Name:

Please complete 5 out of 6 problems. If you complete 6 out of 6, I will use your top 5 scores for your grade.

- **1.** Let $\mathbf{F}(x, y) = x^3 y^4 \mathbf{i} + x^4 y^3 \mathbf{j}$.
- a. Find a function f such that $\mathbf{F} = \nabla f$.

b. Use the Fundamental Theorem of Line Integrals to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the curve $\mathbf{r}(t) = \sqrt{t}\mathbf{i} + (1+t^3)\mathbf{j}, 0 \le t \le 1$.

2. Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y) = \langle y \cos x - xy \sin x, xy + x \cos x \rangle$ where C is the triangle from (0, 0) to (0, 1) to (1, 0) to (0, 0).

3. Find the area of the surface that is the part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$.

4. Evaluate the surface integral $\iint_S x^2 z^2 dS$ where S is the part of the paraboloid $z = \sqrt{x^2 + y^2}$ given by $0 \le z \le 1$.

- **5.** Let $\mathbf{F}(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy \sqrt{z})\mathbf{k}$.
- a. Compute $\operatorname{curl} \mathbf{F}$

b. Use Stokes' Theorem to compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the boundary of the part of the plane x + 2y + 3z = 1 in the first octant, where C is oriented ccw when viewed from above.

- **6.** Let $\mathbf{F}(x, y, z) = (2x^2 + z^2)\mathbf{i} + (z^2 2x)\mathbf{j} + (y^2 + x)\mathbf{k}$.
- a. Compute $\operatorname{div} \mathbf{F}$.

b. Use the Divergence Theorem to compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the part of the cone $x = \sqrt{y^2 + z^2}$ between the planes x = 0 and x = 1.