Calculus 2 - Discussion

Alok Shukla

University of Oklahoma

January 15, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Sigma Notation

Suppose we want to calculate the sum of consecutive integers from 1 to 100. One way to represent this would be to write $1 + 2 + 3 \dots 99 + 100$. In this case it is easy to guess the pattern. But, in more complicated cases we would like to have a precise mathematical notation. So, we use the symbol " \sum " to express the above sum as $\sum_{i=1}^{100} i$. Let us work out a few examples. Can you write the following sums in \sum notation?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Q 1. $1 + 3 + 5 + 7 + \dots 97 + 99$
- Q 2. $2 + 4 + 6 + \dots 98 + 100$
- Q 3. $1 + 1 + 1 + \dots 1$ (up to 100 terms.)

The answers are -
A 1.
$$\sum_{i=1}^{50} (2 * i - 1) = 1 + 3 + 5 + 7 + \dots 99$$

A 2. $\sum_{i=1}^{50} (2 * i) = 2 + 4 + 6 + \dots 100$
A 3. $\sum_{i=1}^{100} 1 = 1 + 1 + 1 + \dots 1$ (up to 100 terms.

)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Some Properties

1.
$$\sum_{n=s}^{t} C \cdot f(n) = C \cdot \sum_{n=s}^{t} f(n)$$

2.
$$\sum_{n=s}^{t} f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^{t} [f(n) + g(n)]$$

3.
$$\sum_{n=s}^{t} f(n) - \sum_{n=s}^{t} g(n) = \sum_{n=s}^{t} [f(n) - g(n)]$$

4.
$$\sum_{n=s}^{t} f(n) = \sum_{n=s+p}^{t+p} f(n-p)$$

5.
$$\sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n) = \sum_{n=s}^{t} f(n)$$

6.
$$\sum_{i=k_{0}}^{k_{1}} \sum_{j=l_{0}}^{l} a_{i,j} = \sum_{j=l_{0}}^{l} \sum_{i=k_{0}}^{k_{1}} a_{i,j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

An arithmetic progression (AP) or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms (i.e. the common difference) is constant.

If the first term of AP is a_1 and the common difference is d then the n^{th} term a_n is given by $a_n = a_1 + (n-1)d$. For example, in the series $\sum_{i=1}^{50} (2 * i + 1) = 1 + 3 + 5 + 7 + \dots$ 99,the first term $a_n = 1$ the common difference is d = 5 - 2 = 2 and the n^{th} term $a_n = 1$.

term $a_1 = 1$, the common difference is d = 5 - 3 = 2 and the n^{th} term a_n is given by $a_n = a_1 + (n-1)d = 1 + (n-1)2 = 2n - 1$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Sum of an AP

$$S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-2)d) + (a_1 + (n-1)d)$$

$$S_n = (a_n - (n-1)d) + (a_n - (n-2)d) + \dots + (a_n - 2d) + (a_n - d) + a_n.$$

On adding both sides of the two equations, we get $2S_n = n(a_1 + a_n)$. Thus
we get, using $a_n = a_1 + (n-1)d$ $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

An Example

We have from the formula above, $\sum_{i=1}^{n} (2 * i - 1) = n^2$.

The picture below explains the above equality for n = 5. Note that, we can start counting from the bottom left corner and count the dots having the same color to get the total number of dots as $1 + 3 + 5 + 7 + 9 = 5^2$.

Some Imoprtant Results

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
• $\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$

Please see example 5 (Appendix E) for the proof of the second identity above. The method of proof of example 5 can be generalized to find the expression for sum of 3^{rd} , 4^{th} and higher powers of *n* consecutive integers.

Telescoping Sum

A sum in which consecutive terms cancel each other, leaving only the first and the final terms. This is a very useful trick, that can be used in many cases, to find the sum of a series. For example, consider the following series.

•
$$S = \sum_{i=2}^{99} \frac{1}{i(i+1)} = \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{99.100}$$

Note that the n^{th} term of the series a_n can be written as $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Now,

$$S = \sum_{i=2}^{99} \frac{1}{i*(i+1)} = \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots + \frac{1}{99.100}$$
$$= (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{5}) + \dots + (\frac{1}{99} - \frac{1}{100})$$
$$= \frac{1}{2} - \frac{1}{100}$$

What about
$$S = \sum_{i=2}^{\infty} \frac{1}{i * (i + 1)}$$
?
Watch out for this mistake when telescoping!
 $0 = \sum_{n=1}^{\infty} 0 = \sum_{n=1}^{\infty} (1 - 1) = 1 + \sum_{n=1}^{\infty} (-1 + 1) = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?