Now back to Chapter 12:

Immediate Goal (Section 12.5) Find equations to describe lines and planes in R3. First, Recall ! O rectangular coordinates in R³ 2 vectors 3 Dot product of vectors (cross product of vectors

Example For constant a, let $\vec{u} = \langle 2, 6, -2 \rangle$ and $\vec{v} = \langle 2a+1, 3a, a^2 \rangle$ O Find any values of a for which is parallel to v. To be parallel means there is a scalar k with $k\hat{u} = \vec{v}$: here 2k = 2a+1 $6k = 3a \implies \dots \implies a = -1 (ad k = -1/2)$ $-2k = a^{2}$ Can you fill in details ? 3 Find any values of a for which is perpendicular to V. $\vec{u} \cdot \vec{v} = 2(2a+1) + 6(3a) - 2a^2 = -2a^2 + 22a + 2$ $= -2(a^2 - 1|a - 1)$ when does $a^2 - ||a - || = 0$? $a = \frac{11 \pm 511^{2} + 4}{2} = \frac{11 \pm 555}{2}$

Review Class Notes from September 20 .

If a = 0, b, xo, yo are constants then 2 Lines. $l: \begin{cases} x = at + x_0 \\ y = bt + y_0 \end{cases}$

describes a nonvertical line l in \mathbb{R}^2 . This line goes thru (x_0, y_0) (when t=0) and (x_0+a, y_0+b) (when t=1) and has slope b/a. A rectangular equation is $y-y_0 = \frac{b}{a}(x-x_0)$, which can also be written with the form $y = \frac{b}{a}x + \frac{ay_0-bx_0}{a}$ or by $ay-bx = ay_0-bx_0$. The speed of this motion is $s(t) = (\frac{ax_0+b}{a}t)^2 = \sqrt{a^2+b^2}$ so the object is moving with constant speed.

So this parametrization amounts to identifying L as a number line in which the writ leg th is Jat +6".

Note Well! The same line I can be identified with many many different number lines by rechoosing the with length and/or rechoosing the "origin" (point wher t=0). So one line I has many different parametrizations of the form described here. On top of that there are many parametric descriptions of I that Dan't have constant speed.

examine In section 12.5, we will these parametrisations of lines more thoroughly.

Lines in 3-space Each line I in xyz-space has a parametrization: $\begin{array}{c}
x = at + x_{0} \\
\downarrow : \\
y = bt + y_{0}
\end{array}$ (= ct + 20 for some constants a,b, c and xo, yo, 30. some comments () A point on I has coordinates (x, 4, 2) = (at+x, bt+40, ct+20) for some number f. ② (xo, yo, to) is the point on l having t=0. 3 the point on l with t=1 is (a+xo, b+yo, c+zo). @ The vector & from (xo, yo, Zo) to (a+xo, b+yo, C+20) is $\vec{d} = \langle a, b, c \rangle$. It is called a direction vector for l. (Observe in the parametri ration - $L: \begin{array}{c} x = at + ko \\ y = bt + yo \end{array}$ direction = = ct + = or point on l where () If we know a point (Xo, Yo, 20) on I and a direction vector d = (a, b, c) then we can give a parametrization for L.

Alternate Notation

The equations

are called paramétric equations for l.

We can also write them as a vector equation for l

 $l: \vec{\tau}(t) = t\vec{a} + \vec{\tau}_o$

where

 $\vec{r}(t) = \langle x, y, z \rangle = \langle x(t), y(t), z(t) \rangle$

I = <a, b, c> = direction vector for l

To = {xo, yo, 20} = point onl

example Find equations for the line containing points P= (-1,3,4) and Q= (2,2,-1) Strategy First identify (i) a point on the line, and (ii) a direction vector for the line. P Always use this strategy!

. . .