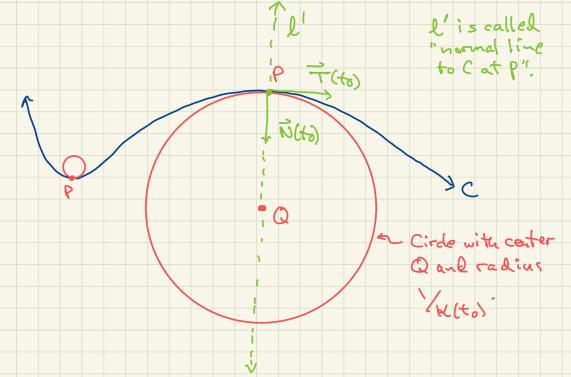
Key Constructs Geometry of a Curve C $C: \vec{r} = \vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = velocity$ $|\vec{\tau}'(t)| = (f'(t)^2 + g'(t)^2 + h'(t)^2)^2 = y(t) = speed$ $\vec{\tau}(t) = \frac{1}{1\vec{r}'(t)}\vec{r}'(t) = unit tangent vector$ 「「(+)」 $\frac{|\overline{\tau}'(t)|}{|\overline{\tau}'(t)|} = curvature$ K(t) = I T'(F) = unit normal sector Ñ(+) = $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = unit bi-normal vector$ CAUTION: Must watch out for cusp points ! ⑦ Both T(to) and k(to) are only defined for values t=to where F'(to) ≠ 0. Both N(to) and B(to) are only defined for values t=to where T'(to) # 0.

For generic curve C: F=F(t), P=F(to):

· K(to) measures the "curviness" of C at P.

. The plane & containing P and having normal vector B to) = T(to) × N(to) is the plane which comes closest to containing C near P. (called osculating plane) • The circle thru P which most closely approximates C near P is contained in the osculating plane at P. It has radius Vactor and its center is on the line of through P with direction vector N(to):



More Brief Interpretations

Let P be the point on C with t-value t = to.

If F'(to) \$\nother \$\vec{1}\$ then F'(to) is a direction
vector for the line tangent to Cat P.
(Often called a "tangent vector at P".)

· If F'(to) = o then T(to) is a unit vector which is also a direction vector for tangent at P.

If T'(to) ≠ O then
N(to) is a unit vector perpendicular to the tangent line at P. It points towards the center of the "osculating circle at P" which is the circle that most closely approximates C near P.

· B(to) is a normal vector for the osculating plane at P.

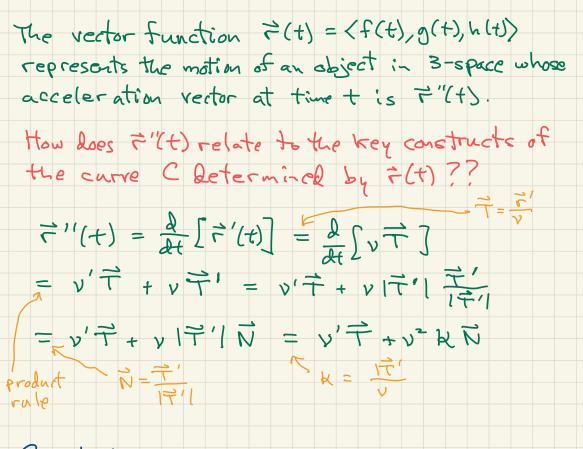
The radius of the osculating circle at P is the reciprocal of K(to).

