CAESAR CIPHER

Practice: Encode or decode the following words:

Shift= \square

Plain	H	E	L	L	O
Ciphered					

Shift= $=\square$

Plain				
Ciphered	T	H	-	O

Group activity: Your mission is to send a message, encoded using Caesar cipher, to the other team, without the enemies of the Jedi being able to read it.

Secret shift: \square Only members of your team and the receiver team can know it! Encode your message

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Plain															
Ciphered															
16		17	18	19	20	21	22	23	24	25	26	27	28	29	30
Plain															
Ciphered															

Decode your allies' message

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ciphered															
Plain															
16		17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ciphered															
Plain															

Activity: Try to decode my message without knowing the shift.

					3	4			6		8	9																
C																												

MODULAR ARTHMETIC

Practice: Compute the following modular reductions:
Use WolframAlpha! www.wolframalpha.com
$17(\bmod 5)=$
$138(\bmod 14)=$
$17294803(\bmod 269)=$

Practice: Compute the following modular operations:

$$
\begin{aligned}
& 5+6(\bmod 7)= \\
& 38+52(\bmod 3)= \\
& 1329+2963(\bmod 6)=
\end{aligned}
$$

$$
5 \times 6(\bmod 7)=
$$

$$
38 \times 52(\bmod 3)=
$$

$$
1329 \times 2963(\bmod 6)=
$$

$38^{52}(\bmod 3)=$

$$
1329^{2963}(\bmod 6)=
$$

$1329^{2963}(\bmod 6)=$

Practice: Write the multiplication table modulo 6:

\times	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

REA CRYPTOSYSTEM

KEY GENERATION

1. Choose two large prime numbers p and q from the list:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103$, $107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211$, $223,227,229,233,239,241,251,257,263,269,271,277,281,283,293$
They are secret: only people in your team can know them!
2. Compute $n=p \times q$.
3. Compute $\phi=(p-1) \times(q-1)$.
4. Choose a prime number e smaller than ϕ such that $\operatorname{gcd}(e, \phi)=1$ (check with WolframAlpha).
5. Find the inverse of e modulo ϕ. Call it $d=e^{-1}(\bmod \phi)$. Also secret!

Public key: (n, e). Give it to anyone who wants to send you a message! Private key: d. Super secret! Only you (and your team) should know it.

ENCODING

You are now the sender of the message.

1. Convert each letter of your message into a number m. Use this table:

	A	B	C	D	E	F	G	H	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12	13

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

2. Using the receiver's public key (n, e), compute $c=m^{e}(\bmod n)$.

The encoded message is c. You can send it to the receiver now.

DECODING

You are now the receiver of the message.

1. Using your public and private keys (n, e) and d, compute $m=c^{d}(\bmod n)$.

This is the decoded message!
2. Convert the numerical message into a letter again, using the same table as before. You recover the letter that was sent to you.

RTA PRAGTCE

Group activity: Reinforcements have arrived, but the enemies have managed to break your previous Caesar cipher. Then, the only way you can communicate with your allies is using RSA encryption, that does not require both teams to know the same key. Your mission is to send a message, using RSA cryptosystem, to the other team. Then, you decode the message you have received.

GENERATE YOUR KEY

1. Choose your prime numbers (with your team). Super secret!!
$p=$
$q=$
2. $n=$
3. Choose (with your team) the prime number
4. $\phi=$
5. Super secret!! $d=$

Your public key

$$
(n, e)=(\quad, \quad)
$$

\square

ENCODE YOUR MESSAGE

Receiver's public key: $(n, e)=(\quad, \quad)$

	1	2	3	4	5	6	7	8	9	10
Plain										
Numbers										
Ciphered										
	11	12	13	14	15	16	17	18	19	20
Plain										
Numbers										
Ciphered										

DECODE YOUR ALLES' MESSAGE

