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The main purpose of this lesson is to introduce some important number theory which is frequently used
in higher level math courses such as Abstract Algebra courses. Some of the more instructive proofs will
be given.

Definition: The greatest common divisor (abbreviated GCD) of two integers a and b, one of which
is nonzero, is the largest positive integer which divides both a and b. The GCD is often denoted by
gcd(a, b).
Example:
gcd(4, 6) = 2, gcd(24, 25) = 1.

Definition: Two integers a and b are said to be relatively prime if gcd(a, b) = 1.

How can we compute gcd(1245, 998)? This seems quite difficult; it turns out that there is a useful
algorithm for computing the GCD called the Euclidean algorithm. The Euclidean algorithm uses the
division algorithm for integers repeatedly.

The Division Algorithm

The division algorithm for integers says the following: Given two positive integers a and b, with b 6= 0,
there exists unique integers q and r such that

a = qb + r

where 0 ≤ r < |b|.

This may appear to be confusing at first, but it is literally just saying that you can divide an in-
teger a by a nonzero integer b and get a remainder which is less than the number we are dividing
by.

Example:

Given a = 18 and b = 4, we can write 18 = 4 · 4 + 2. This is just dividing 18 by 4 which we expect to
have remainder 2.

The Euclidean Algorithm

Here is an example to illustrate how the Euclidean algorithm is performed on the two integers a = 91
and b1 = 17.

Step 1: 91 = 5 · 17 + 6 (i.e. write a = q1b1 + r1 using the division algorithm)
Step 2: 17 = 2 · 6 + 5 (i.e. write b1 = q2r1 + r2 using the division algorithm)
Step 3: 6 = 1 · 5 + 1 (i.e. write r1 = q3r2 + r3 using the division algorithm)
Step 4: 5 = 5 · 1 + 0 (i.e. write r2 = q4r3 + r4 using the division algoirhtm)

The general algorithm is as follows: Given two integers a and b
Step 1: Write a = q0b + r0
Step 2: Write b = q1r0 + r1
Step i (i ≥ 2): Write ri−2 = qiri−1 + ri.

The algorithm terminates at the step j where we get rj = 0. When the Euclidean algorithm is
over, that is, when we get rj = 0, then rj−1 = gcd(a, b). Said differently, gcd(a, b) is the last nonzero
remainder in the Euclidean algorithm.
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Bezout’s Idenitity and the Extended Euclidean Algorithm

A very useful fact is Bezout’s identity.

Bezout’s Idenity:

Let a and b be nonzero integers and let d be their GCD. Then we can write d as a linear combination
of a and b; that is, there exist integers s and t such that

d = sa + tb.

Furthermore,
i. d is the smallest positive integer that can be written in the form sa + tb,
ii. every other integer of the form sa + tb is a multiple of d.

Example:

a. Above we computed that gcd(25, 24) = 1. We can write 1 = 1 · 25− 1 · 24.

b. Consider d = gcd(1245, 998) from above. We can check using the Euclidean algorithm that d = 1.
We can write 1 = 299 · 1245− 373 · 998.

Seeing the GCD from example (b) above written in the form of Bezout’s identity can easily cause
one to wonder how anyone would ever come up with that. This is fairly easy to do by using the Ex-
tended Euclidean Algirhtm. The proof of Bezout’s identity also follows from the extended Euclidean
algorithm but we will omit the proof and just assume Bezout’s identity is true (the fact that you can
always write d in the form ax + by should be pretty clear from the example; proving it formally is
just a matter of generalizing the example) . Here is an example illustrating how to use the Extended
Euclidean Algorithm.

Example: Extended Euclidean Algorithm

Let’s compute gcd(232, 108) = 4 and then write the gcd in the form of Bezout’s identity.

Step A: Use the Euclidean algorithm to compute gcd(232, 108)

Step A1: 232 = 2 · 108 + 16
Step A2: 108 = 6 · 16 + 12
Step A3: 16 = 1 · 12 + 4
Step A4: 12 = 4 · 3 + 0

The last nonzero remainder in the Euclidean algorithm is 4 so gcd(232, 108) = 4.

