Lines and Planes - RECAP Lines in 3-space Earl line I in xyz-space has a parametrization: for some constants a,b,c and xo,yo, 30. The vector Do= (a,b,c) is called a direction vector for & (it is parallel to l). The point on I where t=0 is (xo, yo, Zo). or write this as: Ax+By+ (= -0 Planes in 3-space Every plane p in 3-space has an equation of the form: p: Ax+ By + Cz + 0 = 0 (called a "linear equation with 3 variables".) The vector $\vec{N} = \langle A, B, C \rangle$ is perpendicular to p, it is called a normal vector for p.

important into!!

Strategy for finding scalar equations for a line:

(i) Find a point P = (x0, 40, 20) on l.

(ii) Find a vector dy = (a,b,c) parallel to l

("direction vector")

Then equations for l are:

(x = at + x0)

2 = ct + 20

Strategy for finding the equation of a plane p

i) Find a point
$$P = (x_0, y_0, z_0)$$
 on p.

ii) Find a vector $\mathbb{N}_p = (x_0, y_0, z_0)$ or perpendicular to p ("normal vector").

Then an equation for the plane is

 $p : A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$

Example: P= (-1, 1, 3), p: 2x+74-2= 56 @ Find equations for line I thru P perpendicular to p. 6) Find point Q where I intersects p. @ Find the distance from P to Q. @ (P = (-1)1,3) (i) de= Np = <2,7,-2> 2 (2+-1)+7(7++1)-2(-2++3)=56 57t - 1 = 56, 57t = 57 (=) 800 = (1,8,1)dist(PQ) = \((1-(-1))^2 + (8-1)^2 + (1-312 = 857 Interpretation The point Q is the "foot of the perpendicular from P to p" It is the closest point to P on the plane p. The distance from P to Q is the shortest distance from P to the plane.

important into to remember !!
Two lines in 3-space are either:
0 equal
@ paralle but not equal
3 intersect in one point
4) skew
note: In cases @ and 3 there is a unique plane
containing the two lines.
Two planes in 3-space are either:
0 equal
@ parallel but not equal
3 intersect in a line
note: In 3, the cross product of normal vectors for the
planes is a direction vector for the line of intersection.
A line O a No a first war f
A line l and a plane p satisfy one of:
Olis contained in p
2 lis parallel to p but not contained in p
3) 2 intersects p in one point
note: In O or @ a direction vector for l
will be perpendicular to a normal vector for p.

Example the two lines

$$x = 5 + -3$$
 $x = -4 + 1$
 $x = -4 + 1$

intersect in one point.

Find an equation for the plane p containing l_1 and l_2 .

Use previously described strategy!

(-3, 1, 1)

 $5 + -3 = 35$
 $-4 + 1 = 45 + 5$
 $-4 + 1 = -5$

Take $N_p = d_{1, p} \times d_{2, p}$
 $N_p = (5, -1, -1) \times (3, 4, -1)$
 $x = (3, 4, -1)$

A curve C in xyz-space can be described by parametric equations: C: $\begin{cases} x = f(t) \\ y = g(t) \\ z = h(t) \end{cases}$ a<t=b Think of these equations as representing the motion of an object in 3-space which is located at the point (x(t), y(t), z(t)) at time t It is convenient to express these equations in vector form. C: F(+) = < f(+), g(+), h(+)>, a=+=b This allows us to use vector operations and to take derivatives: さ'(+)=くf'(+),g'(+), h'(+)> This derivative can be described as: =1(t) = lim h (=(++h)-=(to)). = volocity at time to

Fact If we think of F(t)= <x(t), y(t), z(t) describing the motion of an object along a curve C, then the velocity at time t=to is F (to), and this is a vector tangent to Cat the point where teto. Also, the speed of object at time to is s(+) = | = | x'(to) + y'(to) + = (to) 2 Why?? The displacement of object over time interval between to and toth is = (toth) -= (to) the velocity over that interval is h (F(toth) -F(to)). Taking the limit as h-> 0 gives the "instantaneous velocity" at time to as F'(to).

Example the curve associated with the vector function is a straight line and = (t) = d = <0,0,c> So those equations represent the notion of an object in 3-space with constant velocity. Note: Having constant relocity is a much stronger condition than having constant speed. Having constant relocity guarantees the object is moving along a straight line.