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Introduction

My research falls within the areas of representation theory and Lie theory, although much of my work
naturally relies on techniques and results from other areas of mathematics such as category theory, algebraic
combinatorics, and topology. Speci�cally, I am interested in diagram algebras (such as the many variants of
the Brauer algebra) and their connections with Lie superalgebras arising from categori�cation and Schur-
Weyl type dualities. Although introduced almost one hundred years ago, the Brauer algebra continues to
be an object of interest to algebraists. Recent work by Ehrig-Stroppel [9], Lehrer-Zhang [13], Serganova
[18], and Chen-Peng [4] have continued to develop useful applications and generalizations of this algebra. I
am currently studying the representation theory of the marked Brauer algebra. This is both interesting in
its own right and can be used to study the relatively poorly understood representation theory of the type
p Lie superalgebra via the Schur-Weyl duality linking these two objects.

Schur-Weyl duality has featured prominently in the study of representation theory since its introduction
by Issai Schur in the early 1900s. In its original form, it says the following. Let V be a �nite-dimensional
complex vector space and consider the r-fold tensor product V ⊗r := V ⊗· · ·⊗V (r factors of V ). The general
linear group GL(V ) acts diagonally on V ⊗r on the left, meaning if g ∈ GL(V ), then g acts simultaneously
on each tensorand:

g. (v1 ⊗ · · · ⊗ vr) := (g.v1)⊗ · · · ⊗ (g.vr) .

At the same time, the symmetric group Sr acts on V ⊗r on the right by place permutations of the tensorands,
so if σ ∈ Sr, then

(v1 ⊗ · · · ⊗ vr) .σ := vσ−1(1) ⊗ · · · ⊗ vσ−1(r).

These two actions commute with each other and, in fact, generate each other's full centralizer in EndC (V ⊗r).
As a corollary, we obtain a decomposition of V ⊗r as a GL(V ) × Sr module into a direct sum of modules
of the form Lλ ⊗ Sλ, where Sλ is the Specht module corresponding to the partition λ of r and Lλ is
some simple GL(V ) module. By a partition of r, we mean a tuple λ = (λ1, λ2, . . . ) of weakly decreasing
nonnegative integers which sum to r. We visualize partitions using Young diagrams. Since the set of Specht
modules

{
Sλ : λ is a partition of r

}
is precisely the complete set of nonisomorphic simple Sr modules, this

decomposition gives a correspondence between simple Sr modules and certain simple modules for GL(V ).
Moreover, this correspondence can be promoted to a functor between module categories.

The symmetric group Sr is a nice example of an algebraic object which can be described diagrammati-
cally: the simple transposition si = (i, i+ 1) can be depicted as

Multiplication in the symmetric group then corresponds to �rst vertically stacking diagrams and then
simplifying to create a new diagram which has the same connected components as the stack. For example,
in S3 we have (123) = (12)(23), which looks like

if we pass to the diagrams. In this way, we can obtain a diagrammatic version of Sr. Diagrammatic
presentations of algebraic structures such as this provide a concrete visualization of potentially abstract
elements, and are a valuable instructional tool for both research mathematicians and undergraduate abstract
algebra students.
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It is natural to wish to generalize the situation of classical Schur-Weyl duality by replacing GL(V ) with
some other Lie theoretic object and then trying to �nd an algebra which plays the role of the symmetric
group algebra in the discussion above. One generalization was discovered by Richard Brauer in 1937. If we
�x a nondegenerate symmetric or skew-symmetric bilinear form on V , then the group of isometries of V
which preserve this form is the orthogonal group O(V ) or the symplectic group Sp(V ), respectively. Let G
denote either O(V ) or Sp(V ). Being a subgroup of GL(V ), G acts diagonally on V ⊗r on the left and this
action commutes with the right action of the symmetric group described above. However, since G is smaller
than GL(V ), the symmetric group algebra is too small to generate the full centralizer in EndC (V ⊗r) of
the action of G. Brauer described this centralizer algebra, now called the Brauer algebra Br (δG) where
δO(V ) = dimV and δSp(V ) = −dimV , as a diagram algebra having generators depicted by

subject to a manageably small list of relations. The interpretation of si is as above for the symmetric
group, while the action of the ei involves the bilinear form in a concrete way. Multiplication in the Brauer
algebra is again by vertical stacking, except we could now potentially have connected components which
are isolated in the middle of the stacked diagram. To handle this, we scale the simpli�ed diagram (which
is comprised of all connected components involving the topmost and bottommost rows of vertices) by δkG,
where k is the number of connected components isolated in the middle of the stack. For example, in B7 (δG)
we have

since there is one connected component isolated in the middle of the stacked diagrams. Using Br (δG), we
now recover the full results of Schur-Weyl duality with G replacing GL(V ) when dimV ≥ r.