Step B: Use the Extended Euclidean Algorithm to write the GCD in the form of Bezout’s identity

We want to find integers s and t such that 4 = s · 232 + t · 108.

Step B1: From step A3 notice that you can write 4 = 16− 1 · 12.

Step B2: From step A1 notice that 16 = 232 − 2 · 108 and 12 = 108 − 6 · 16. Substitute these in the
equation from step B1 to get 4 = 232− 2 · 108− (108− 6 · 16) =⇒ 4 = 232− 2 · 108− 108 + 6 · 16 =⇒
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4 = 232−3 ·108+6 ·16. Notice that we don’t actually multiply out 3 ·108 because we want to
write 4 in the form of Bezout’s identity and we don’t actually multiply out 6 · 16 because
we wish to substitute 16 in terms of 232 and 108 in the next step

Step B3: Notice from step A1 that 16 = 232−2 ·108. Substitute this in the final equation from step B2
to get 4 = 232−3·108+6(232−2·108) =⇒ 4 = 232−3·108+6·232−12·108 =⇒ 4 = 7·232−15·108.

Now we have written 4 = 7 · 232− 15 · 108 which is the desired form.

Remark: Your actual work in practice for the extended Euclidean algorithm should probably look
something like this:

4 = 16− 1 · 12
4 = 232− 2 · 108− (108− 6 · 16) = 232− 3 · 108 + 6 · 16
4 = 232− 3 · 108 + 6(232− 2 · 108) = 232− 3 · 108 + 6 · 232− 12 · 108 = 7 · 232− 15 · 108.

A useful consequence of Bezout’s identity is Euclid’s Lemma:

Euclid’s Lemma: Let p be a prime number; let a and b be integers. Then if p|ab then p|a or
p|b.

Proof. Assume p is prime and that p|ab so that there exists an integer n such that ab = np. Furthermore
assume that p - a. We show that that under this assumption it is necessary that p|b. Since p is prime,
and p - a, it follows that gcd(a, p) = 1. Thus by Bezout’s identity there exist integers s and t such that

1 = sp + ta. (1)

Multiplying both sides of (1) by b yields

b = bsp + bta (2)

Thus we have b = bsp + npt = p(bs + nt); so p|b.

Related to the GCD of two positive integers is the least common multiple of two positive integers.

Definition: The least common multiple of two positive integers a and b (abbreviated LCM) is the
smallest positive integer which is a multiple of both a and b. The LCM is often denoted by lcm(a, b).

Example:

lcm(4, 2) = 4,
lcm(6, 9) = 18,
lcm(3, 7) = 21

There is an important relationship between the GCD and LCM of two positive integers. It is given by
the following theorem. The proof is tricky.

Theorem: The product of two positive integers a and b is equal to the product of the LCM and
the GCD of a and b; that is,

ab = gcd(a, b) · lcm(a, b).
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Proof. Set d = gcd(a, b) and ` = lcm(a, b). Clearly d divides ab. Set

m =
ab

d
. (3)

We show that m = `. Observe that since d|a and d|b, we have that m is a multiple of both a and b; we
show that in fact m = `. Suppose n is any positive common multiple of a and b. We show that m|n so
that n ≥ m. Use Bezout’s identity to write d = sa + tb for integers s and t. Then we have

n

m
=

nd

ab
=

n(sa + tb)

ab
=

n

b
s +

n

a
t.

Since n
b
, n
a
∈ Z, it follows that n

m
∈ Z so that m|n. Thus m = ` and ab = d` by (3).

Mathematical Induction

The principle of mathematical induction is a useful proof technique for establishing that a given state-
ment Pn is true for all positive integers. There are two commonly used forms of induction.

The First Principle of Mathematical Induction: Suppose we have some statement Pn and sup-
pose
(i) P1 is true, that is, the statement is true for n = 1 and,
(ii) The assumption that Pn is true implies Pn+1 is true.
Then the statement Pn is true for all n ∈ N.

