From now on, assume the polynomial f(x) has exactly p-2 real roots. Show that G contains a transposition (when viewed as a subgroup of S_p via the action on roots of f(x)).
 - (d) Briefly show that G contains a p-cycle (when viewed as a subgroup of S_p).
 - (e) Is f(x) solvable by radicals? Briefly justify your answer.