The Brauer algebra has consistently been studied since its introduction. Because the algebra makes
sense when the parameter δ is any element of the underlying �eld, Br(δ) can be studied on its own. The work
of Graham-Lehrer [10], Cox-De Visscher-Martin [6], Shalile [20], and others has shown that this algebra
has a rich representation theory and interesting structure. For example, Graham-Lehrer [10] showed that
Br(δ) is a cellular algebra, so it has a certain distinguished basis with a compatible anti-automorphism as
well as a collection of cell modules. These modules are easy to describe and yet collectively contain much
representation-theoretic information. More recently, Shalile has studied the representation theory of the
Brauer algebra using weights in a manner similar to the Okounkov-Vershik approach to the representation
theory of the symmetric group.

Other authors have continued to search for the phenomenon of Schur-Weyl duality for other Lie-theoretic
objects besides the three classical groups mentioned above. One particularly pleasing example involves the
orthosymplectic Lie superalgebra. Let W be a �nite-dimensional superspace over C; that is, W = W0⊕W1

is a Z2-graded vector space, where W0 and W1 are called the even and odd parts of W , respectively. We
call w ∈ W homogeneous of degree a if w ∈ Wa and denote by w ∈ Z2 the degree of w. Note that the
r-fold tensor product W⊗r and gl(W ) := EndC (W ) naturally inherit a Z2-grading from that of W . A Lie
superalgebra is a superspace g = g0 ⊕ g1 with a super-bracket operation [·, ·] : g ⊗ g → g which satis�es
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graded versions of the usual Lie algebra axioms. For example, gl(W ) is naturally a Lie superalgebra under
the super-commutator [x, y] := xy − (−1)

x·y
yx, for homogeneous x, y ∈ gl(W ).

Fix a nondegenerate even super-symmetric bilinear form B = (·, ·) on W , so
(
Wa,Wb

)
= 0 when a 6= b

and, if x, y ∈ W are homogeneous, then (x, y) = (−1)
x·y

(y, x). Such a form restricts to a symmetric
bilinear form on W0 and a skew-symmetric bilinear form on W1. The Lie subsuperalgebra of gl(W ) which
preserves this form is the orthosymplectic Lie superalgebra osp(W ). If we then let the Brauer algebra
Br (δosp), where δosp is the super-dimension dimW0 − dimW1 of W , act on W⊗r by signed versions of the
actions described above, we again recover the conclusions of Schur-Weyl duality. Since the bilinear form
is a mixture of symmetric and skew-symmetric, this result conceptually uni�es the results for O(V ) and
Sp(V ) described above and gives some indication why both ±dimV appear as parameters for these cases.

If we now take B to be an odd super-symmetric bilinear form, so
(
Wa,Wb

)
= 0 when a = b, then

dimW0 = dimW1 and the Lie subsuperalgebra of gl(W ) which preserves B is the Lie superalgebra p(n).
A matrix realization of p(n) consists of block matrices of the form(

X Y
Z −X>

)
with X any n × n matrix, Y a symmetric n × n matrix, and Z a skew-symmetric n × n matrix. In 2003,
Moon gave a presentation by generators and relations for the centralizer algebra of p(n) in EndC (W⊗r)
(for n ≥ r) and observed some similarities between this algebra and the Brauer algebra Br(0), but was
unable to prove a de�nite link between these two algebras.