Checking that P1 is true is often called the base case and (ii) is often called the induction step and the
assumption that Pn is true is often called the induction hypotheis. You can also check that the base case
holds for any natural number n0 (say n0 = 0 or n0 = 4, etc.) and use induction to conclude that the
statement is true for all n ≥ n0 . Also, sometimes you need to establish your base case for n = 2 to suc-
ceed in your induction step (see Example 2 below). Intuitively the principle of mathematical induction
makes sense; you can think of each of the statements Pn as being dominos. Then we have an infinite
line of dominos and we establishing that P1 is true can be thought of knocking over the first domino.
Then, assuming that the nth domino has been knocked over (i.e. statement Pn being true) implies that
the next domino will be knocked over (i.e. statement Pn+1 is true) then all dominos will be knocked over.

Example 1:
Prove by induction that the sum of the first n positive integers is equal to n(n+1)

2
; that is,

1 + 2 + ... + n =
n(n + 1)

2
.

Proof. Proceed by induction on n.

Base Case: Check that the statement is true for n = 1. This is trivial, the sum of the first 1 in-
tegers is 1 and 1 = 1 (2)

2
.

Induction Step: Assume that the statement is true for n and prove that it is true for n + 1; that
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is, assume 1 + 2 + ... + n = n(n+1)
2

and prove that 1 + 2 + ... + (n + 1) = (n+1)(n+2)
2

. We have

1 + 2 + ... + (n + 1) = (1 + 2 + ... + n) + (n + 1)

=
n(n + 1)

2
+ n + 1

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
.

Exercise: Prove that 12 + 22 + ... + n2 = n(n+1)(2n+1)
6

. Clearly state what your base case, induction
hypothesis, and desired conclusion are.

Example 2: Generalized Euclid’s Lemma If p is a prime and p divides the product a1a2...an, then
p must divide one of the factors ai.

Proof. Proceed by induction on n.

Base Case: Here we need n = 2 for our base case (n = 1 is trivial). But this is just Euclid’s lemma
which was proved above.

Induction Step: Assume that it is true that if p|a1a2...an then p divides one of the ai and prove
that if p|a1a2...an+1 then p divides one of the ai..

Assume p divides a1a2...an+1. Then p divides (a1a2...an)an+1. But this is the product of two inte-
gers, namely the integers a = a1a2...an and b = an+1. By the base case p|a or p|b. If p - b then p divides
a, so by the induction hypothesis p divides one of the ai.

The Second Principle of Mathematical Induction: Suppose we have some statement Pn and
suppose
(i) P1 is true, that is, the statement is true for n = 1 and,
(ii) The assumption that Pk is true for all positive integers k with 1 ≤ k ≤ n implies Pn+1 is true.
Then the statement Pn is true for all n ∈ Z+.

The second principle of mathematical induction is also sometimes called strong induction. You can
also use n = n0 as your base case and then in (ii) you assume that Pk is true for all nonnegative
integers k with n0 ≤ k ≤ n and conclude that Pn is true for all integers n ≥ n0. You can think of the
second principle of mathematical induction as assuming that all previous dominos have been knocked
over implying that the next domino will still be knocked over as well. It turns out that the first and
second principles of mathematical induction are logically equivalent, and you can always use the second
principle of mathematical induction; however, it is generally advised to avoid using strong induction
whenever you can use the first principle because if you can use the first principle, then assuming the
induction hypothesis of the second principle is assuming more than one actually needs to assume, which
is considered inelegant.

Example 3:
We prove using the second principle of mathematical induction that every positive integer n with n ≥ 2
has a prime divisor.
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Proof. Base Case: Here we use the base case n = 2. This is trivial.

Induction Step: We assume that n is an integer and that all integers k with 2 ≤ k ≤ n have a
prime divisor and prove that the integer n+ 1 has a prime divisor. If n+ 1 is prime then n+ 1 trivially
has a prime divisor, so assume n + 1 is not prime. Then there exist an integer a different from 1 and
n + 1 which divides n + 1; that is,

n + 1 = ab

for integers a and b, where a 6= 1 and b 6= 1. Thus a ≤ n so by the induction hypothesis a has a prime
divisor p; it follows that p divides n + 1 as well.

