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2 Trigonometric Identities

We have already seen most of the fundamental trigonometric identities. There are several other useful
identities that we will introduce in this section. We will see many applications of the trigonometric
identities via examples in this section.

2.1 Fundamental Trigonometric Identities

Here are the the fundamental trigonometric identities compiled into one list.

Reciprocal Identities

sinu = 1
cscu

cscu = 1
sinu

,

cosu = 1
secu

secu = 1
cosu

,

tanu = 1
cotu

cotu = 1
tanu

.

Remark. Observe that the equations in each row are not actually different.

Quotient Identities

tanu = sinu
cosu

,

cotu = cosu
sinu

.

Pythagorean Identities

sin2 u+ cos2 u = 1,

1 + tan2 u = sec2 u,

1 + cot2 u = csc2 u.

Cofunction Identities

sin(π
2
− u) = cosu cos(π

2
− u) = sinu,

sec(π
2
− u) = cscu csc(π

2
− u) = secu,

tan(π
2
− u) = cotu cot(π

2
− u) = tanu.

Remark. These also work with degrees, i.e. by replacing π
2

with 90.

Even/Odd Identities

sin(−u) = − sinu csc(−u) = − cscu,

cos(−u) = cosu sec(−u) = secu,

tan(−u) = − tanu cot(−u) = − cotu.
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Remark. The only identities we have not seen previously are the cofunction identities. These are easily
seen by drawing a right triangle. A the sum of all angles in a triangle is 180◦. Hence in a triangle you
have the right angle R, an acute angle θ, and that means that the third angle must be 90− θ (or π

2
− θ

in radians). From this you should be able to convince yourself that the cofunction identities are true.

2.2 Trigonometric Equations

We can also use the fundamental identities to solve trig equations. Here are some examples. Note that
the examples are all done in radians but we can work in degrees also when we do these problems.

Example 1

Solve cosx =
√
2
2

for x ∈ [0, 2π).

Solution: We know that cos π
4

=
√
2
2

so x = π
4

is a solution. However, an angle with reference an-

gle π
4

and terminating in a quadrant where cosine is positive (quadrant IV) will also have a value of
√
2
2

.
This is x = 7π

4
which is the other solution. Thus the solution set is x ∈ {π

4
, 7π

4
}.

Example 2

Solve 4 sin2 x = 1 for x ∈ [0, 2π).

Solution: We have

4 sin2 x = 1 =⇒ sin2 x =
1

4
=⇒ sinx = ±1

2
.

Now using the same logic as in example 1, we conclude that sinx = 1
2

at x = π
6

and x = 5π
6

. Also,
sinx = −1

2
at x = 7π

6
and x = 11π

6
. Hence the solution set is x ∈ {π

6
, 5π

6
, 7π

6
, 11π

6
}.

Example 3

Solve cos2 x− 7 cosx+ 12 = 0 for x ∈ [0, 2π).

Solution: Observe that this is a quadratic equation in cosine. Hence we can factor it using the usual
factoring procedure for quadratics. That is, find numbers whose product is 12 and sum is −7. We have

cos2 x− 7 cosx+ 12 = (cosx− 4)(cosx− 3) = 0.

Therefore we get the equations cosx − 4 = 0 or cos x − 3 = 0. The first equation gives cos x = 4 and
the second equation gives cosx = 3. Since −1 ≤ cosx ≤ 1 there is no solution to these equations.

Example 4

Solve the equation tan 2x = 1 for x ∈ [0, 2π).

Solution: We will use the inverse tangent function to solve this equation as follows: we assume that
tan 2x lies in the domain of the inverse tangent function so that tan−1(tan 2x) = 2x. Therefore

tan 2x = 1 =⇒ tan−1(tan 2x) = tan−1(1) =⇒ 2x =
π

4
.

Using the inverse functions only give us one of the solutions to this equation, but the inverse function
tells us in this case that the angle 2x must have reference angle π

4
. Additionally, tan 2x must be positive

in the quadrant that 2x terminates in. This is quadrant III, so we get the second solution is 2x = 5π
4

.
Solving these equations for x we get the solution set x ∈ {π

8
, 5π

8
}.
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Example 5

Solve the equation 1+sinx
cosx

= 1 for x ∈ [0, 2π).

Solution: Squaring both sides of the equation gives

(
1 + sin x

cosx
)2 = 12 =⇒ 1 + 2 sinx+ sin2 x

cos2 x
= 1 =⇒ 1 + 2 sinx+ sin2 x = cos2 x.

In the last equation we have sines and cosines both appear; this is bad. Generally we want to have
only one trig function in the equation. Think about how we can write this equation with only sines or
cosines using some trig identity. The identity that will help us here is the Pythagorean identity since
we can rewrite the last equation as

(1− cos2 x) + 2 sinx+ sin2 x = 0.

But 1− cos2 x = sin2 x by the Pythagorean identity. So we rewrite this as

sin2 x+ 2 sinx+ sin2 = 2 sin2 x+ 2 sinx = 0 =⇒ sin2 x+ sinx = 0.

Factoring the last equation we get
sinx(sinx+ 1) = 0.

Hence sin x = 0 or sin x = −1. This gives the solution set x ∈ {0, 3π
2
}.