Example	Finds	scalar eq	uations	for the	line l	
tangent +	to the	curve				
C :		$\langle l_n(t) \rangle$	$2t, t^2$, +>0		
at the point	nt P u	where t	= 1 . Al	so calcul	ate T(t)	-
(Here to =	1 . We	must fir	st calcul	ate 7'(t	J then	
plug in t =	: to	get dir	ection ve	ctor F'(1) Sorl.	١
7'(4) =	- < +	,2,2:	t>			
50 7 (1)				direction	vectorfor	Q.
The point						
	ζ Υ 7 γ	= t = 2t +2 = 2t + (Commo to siv	mplify here	not be necessar . But notice the answer :	-7
			how	nuch nicer	the answer i	S,
To Leter	$\frac{1}{1}$	ヽ(て) : + 4 + 44	2 1/2	1+4+2+4	<u>4</u>	
$\left[- \left(t \right) \right] =$	$(t^2)^2$	1/2	$1+2t^{2}$	- + ²	J	
(- (_	£2	$\left\langle \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	t			
$\vec{T}(t) = -\vec{T}$	+++++++++++++++++++++++++++++++++++++++	$\frac{1}{1}$,2,2	2:{} =	$\frac{1}{1+2t^2}$,2t,2t²>	
		we have				

Example (Stewart #15, page 922) $C: \begin{cases} x = sin 2t \\ y = t \\ z = cos 2t \end{cases}$ For the point P=(0, T, 1) on curve C. Find Otangent line latt Ocurvature at P Osculating plane p at P. approach: Pisthe point on C with to= TT First calculate all of the key constructs for Catt. Then take t= to and work out answers to @, @, @ F(t) = {sin2t, t, cos2t} $\vec{r}'(t) = \langle 2\cos 2t, 1, -2\sin 2t \rangle$ $\vec{T}(t) = \frac{1}{2}\vec{r}' = \frac{1}{65}\langle 2\cos 2t, 1, -2\sin 2t \rangle$ T'(+) = = (-4 sin2t, 0, -4 cos 2t) $|T'(t)| = \frac{1}{55} \int t s - 2t |^2 + (-4ros 2t)^2 = 4/5$ $k(t) = \frac{1\bar{\tau}'1}{v} = \frac{4/5\bar{s}}{5\bar{s}} = 4/s$ $\vec{N}(t) = \frac{\vec{T}'}{|\vec{T}'|} = \langle -sint, 0, -cos 2t \rangle$ $\vec{B}(t) = \vec{T} \times \vec{N} = \frac{1}{\sqrt{5}} \begin{vmatrix} \vec{t} & \vec{t} \\ \vec{z} & \vec{z} \\ \vec{z} \\ \vec{z} & \vec{z} \\ \vec{z}$ continuel S

 $P = (2, \pi, 1)$ Now plug in to=TT. $\vec{r}'(\pi) = \langle 2\cos 2\pi, 1, -2\sin 2\pi \rangle = \langle 2, 1, 0 \rangle$ $W(\pi) = 4/5$ $\vec{B}(\pi) = \frac{1}{55} \langle -\cos 2\pi, 2, \sin 2\pi \rangle = \frac{1}{55} \langle -1, 2, 0 \rangle$ Auswerr $\frac{d_{1}}{d_{2}} = \langle 2, 1, 0 \rangle \Rightarrow l: \begin{cases} x = 2t \\ 2 y = t + \pi \\ 2 = 0t + 1 \end{cases}$ or (invector form) $\vec{r}_{\ell}(t) = \langle zt, t+\pi, 1 \rangle$ (b) $W(\pi) = 4/5$ parallel to B (TT) (A normal vector for p is K-1, 2, 0). So an equation for p is $-1(x-0)+z(y-\pi)+O(z-1)=0$ which becomes $-x+2y=2\pi$. e no z inequation indicates this is a vertical plane. t=0 $t=\pi$ A very rough picture: note that, for C, $x^{2}+z^{2}=\sin^{2}2t+\cos^{2}2t=($ so C lies on the (orange) cylinder x2+z=1

About acceleration



Conclusion;

 $\vec{r}''(t) = v'(t) \vec{T}(t) + v(t) \vec{k}(t) \vec{k}(t)$

(recall that v(t) = speed at time t = 17 '(t) | and K(t) = curvature of C at point on Cwi, the time value t,)