Example 4: The Fundamental Theorem of Arithmetic

Theorem: Ever integer greater than n > 1 there exists a factorization of n into a product of prime
numbers. Furthermore, this product is unique up to order of the factors.

Proof. Existence: The existence of the factorization uses the second principle of mathematical induc-
tion. The base case n = 2 is clearly true since 2 is prime. So we assume that all integers k with
2 ≤ k ≤ n have a prime factorization and prove that n+1 has a prime factorization. If n+1 is prime it
is its own factorization so the theorem holds. If n+ 1 is not prime, then by the previous example n+ 1
has a prime divisor p1 so that we have n + 1 = p1m for some m ∈ Z+. But then m is an integer with
2 ≤ m ≤ n. Thus m = p2...pr for primes p2, ..., pr by the induction hypothesis. Hence n + 1 = p1p2...pr
is a prime factorization of n + 1. Thus by induction all integers have a prime factorization.

Uniqueness: Now we prove that the prime factorization of an integer n is unique up to reordering
of the factors. That is, if

n = p1...ps

n = q1...qt

are both prime factorizations of n, then s = t and that the qi are a rearrangement of the pi. To
obtain a contradiction, assume that s < t. We have that q1 divides p1...ps, so by generalized Euclid’s
lemma p1 divides one of the qi. By relabeling the qi if necessary (which is okay since multiplication is
commutative), assume that p1 divides q1. But p1 and q1 are prime so in particular p1 6= 1 and the only
divisors of q1 are 1 and itself, we must have p1 = q1. Using the exact same argument we can show that
pi = qi for all i with 1 ≤ i ≤ s. Then

1 =
n

n
=

q1..qt
p1...ps

=
q1...qsqs+1...qt

p1...ps
=

(
q1...qs
p1...ps

)
qs+1...qt.

Since q1...qs
p1...ps

= 1 we must also have qs+1...qt = 1, but these are integers so qs+1, ..., qt must also all be
equal to 1, contradicting the assumption that qt is prime.

Exercises

1. Use the division algorithm to find q and r such that a = qb + r with 0 ≤ r < |b|.
a. a = 300, b = −17,
b. a = 389, b = 4.

2. Use the Euclidean algorithm to
a. Compute gcd(323, 437) and write gcd(323, 437) = 323s + 437t for some s, t ∈ Z.
b. Compute gcd(1437, 345) and write gcd(1437, 345) = 1437s + 345t for some s, t ∈ Z.
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3. Let a, b, c, n ∈ Z. Prove
a. if a|n and b|n and gcd(a, b) = 1, then ab|n,
b. if a|bc and gcd(a, b) = 1, then a|c.

4. Let a, b, c, d and m ∈ Z. Prove
a. if a|b and b|c, then a|c,
b. if a|b and c|d, then ac|bd,
c. if m 6= 0, then a|b if and only if ma|mb.

5.
a. Let k ∈ Z. Show that 3 divides one of k, k + 2, or k + 4.
b. Find all prime numbers p for which p + 2 and p + 4 are also prime.

6. Prove the following for every n ∈ Z+.
a. 2n3 − 3n2 + n is divisible by 6,
b. 5n − 1 is divisible by 4,
c. (If you’re feeling motivated) 14 + 24 + ... + n4 = 1

30
n(n + 1)(2n + 1)(3n2 + 3n− 1).

7 Let x1, ..., xn ∈ R+. Prove that for ln(x1x2...xn) = ln(x1) + ln(x2) + ... + ln(xn) for every n ∈ Z+.
(You may assume ln(ab) = ln(a) + ln(b) for all a, b ∈ R+).

8. Recall that the Fibonacci sequence is defined recursively as follows: f0 = 0, f1 = f2 = 1 and
fn = fn−2 + fn−1 for n ≥ 3.
a. Use induction to prove that f1 + f3 + f5 + ... + f2n−1 = f2n for all n ≥ 1.
b. Prove that the GCD of two consecutive numbers in the Fibonacci sequence is equal to 1.

9. Use induction to prove that the power set of a set with n elements has 2n elements.
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