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6 Sequences and Series

6.1 Introduction to Sequences and Series

6.1.1 Sequences

A good colloquialism for the definition of a sequence is that a sequence is an ordered list of number
a1, a2, ..., an, ... For example, 3, 6, 9, 12, ..., 3n, ... is a sequence with a1 = 3, a2 = 6,.., and an = 3n. The
integer n is called the index of an. You can also use other letters like k or i or basically anything you
want. We can think of a sequence as a function that has has its domain as the set of positive integers
Z+ which maps n to an and this is the precise definition of a sequence.

Definition 6.1. An infinite sequence of numbers is a function whose domain is the set of positive
integers Z+ or natural numbers N. If a sequence has domain only the first n integers or natural
numbers, then the sequence is called a finite sequence.

Sequences can be described by writing rules that specify their terms, such as an = n2 or bn = (−1)n 1
n
.

Example 1: Writing Out the Terms of a Sequence

Write out the first five terms of the sequence bn = (−1)n
n

.

Solution: Evaluate the expression for bn for n = 1 to get b1 = (−1)1
1

= (−1)(1) = 1. Similarly, we
get

b2 =
1

2
,

b3 = −1

3
,

b4 =
1

4
,

and

b5 = −1

5
.

The next example illustrates finding the general nth term of a sequence given some of the terms of the
sequence. This type of problem is pretty tricky but is useful and will come up in a differential equations
course.

Example 2: Finding the nth Term of a Sequence

a) For the sequence 1, −1, 1, −1,...

Solution: The sequence just alternates between +1 and −1. Since −1 raised to any even power gives
positive 1 and −1 raised to any odd power gives −1 the sequence can be described as an = (−1)n+1.

b) For the sequence 1
3
, 2
9
, 4
27
, 8
81

,...

Solution: Think about how the numbers are related to the index. We have a1 = 1
3
, a2 = 2

9
, a3 = 4

27
and

a4 = 8
81

. After awhile you should be able to see that the general formula is

an =
2n−1

3n
.
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c) For the sequence 1 + 1
2
, 1 + 3

4
, 1 + 7

8
, 1 + 15

16
, 1 + 31

32
...

Solution: The 1 appears in every term, so it suffices to find the sequence an such that the sequence
above is bn = 1 + an. It is easy to see that the denominators of the fractions are described by 2n.
Moreover, the numerators are exactly 1 less than the denominators of the fractions, so you can write
those as 2n − 1. Hence the sequence is an = 2n−1

2n
. In particular,

bn = 1 +
2n − 1

2n
.

Example 3: The Fibonacci Sequence

You can also define a sequence recursively such as the Fibonacci sequence. This means that the general
term for the sequence is defined based on previous terms of the sequence. The Fibonacci sequence is
defined as follows:

a0 = 1

a1 = 1

...

ak = ak−2 + ak−1.

To write down, say, the first five terms of the Fibonacci sequence, you would have to compute a3, a4,
and a5 using the ak definition. We compute a3 = a3−2 + a3−1 = a1 + a2 = 1 + 1 = 2. You can do the
others similarly. If you like programming, it might be an amusing exercise to write a program that can
compute any term of the Fibonacci sequence.

A special type of product called the factorial is important to know.

Definition 6.2. If n is a positive integer, we define n factorial as

n! = 1 · 2 · 3 · ... · (n− 1) · n.

We also define 0! = 1.

The factorial n! is simply the product of the first n integers, for example, 4! = 4 · 3 · 2 · 1 = 24. Observe
that n! = n(n− 1)!. Hence we could have alternatively defined n! recursively as follows:

0! = 1,
n! = n(n− 1)! .

Example 4

a) Compute 5!
8!

.

Solution: Observe that 5!
8!

= 5!
8·7·6·5! = 1

8·7·6 = 1
336

.

b) Simplify (3n+1)!
(3n)!

.

Solution: Observe that (3n+ 1)! = (3n+ 1)(3n)!. Hence (3n+1)!
(3n)!

= (3n+1)(3n)!
(3n)!