Results

In a 2014 paper I coauthored with my advisor, we de�ned the diagrammatic marked Brauer algebra Br (δ, ε),
where ε ∈ {±1} and δ = 0 when ε = −1. This algebra generalizes the ordinary Brauer algebra in the sense
that Br (δ, 1) is isomorphic to the Brauer algebra, and provides a diagrammatic realization of Moon's
algebra when ε = −1. Using this algebra, we were able to tie together the results described above for
osp(W ) and p(n) by varying the bilinear form B:

Theorem 1. Let g be the Lie subsuperalgebra of gl(W ) which preserves B. Set ε = (−1)B, where B is
0 when B is even and 1 when B is odd, and δ = dimW0 − dimW1. Then Endg (W⊗r) ∼= Br (δ, ε) when
dimW0 or dimW1 is su�ciently large compared to r.

The generators for Br (δ, ε) strongly resemble those for the ordinary Brauer algebra except for the
presence of two additional markings, called a bead and arrow, on the ei:

We require that no two markings ever lie on the same imaginary horizontal line through a diagram. A
factor of ε must be introduced when the direction of an arrow is changed or when one marking is moved
vertically past another marking. Multiplication of marked diagrams proceeds as for the ordinary Brauer
algebra, except that the following local simpli�cation rules must be used when multiple markings appear
on the same edge:
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For example, in B7 (δ, ε) we have

Since the Brauer algebra has an interesting structure and representation theory of its own, I set out to
study the representation theory of Br (0,−1), often using known results about the ordinary Brauer algebra
for inspiration. Coincidentally, the Brauer algebra Br(0) is somewhat less well-understood than Br(δ) with
δ ∈ C\{0}, and some of my results shed new light on this often overlooked algebra. Unlike the ordinary
Brauer algebras, the marked Brauer algebra fails to be a cellular algebra. Instead, I proved that Br(0,−1)
satis�es the weaker notion of a standard-based algebra. This essentially means the algebra satis�es all
the axioms of a cellular algebra except for the presence of a compatible anti-automorphism. In particular,
most of the general theory of cellular algebras carries over to the standard-based setting and we obtain the
following result from this machinery.

Theorem 2. If r is odd, the algebra Br (δ, ε) is a quasi-hereditary algebra. If r is even, there is an ideal
I consisting of nilpotent elements for which Br (δ, ε) /I is a quasi-hereditary algebra. In either case, the
category of modules is a highest weight category for all r.

It has been known for some time that the ordinary Brauer algebras are quasi-hereditary when δ ∈
C\{0}, but it does not seem that anyone has considered in detail the δ = 0 case. My argument applies
simultaneously to both the ordinary and marked Brauer algebras, so establishes the new fact that the
marked algebraBr(0,−1)/I is quasi-hereditary while also extending the known results to prove thatBr(0)/I
is quasi-hereditary. This suggests that many of the techniques applied to study the representation theory of
the ordinary Brauer algebra may carry over to the marked setting. Moreover, the standard-based and quasi-
hereditary structures of Br(0,−1) allow us to de�ne easy to describe standard modules which are similar
to Verma modules and contain much of the representation theoretic information we wish to understand.
Let Λ(r) denote the set of partitions of r, r − 2, r − 4, . . . , 2 or 1. This set inherits a partial order from the
dominance order on the set of partitions of a �xed size. We thus obtain:

Theorem 3. The poset Λ(r) provides a labeling set for the standard modules, denoted ∆r(λ) for λ ∈ Λ(r),
of Br(0,−1) as well as for the complete collection of non-isomorphic simple modules, denoted Lr(λ). Each
standard module ∆r(λ) for λ ∈ Λ(r) is indecomposable with Lr(λ) as its unique simple quotient. Moreover,
the partial order on Λ(r) provides a condition for when Lr(µ) can appear as a composition factor of ∆r(λ).

The fact that the poset consists of partitions highlights once again a connection between the (marked)
Brauer algebra and the symmetric group. In fact, since the group algebra of the symmetric group Sr is a
subalgebra of Br(0,−1) in the natural way, we can restrict the standard modules to this subalgebra and
obtain a description of the standard modules for Br(0,−1):

Theorem 4. Suppose r = m+2k. Suppose µ is a partition of m and λ is a partition of r. The multiplicity
of Sλ in resBr

CSr
∆r (µ) is

∑
ν∈X

cλµν , where X is the set of partitions of 2k whose diagonal hooks have depth

one less than width and cλµν are the Littlewood-Richardson coe�cients.

