What is an Euler characteristic?

Travis Mandel

Norman Math Circle at the University of Oklahoma

September 10, 2023

We'll start with something simple:

臣

We'll start with something simple:

• Question: How many edges does a triangle have?

We'll start with something simple:

Question: How many edges does a triangle have?

► Answer: 3

We'll start with something simple:

- Question: How many edges does a triangle have?
- ► Answer: 3

• Question: How many vertices does a triangle have?

We'll start with something simple:

- Question: How many edges does a triangle have?
- ► Answer: 3

Question: How many vertices does a triangle have?

► Answer: 3

First Example (continued)

Polygon	Vertices	Edges
Triangle	3	3

< A

E

First Example (continued)

Polygon	Vertices	Edges
Triangle	3	3

What do we notice?

э

First Example (continued)

Polygon	Vertices	Edges
Triangle	3	3

What do we notice?

The number of vertices equals the number of edges.

Let's add a row to our table for squares:

Polygon	Vertices	Edges
Triangle	3	3
Square		

э

Let's add a row to our table for squares:

Polygon	Vertices	Edges
Triangle	3	3
Square	4	4

Again, the number of vertices equals the number of edges.

More polygons

This pattern continues:

Polygon	Vertices	Edges
Triangle	3	3
Square	4	4
Pentagon	5	5
Hexagon	6	6
÷	÷	÷
<i>n</i> -gon	п	п

590

э

Observation: For polygons, the number of vertices always equals the number of edges.

э

Observation: For polygons, the number of vertices always equals the number of edges.

- Let V = the number of vertices.
- Let E = the number of edges.
- So V = E for polygons.

Observation: For polygons, the number of vertices always equals the number of edges.

- Let V = the number of vertices.
- Let E = the number of edges.
- So V = E for polygons.

Another way to think of this:

• Let
$$\chi = V - E$$
.

- Then $\chi = 0$.
- χ is called the **Euler characteristic**.

Graphs

A set of vertices and edges is called a graph.

For example:

What is χ for this example?

Graphs

Other graphs

Let's compute $\chi = V - E$ for some more graphs.

Genus

The number of "holes" in a shape is called the **genus**, denoted g.

э

Graphs

General formula for graphs

Do you see the pattern now?

g	χ
0	1
1	0
2	-1
3	-2
4	-3
5	-4
6	-5
:	:
g	

General formula for graphs

Do you see the pattern now?

g	χ
0	1
1	0
2	-1
3	-2
4	-3
5	-4
6	-5
:	:
g	

The Euler characteristic χ of a genus g graph is:

Notice: If you can continuously deform one graph into another, then the two graphs have the same Euler characteristic χ .

Notice: If you can continuously deform one graph into another, then the two graphs have the same Euler characteristic χ .

Spaces related by continuous deformation like this are said to be homotopy equivalent.

Notice: If you can continuously deform one graph into another, then the two graphs have the same Euler characteristic χ .

- Spaces related by continuous deformation like this are said to be homotopy equivalent.
- Why do homotopy equivalent graphs have the same Euler characteristic?

Notice: If you can continuously deform one graph into another, then the two graphs have the same Euler characteristic χ .

- Spaces related by continuous deformation like this are said to be homotopy equivalent.
- Why do homotopy equivalent graphs have the same Euler characteristic?
- ► One possible answer: If you shrink an edge down until it disappears, you get one fewer edge AND one fewer vertex, so V E stays the same.

Graphs

Donuts and Coffee Mugs

Example: Donuts and coffee mugs are homotopy equivalent.

э

Surfaces

Surfaces

For surfaces, we define

$$\chi = V - E + F$$

where

- ► *V* is the number of vertices;
- E is the number of edges;
- ► *F* is the number of faces.

Euler Characteristics of Surfaces

Let's compute $\chi = V - E + F$ for a bunch of examples.

Name	Image	V	E	F	γ	Name	Image	V	Ε	F	χ
Tetrahedron						Pyramid					
Cube						Prism					
Ostabadvan						Soccer Ball					
Dodecahedron						Football	Ô				
Icosahedron						Basketball					

What do you notice about these Euler characteristics?

Euler Characteristics of Surfaces

Let's compute $\chi = V - E + F$ for a bunch of examples.

Name	Image	V	F	F	\mathbf{v}	Name	Image	V	Е	F	χ
Tetrahedron		4	4	6	2	Pyramid		5	8	5	2
Tetranearon			•								
Cube		8	12	6	2	Prism		10	15	7	2
			10			Soccer Ball		60	90	32	2
Octahedron		6	12	8	2						
Dodecahedron		20	30	12	2	Football		2	4	4	2
								_		-	
Icosahedron		12	30	20	2	Basketball		6	12	8	2

What do you notice about these Euler characteristics?

Euler characteristic of a sphere

Some shapes on the previous slide were curved. Notice that this doesn't really matter.

Euler characteristic of a sphere

- Some shapes on the previous slide were curved. Notice that this doesn't really matter.
- All of the shapes on the previous slide can be deformed to look like spheres with a bunch of vertices and curvy edges drawn on them. This doesn't change anything.