= 3n+ 1.
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6.1.2 Series

Sequences give rise to the notion of series. When consecutive terms of a sequence are summed this
forms a series. We represent series with summation notation represented by the Greek letter sigma

n∑
i=1

ai = a1 + a2 + ...+ an.

Here the n is the upper limit of summation and, similarly 1 is the lower limit of summation. If n is a
finite number this is called a finite series. We can also have infinite series

∞∑
i=1

ai = a1 + a2 + ...+ an + ...

One might think “Wouldn’t adding up infinitely many numbers just result in adding up to infinity?”
Greek Philosopher Zeno of Elea (495-435 B.C.) introduced the racecourse paradox [?] also known as
Zeno’s paradox. This paradox states this:

A runner can never reach the end of a racecourse because he must cover half of any distance before he covers

the whole. That is to say, having covered the first half he still has the second half before him. When half of this

is covered, one-fourth yet remains. When half of this one-fourth is covered, there remains one-eighth, and so on.

Zeno was, of course, thinking about an idealized situation in which the runner is thought of as a
particle moving from one end of a line segment to the other. In particular, we can think of the runner
starting at the point 1 and running to the point 0 as in the image below.

Figure 1: The Racecourse Paradox

The positions 1
2
, 1
4
, etc. indicate the fraction of the course yet to be covered. These fractions will par-

tition the course into infinitely many smaller portions of the course. Each portion of the course would
take some positive amount of time to cover, and it seems reasonable to think that the time required
to cover the whole course must be the sum of the total of the sum of the time intervals to cover each
portion of the course. Zeno argued that a sum of infinitely many positive numbers (in this case time
intervals) cannot possibly add up to be a finite number. This seems paradoxical since we know from
our physical intuition that it is possible to finish the race in a finite amount of time. Moreover, Zeno’s
racecourse paradox implicitly asserts that any motion is impossible. In particular, the racecourse para-
dox can be applied to any distance. Hence, you can never travel any amount of distance in a finite time
and, therefore, motion cannot even begin.

Zeno’s assertion that an infinite amount of positive quantities cannot have a finite sum was rejected
2000 years later when the theory of infinite series was created, and we will see many examples of infinite
series that do add up to finite values.

Let us first take a look at and example of a finite series.

page 3



Math 1523 Spring 2015 Andrew Lutz

Example 1: Summing the First n Positive Integers

Suppose we wish to add up
1000∑
k=1

k = 1 + 2 + 3 + ...+ 1000. This would be a quite cumbersome task if we

did not put some thought into it first. Suppose that, in general, we wish to add up the first n integers,
call this sum Sn. First we can think of adding them up from smallest to largest:

Sn = 1 + 2 + 3 + ...+ (n− 1) + n.

Since addition is commutative, this is the same as adding them up from largest to smallest:

Sn = n+ (n− 1) + ...+ 2 + 1.

Adding these equations and grouping appropriately, we see that

2Sn = (n+1)+(n−1+2)+(n−2+3)+...+(2+n−1)+(1+n) = (n+1)+(n+1)+...+(n+1) = n(n+1).

That is 2Sn = n(n+ 1) and hence

Sn =
n(n+ 1)

2
. (6.1)

This is a general formula for the the sum of the first n positive integers. To see that this works, try it
for n = 5. We can compute 1 + 2 + 3 + 4 + 5 = 15 with ease normally. Computing S5 with equation
5.2 we have

S5 =
5 · 6

2
= 15.

Therefore we see that our formula agrees with our usual way of addition, so we can have confidence in
the formula. We could easily use this formula to compute S1000 or in fact any positive integer.

Example 2

Let c be some constant number. We wish to compute
n∑

i=1

cai.

Solution: Writing out the sum in regular notation looks like ca1 + ca2 + ...+ can = c(a1 + a2 + ...+ an)
where we have factored out c because it appears in each term. But observe that this is then equal to

c
n∑

i=1

ai. That is,

n∑
i=1

cai = c

n∑
i=1

ai.

We can similarly prove the following properties of sums.

Properties of Sums

Let c be a constant. Then,

1.
n∑

i=1

c = cn,

2.
n∑

i=1

cai = c
n∑

i=1

ai.