One of my goals in studying the representation theory of the marked Brauer algebra Br(0,−1) is to
determine its decomposition matrix. This matrix has its rows and columns labeled by the partially ordered
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set Λ(r), with the (λ, µ)-entry equal to the number of times Lr(µ) appears as a composition factor of ∆r(λ).
Shalile [20] discovered a complete and satisfying combinatorial solution to this problem for the ordinary
Brauer algebra Br(δ), so a similar combinatorial rule is expected for the marked Brauer algebra Br(0,−1).
Understanding the decomposition matrix will provide another method to classify the blocks of the algebra
as determined by Coulembier [5]. At present, I have have determined three-fourths of this matrix.

Theorem 5. With respect to the partial order on Λ(r), the decomposition matrix

Dr = ([∆r(λ) : Lr(µ)])λ,µ∈Λ(r)

has the following block form: (
Ip(r) 0
∗ Dr−2

)
where p(r) is the number of partitions of r and Dr−2 is the decomposition matrix for Br−2(0,−1). Moreover,
this matrix is lower-triangular and has all diagonal entries equal to 1.

I am currently working to �ll in the lower left block of this matrix using as inspiration Shalile's weight
theory for the ordinary Brauer algebra. I have de�ned an analog of the Jucys-Murphy elements Xk,
k = 1, . . . , r − 1, for Br(0,−1) by modifying Nazarov's original JM elements for the ordinary Brauer
algebra, and proven that they behave compatibly with the restriction of a standard module:

Theorem 6. Let λ ∈ Λ(r). We have the following short exact sequence of Br−1(0,−1) modules

0→
⊕
µCλ

∆r−1(µ)→ resBr

Br−1
∆r(λ)→

⊕
νBλ

∆r−1(ν)→ 0

where µ C λ means that the partition µ is obtained from λ by removing a removable box and ν B λ means ν
is obtained from λ by adding an addable box. Moreover, the Jucys-Murphy element Xr acts on those ∆r(µ)
with µ C λ by the content of the removed box and on those ∆r(ν) with ν B λ by one plus the content of the
added box.

A similar result holds for the induction of a standard Br(0,−1) module up to Br+1(0,−1) via the
obvious embedding of Br(0,−1) into Br+1(0,−1). Moreover, we may re�ne these short exact sequences
according to the generalized eigenspaces for appropriate Jucys-Murphy elements.

Future Work

We may iteratively use Theorem 6 to obtain a basis for ∆r(λ) which is labeled by r-tuples of partitions in
Λ(r) called up-down tableaux. Following Shalile [20], we de�ne the weight of an up-down tableaux to be an
r-tuple of integers whose entries are the eigenvalues of the Jucys-Murphy elements coming from Theorem 6.
I am currently working on a method to characterize the decomposition numbers in a purely combinatorial
way using these weights. Such combinatorics are imminently computable and could easily form the basis
of an undergraduate research project. The results of such a project would provide evidence for a general
combinatorial rule for determining decomposition numbers of standard modules.

Although my work assumes the ground �eld to be the complex numbers, many of my results will remain
true over a �eld of positive characteristic. Recent work by Coulembier [5] mirrors my approach and results
for the representation theory of the marked Brauer algebra, Br(0,−1). Coulembier's work holds when
the characteristic of the �eld is larger than r, but results over �elds whose characteristic lies between 2
and r are still unknown. Understanding the representation theory of Br(0,−1) over a �eld of arbitrary
characteristic might be an interesting topic for future study. In particular, since much of Shalile's weight
theory approach for the Brauer algebra appears to work over �elds of any characteristic, it is expected that
an analogous approach will yield the decomposition matrix and blocks for Br(0,−1) over other �elds.

Despite being a classical Lie superalgebra introduced in 1977 by Kac [11], the Lie superalgebra p(n) has
received little attention until somewhat recently [1, 14, 19]. A longer-term future project is to use certain
results about the representation theory of the marked Brauer algebra along with the Schur-Weyl duality
between Br(0,−1) and p(n) to obtain further information about tensor product representations of p(n).
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