Euler characteristic of a sphere

- Some shapes on the previous slide were curved. Notice that this doesn't really matter.
- All of the shapes on the previous slide can be deformed to look like spheres with a bunch of vertices and curvy edges drawn on them. This doesn't change anything.
- We might say χ(sphere) = 2, since we get 2 for χ no matter how we draw the vertices/edges/faces on the sphere.

The torus

- For graphs, we saw that χ depends on the genus g.
- All the examples on the previous slide have g = 0 and $\chi = 2$.

The torus

- For graphs, we saw that χ depends on the genus g.
- All the examples on the previous slide have g = 0 and $\chi = 2$.
- ► A torus (donut-shape) has genus 1.
- Do we get something different for χ ?

Surfaces

Euler characteristic of the torus

э

Sac

• So
$$\chi = 2$$
 when $g = 0$,

• and
$$\chi = 0$$
 when $g = 1$.

- 一司

E

• So
$$\chi = 2$$
 when $g = 0$,

▶ and $\chi = 0$ when g = 1.

э

• So
$$\chi = 2$$
 when $g = 0$,

• and $\chi = 0$ when g = 1.

э

• So
$$\chi = 2$$
 when $g = 0$,

• and $\chi = 0$ when g = 1.

э

Connect Sums

- Say we have two surfaces A and B.
- Let's assume each has a triangle face.
- What happens to the Euler characteristic if we remove a triangle face from each while keeping the vertices and edges the same?

Connect Sums

- Say we have two surfaces A and B.
- Let's assume each has a triangle face.
- What happens to the Euler characteristic if we remove a triangle face from each while keeping the vertices and edges the same?

► A and B each lose a face, so \u03c0 = V - E + F goes down by 1 for each surface.

When gluing, the total number of vertices goes down by 3. So does the total number of edges. So χ stays the same.

- When gluing, the total number of vertices goes down by 3. So does the total number of edges. So χ stays the same.
- ► So \(\chi(A\#B)) =

When gluing, the total number of vertices goes down by 3. So does the total number of edges. So χ stays the same.

• So
$$\chi(A \# B) = \chi(A) + \chi(B) - 2$$
.

 $\blacktriangleright \chi(A \# B) = \chi(A) + \chi(B) - 2.$

Travis Mandel (University of Oklahoma)

Euler characteristics

∃ ⊳ September 10, 2023 23 / 25

3

 $\blacktriangleright \chi(A\#B) = \chi(A) + \chi(B) - 2.$

• Suppose *B* is a torus, so $\chi(B) = 0$.

• Then
$$\chi(A \# B) = \chi(A) - 2$$
.

э

- $\blacktriangleright \chi(A\#B) = \chi(A) + \chi(B) 2.$
- Suppose *B* is a torus, so $\chi(B) = 0$.
- Then $\chi(A \# B) = \chi(A) 2$.
- Also, the genus of A # B is one more than the genus of A.

- $\blacktriangleright \chi(A \# B) = \chi(A) + \chi(B) 2.$
- Suppose *B* is a torus, so $\chi(B) = 0$.
- Then $\chi(A \# B) = \chi(A) 2$.
- Also, the genus of A # B is one more than the genus of A.
- So when we increase the genus by 1, it decreases χ by 2.

g	0	1	2	3	4	5	 g
χ	2	0					

Euler characteristics are used a lot in high-level abstract math, but what about in the real world?

- Euler characteristics are used a lot in high-level abstract math, but what about in the real world?
- Given some big, noisy dataset, how can a computer figure out the "shape" of the data?
- Idea: Make each data point into a small ball, and fuse all these balls together.

- Euler characteristics are used a lot in high-level abstract math, but what about in the real world?
- Given some big, noisy dataset, how can a computer figure out the "shape" of the data?
- Idea: Make each data point into a small ball, and fuse all these balls together.

- A computer can compute the Euler characteristic of this shape.
- This tells you a bit about what the shape is.

- Euler characteristics are used a lot in high-level abstract math, but what about in the real world?
- Given some big, noisy dataset, how can a computer figure out the "shape" of the data?
- Idea: Make each data point into a small ball, and fuse all these balls together.

- A computer can compute the Euler characteristic of this shape.
- This tells you a bit about what the shape is.
- This can be used, e.g., to identify abnormalities in medical imaging.

Image from https://www2.math.upenn.edu/~ghrist/preprints/barcodes.pdf

Surfaces

Thank you!

Name	Image	V	F	F	\mathbf{v}	Name	Image	V	E	F	χ
Tetrahedron		4	4	6	2	Pyramid		5	8	5	2
Cube		8	12	6	2	Prism		10	15	7	2
Ostabadaar		6	10	0	_	Soccer Ball		60	90	32	2
Dodecahedron		20	30	8	2	Football		2	А	Д	2
Icosahedron		12	30	20	2	Basketball		6	12	8	2

< 円

DQC 25 / 25

E