3.
n∑

i=1

ai ± bi =
n∑

i=1

ai ±
n∑

i=1

bi,
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Remark. Note that we have not claimed that these work for infinite series.

Given an infinite sequence a1, a2, ..., an, ... there is an associated infinite series
∞∑
i=1

ai. However, there is

also an associated finite series
n∑

i=1

ai called the nth partial sum. This will become useful later. As a final

example, let us look at an example of an infinite series.

Example 3: Finding the Sum of an Infinite Series

Consider the series
∞∑
i=1

3
10i

. The third partial sum is

3∑
i=1

3

10i
=

3

10
+

3

102
+

3

103
= 0.3 + 0.03 + 0.003.

From this it should be clear that
∞∑
i=1

3

10i
=

3

10
+

3

102
+

3

103
= 0.3 + 0.03 + 0.003 + 0.0003 + 0.00003 + ... = 0.33333... =

1

3
.

This is, in particular, an example of an infinite series that adds up to a finite value, which Zeno had
claimed was impossible.

6.2 Arithmetic Sequences and Partial Sums

6.2.1 Introduction

If an is a sequence, the difference between consecutive terms is an+1 − an. If there exists a constant τ
such that τ = an+1 − an for all n then an is called an arithmetic sequence. The number τ is called the
common difference of the arithmetic sequence.

Example 1

Determine whether the sequences are arithmetic. If so, find the common difference.

a) 4, 7, 10, 13, 16, ..

Solution: The difference between each consecutive term is 3 so the sequence is arithmetic.

b) 80, 40, 20, 10, 5...

Solution: This is clearly not arithmetic since 40 − 80 = −40 and 10 − 20 = −10 so the difference
between consecutive terms does not remain constant.

Suppose that an is an arithmetic sequence. Then there exists a constant τ such that

a2 − a1 = τ =⇒ a2 = τ + a1. (6.2)

But then we must also have a3 − a2 = τ also. In particular,

a3 = τ + a2. (6.3)

Substituting the value for a2 from equation 5.2 into the equation for a3 from equation 5.3 we have

a3 = τ + (τ + a1) = 2τ + a2.

Continuing this process we obtain the following recursive definition of an arithmetic sequence.
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Recursive Definition of an Arithmetic Sequence

The nth term of an arithmetic sequence whose common difference is τ has the form

an = (n− 1)τ + a1. (6.4)

If we define c = a1 − τ we obtain another useful form of the above equation.

an = τn+ c. (6.5)

Recall that finding the nth term of a sequence is difficult in general. However, this recursive for-
mula is efficacious for finding the nth term of an arithmetic sequence. The following examples illustrate
this.

Example 2

Find a formula for the nth term of the sequence 10, 5, 0,−5,−10, ...

Solution: We can label a1 = 10, a2 = 5, etc. and notice that the common difference τ = −5. Therefore
the value for c in equation 5.5 is c = 10− (−5) = 15 and, therefore, we have

an = −5n+ 15

Example 3

Given that a1 = 5
8

and ak+1 = ak− 1
8
, find the common difference of this arithmetic sequence and write

the nth term of the sequence.

Solution: We know that ak+1 = ak − 1
8

but this implies that ak+1 − ak = −1
8

which is the consec-
utive difference between two terms. Since this is assumed to be an arithmetic sequence, this implies
that τ = −1

8
. Therefore we know c = a1 − τ = 5

8
+ 1

8
= 3

4
. Hence by equation 5.5

an = −n
8

+
3

4
.

Remark. Think about how difficult it would be to come up with the nth term for that sequence without
equation 5.5.

6.2.2 The Sum of a Finite Arithmetic Sequence

We can derive the formula for a finite arithmetic sequence an by using equation 5.5 and the same
method as in example 1 of section 5.1.2. The equation we would obtain is

The Sum of a Finite Arithmetic Sequence

The sum of a finite arithmetic sequence with n terms is given by

Sn =
n

2
(a1 + an).

This is a convenient way to sum arithmetic sequences. The formula is straightforward to use, so let
us do a nontrivial example.
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Example 1

The sum of the first 20 terms of an arithmetic ak sequence with a common difference of 3 is 650. Find
the first term.

