#1 Integrate[ Cos[x] / (1+Sin[x]^2), x ] ArcTan[Sin[x]] #2 Integrate[ Cos[x] / Sqrt[1+Sin[x]] , x ] 2 Sqrt[1 + Sin[x]] #3 Integrate[ Tan[x]/Cos[x]^2 , x ] 2 Sec[x] ------- 2 #4 Integrate[ Tan[x]^3 , x ] 2 Sec[x] Log[Cos[x]] + ------- 2 #5 Integrate[ Sin[x]^4 , x ] 12 x - 8 Sin[2 x] + Sin[4 x] ---------------------------- 32 #6 Integrate[ 1/Sqrt[4-x^2] , x ] x ArcSin[-] 2 #7 Integrate[ 1/(x + x^2) , x ] Log[x] - Log[1 + x] #8 Integrate[ x Cos[x]^2 , x ] 2 2 x + Cos[2 x] + 2 x Sin[2 x] ------------------------------ 8 #9 Integrate[ x ArcSin[x] , x ] 2 2 x Sqrt[1 - x ] ArcSin[x] x ArcSin[x] -------------- - --------- + ------------ 4 4 2 #10 Integrate[ Cos[Sqrt[x]] , x ] 2 (Cos[Sqrt[x]] + Sqrt[x] Sin[Sqrt[x]]) #11 Integrate[ ArcSin[x]/Sqrt[1-x^2] , x ] 2 ArcSin[x] ---------- 2 #12 Integrate[ x Sec[x]^2, x ] Log[Cos[x]] + x Tan[x]
#5 Integrate[ Sin[x]^4 , x ] 12 x - 8 Sin[2 x] + Sin[4 x] ---------------------------- 32 D[ %, x ] 12 - 16 Cos[2 x] + 4 Cos[4 x] ---------------------------- 32which initially looks different. However, if we continue we can check the answer by:
Simplify[ % ] 4 Sin[x]The same approach works to check problems 4, 5, 6, 7, 8, and 9. For problem 3, the simplified answer is sec2(x)tan(x) but it is easy to check
This document was created on Feb. 4, 1997.
URL: http://math.ou.edu/~amiller/math/math1ans.htm