Finally, remember that whenever you square equations you can introduce extraneous solutions. There-
fore, you should substitute the values of x that you found back into the original equation to see if
they are actually solutions to the equation. If you get an answer like 1 = −1, then that value is not a
solution and should be disregarded.

2.3 Sum and Difference Formulas

In this section and the one to follow we will prove the Sum and Difference Formulas and the Half-Angle
formulas. The Sum and Difference Formulas are not trivial to prove geometrically so we will use Euler’s
formula. Euler’s formula is one of the most famous equations in mathematics and you may have seen
it before. The proof of Euler’s formula unfortunately requires calculus so we cannot prove it, so we are
going to assume it is true and use it to prove the Sum and Difference Formulas. Euler’s formula says

eiθ = cos θ + i sin θ. (2.1)

Now, consider ei(u+v). By Euler’s formula we have that

ei(u+v) = cos(u+ v) + i sin(u+ v). (2.2)

But also,
ei(u+v) = eiu+iv = eiueiv = (cosu+ i sinu)(cos v + i sin v)

= (cosu cos v − sinu sin v) + (cosu cos v + sinu sin v)i (2.3)

Recall that two complex numbers are equal if and only if their real and imaginary parts are equal.
Since equation ?? is equal to equation ?? above, this means that cos(u + v) = cosu cos v − sinu sin v
and sin(u+ v) = cosu cos v + sinu sin v.

Similarly, using the even and odd identities we have

ei(u−v) = cos(u− v) + i sin(u− v). (2.4)
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But also,
ei(u−v) = eiu−iv = eiuei(−v) = (cosu+ i sinu)(cos(−v) + i sin(−v))

= (cosu+ i sinu)(cos v − i sin(v))

= (cosu cos v + sinu sin v) + (sinu sin v − cosu sin v)i. (2.5)

Hence comparing equation ?? to ?? we have cos(u − v) = cosu cos v + sinu sin v and sin(u − v) =
sinu sin v − cosu sin v.

Therefore we have derived the sum and difference formulas. In summary,

Sum and Difference Formulas

sin(u± v) = sinu cos v ± cosu sin v

cos(u± v) = cosu cos v ∓ sinu sin v

tan(u± v) = tanu±tan v
1∓tanu tan v

Remark. Since tan(u ± v) = sin(u±v)
cos(u±v) you can obtain the formula for tangent by dividing identity the

first identity by the last one.

We will mostly use these identities to find values of trigonometric functions of angles that are not
on the unit circle (i.e. angles that are not “special angles”. For example, the angle 15◦ is not on the
unit circle, but 15◦ = 45◦ − 30◦ and both 45◦ and 30◦ are on the unit circle. Therefore, we can find
the exact value of sine and cosine of 15◦ by using sin(45− 30) and cos(45− 30) and using the sum and
difference formulas.

2.4 Double-Angle and Half-Angle Formulas

The double angle trig identities are for sin 2u, cos 2u, and tan 2u. These identities follow easily from
the sum and difference formulas as follows. Using the sum and difference formulas, we have

sin 2u = sin(u+ u) = sinu cosu+ cosu sinu = 2 sinu cosu. (2.6)

Similarly,
cos 2u = sin(u+ u) = cos u cosu− sinu sinu = cos2 u− sin2 u. (2.7)

Since cos2 u = 1− sin2 u by the Pythagorean identity, substituting this value in for cos2 u in (7) we get
cos 2u = cos2 u− sin2 u = cos2 1− 2 sin2 u. Also, by the Pythagorean identity sin2 u = 1− cos2 u so we
also have cos 2u = cos2 u− sin2 u = 2 cos2 u− 1. As usual tan 2u = sin 2u

cos 2u
.

Double-Angle Formulas

sin 2u = 2 sinu cosu,

cos 2u = cos2 u− sin2 u = 2 cos2 u− 1 = 1− 2 sin2 u,

tan 2u = 2 tanu
1−tan2 u .

From the above equations you can easily obtain the so called power-reducing formulas which will
be particularly useful in calculus. The sine power reducing formulas is obtained by solving the second
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double-angle formula for sin2 u and the cosine power-reducing formulas are obtained from the double
angle formulas by solving the second double-angle formula for cos2 u, and tan2 u = sin2 u

cos2 u
gives the power

reducing formula for tangent.

Power-Reducing Formulas

sin2 u = 1−cos 2u
2

,

cos2 u = 1+cos 2u
2

,

tan2 u = 1−cos 2u
1+cos 2u

.

The last trigonometric identities that we need for this course are the half-angle formulas. They are
obtained by replacing the angle u in the power-reducing formulas by half of the angle u, that is, the
angle u

2
. The half angle formulas allow us to find the values of some additional angles that are not on

the unit circle.

Half-Angle Formulas

sin u
2

= ±
√

1−cosu
2

,

cos u
2

= ±
√

1+cosu
2

,

tan u
2

= 1−cosu
sinu

= sinu
1+cosu

.

Whether you use the “plus” or “minus” version of the half-angle formulas is determined by which
quadrant the angle u

2
lies in. For example, if u lies in quadrant four, then we know that 270◦ < u <

360◦ =⇒ 135◦ < u
2
< 180◦, hence the angle u

2
lies in qudrant two. Therefore we know to use the

positive version of the sine half-angle formula and the negative version of the cosine half-angle formula.
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