Solution: We know by the equation for the sum of a finite arithmetic sequence that

S20 = 10(a1 + a20) = 650

Dividing through by 10 we obtain
a1 + a20 = 65.

If we can find a20 then we know the value of a1. Fortunately, we can use the recursive definition of an
arithmetic sequence given by equation 5.4. This equation gives us a20 = a1 + (19)(3). Substituting this
value for a20 into the above equation yields

2a1 + 57 = 65.

Therefore a1 = 4.

Example 2

Determine the seating capacity of an auditorium with 36 rows if there are 15 seats in the first row, 18
seats in the second row, 21 seats in the third row, and so on.

Solution: Observe that the number of seats in each row is forming an arithmetic sequence ak with
common difference τ = 3. There are a total of 36 rows so we need to compute the sum of the 36 terms
of this sequence. To use the formula we for the sum of an arithmetic sequence we need to know a1
and a36. We already know a1 = 15 and we can find a36 using the recursive definition of an arithmetic
sequence. This gives a36 = 15 + (35)(3) = 120. Now we use the equation for the sum of an arithmetic
sequence to compute

S36 =
36∑
k=1

ak =
36

2
(15 + 120) = 2430.

6.3 Geometric Sequences and Series

6.3.1 Introduction

Another important type of sequence is the geometric sequence which is defined as follows:

Definition 6.3. A sequence an is geometric if the ratios of consecutive terms is constant. In particular,
there exists a number r 6= 0 such that

an+1

an
= r

for all n. The number r is called the common ratio.

Example 1

An example of a geometric sequence is given by

an =
1

2n
.
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The first four terms (starting with n = 1) are 1
2
, 1
4
, 1
8
, 1
16
,... Observe that the common ratio is 1

2
since

1
4
1
2

= 1
2
,

1
8
1
4

= 1
2
, etc. Alternatively, we can use the general formula for an to see that

an+1

an
=

1
2n+1

1
2n

=
2n

2n+1
=

1

2
.

Suppose now that we have a geometric series an with common ratio r. Then we have that a2
a1

= r so
that

a2 = a1r.

Similarly, a3
a2

= r so that a3 = a2r = a1r
2 by the previous equation. Continuing in this fashion we see

that
an = a1r

n−1

Therefore we can define a geometric sequence recursively as follows

The nth Term of a Geometric Sequence

The nth term of a geometric sequence has the form

an = a1r
n−1 (6.6)

where r is the common ratio of consecutive terms of the sequence.

We can use this recursive definition of a geometric sequence to easily find the nth term of a geometric
sequence similar to as we did for arithmetic sequences.

Example 2

Find the nth term of the geometric sequence with the given information.

a1 = 48, ak+1 = −1
2
ak.

Solution: Using ak+1 = −1
2
ak we know that r = ak+1

ak
= −1

2
is the common ratio. Substituting

this value of r and the given value for a1 into equation 5.6 obtains

an = 48(−1

2
)n−1.

Here is a useful formula for the sum of a finite geometric series.

Proposition 6.1. The Sum of a Finite Geometric Sequence The sum of a finite geometric
sequence ak with common ratio r 6= 1 is given by

Sn =
n∑

k=1

a1r
k−1 = a1

(
1− rn

1− r

)
.

Proof. Using the recursive definition of a geometric series, we have

Sn =
n∑

k=1

a1r
k−1.
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Multiplying this expression for Sn by r we have

rSn = r

n∑
k=1

a1r
k−1 =

n∑
k=1

a1r
k

where we have used property (2) of the properties of sums to move r inside the sum. Subtracting these
two equations yields

Sn − rSn = a1 − a1rn.

Therefore since r 6= 1 we have

Sn(1− r) = a1(1− rn) =⇒ Sn = a1

(
1− rn

1− r

)

We can extend the sum of a finite geometric series to the sum of an infinite geometric series provided
that |r| < 1. For if this is the case, then

lim
n→∞

a1

(
1− rn

1− r

)
−→ a1

(
1− 0

1− r

)
The notation limn→∞ means “the limit as n approaches infinity”. This means that you let n get
arbitrarily large. Since |r| < 1, raising rn to large powers makes it get closer and closer to zero. In
particular, rn gets arbitrarily close to zero which means that its limit is zero, so we get the expression
on the right.

Remark. It is okay if you do not understand this. This sort of thing will be studied further in a calculus
course.

Summarizing this, we have

The Sum of an Infinite Geometric Series

If |r| < 1 then the geometric series
∞∑
k=1

ak has the sum

S =
∞∑
k=1

a1r
k−1 =

a1
1− r

.

Remark. It is essential that |r| < 1. If |r| ≥ 1 then the sum is infinite.

Example 3: The Sum of a Finite Geometric Series

a) Find the value of
12∑
k=1

16(1
2
)k−1.

Solution: Substuting the values a1 = 16, r = 1
2
, and n = 12 into the equation for the sum of a

finite geometric series gives

16

(
1− (1

2
)12

1− 1
2

)
=

4095

128
.

b) Find the value of the
15∑
k=0

2(4
3
)k.
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Solution: Observe that this sum is equivalent to
16∑
k=1

2(4
3
)k−1 (this is called re-indexing). Then sub-

stituting the values a1 = 2, r = 4
3
, and k = 16 into the equation for the sum of a finite geometric series

gives
16∑
k=1

2(
4

3
)k−1 = 2

(
1− (4

3
)16

1− 4
3

)
=

8503841150

14348907
≈ 592.6.

Example 4

Find the sum of the series
∞∑
k=1

−10
(

2
10

)k−1
.

Solution: Since r < 1 the sum exists as a finite value. Substituting a1 = −10, r = 2
10

into the
equation for the sum of an infinite geometric series gives

∞∑
k=1

−10
( 2

10

)k−1
=
−10

1− 2
10

= −25

2
.

Example 5: The Sierpinski Triangle

A fractal is a geometric figure that consists of a pattern that is repeated infinitely on a smaller and
smaller scale. A well-known fractal is called the Sierpinski Triangle. In the first stage, the midpoints
of the three sides of an equilateral triangle are used to create the vertices of a new triangle, which is
then removed, leaving three triangles. In the second stage, this is repeated for each of the remaining
triangles. This process continues for the remaining triangles after the nth stage. Note that each of
the remaining triangle are similar to the original triangle. Assume that the length of each side of the
original triangle is one unit. The first few stages are shown below, where the green triangles are the
portions that have been removed and the blue triangles are the remaining portions.

a) Write a formula that describes the side length of the triangles that will be generated in the nth stage.

Solution: Let `n be the sequence whose values are the lengths of the sides of the triangles gener-
ated in the nth stage. Observe that `1 = 1, `2 = 1

2
, `3 = 1

4
, `4 = 1

8
etc. We recognize this to be the

sequence from Example 1 which happens to be a geometric sequence. In particular, we have

`n =
1

2n−1

is the length of the sides in the nth stage.

b) Write a formula for the area of each blue triangle that will be generated in the nth stage.

Since the original triangle was an equilateral triangle, and each triangle at every stage is similar to
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the original triangle, it follows that all of the triangles formed will also be equilateral. We can use
proposition ?? to find an explicit formula for the area of an equilateral triangle. In particular, in an
equilateral triangle all of the sides are equal length, namely `n at stage n, and all of the angles are 60◦.
Hence using proposition ?? we obtain the area of a triangle at stage n is

An =
`2n
2

sin 60◦ =
`2n
2

(√
3

2

)
=
`2n
√

3

4
.

Moreover, using exponent rules to simplify we have `2n =
(

1
2n−1

)2
= 4

4n
and substituting this value into

the formula for An gives

An =

√
3

4n
.

c) Determine the total area of all of the blue triangles at step n.

The total area of the blue triangles will be the sum of the areas of all of the blue triangles. The
question is how many blue triangles are there. At each stage, every blue triangle splits into 3 more blue
triangles in the next step. It is easily seen then that the number of blue triangles at step n is

Nn = 3n−1.

Therefore the total area of all of the blue triangles combined will be

NnAn =
3n−1
√

3

4n
=

√
3

4

(
3

4

)n−1

.

An interesting observation is that as n→∞ this expression goes to zero. So the total area of the blue
triangle is zero after infinitely many steps.
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