
UNIVERSAL BOUNDS ON SPECTRAL MEASURES OF
ONE-DIMENSIONAL SCHRÖDINGER OPERATORS

CHRISTIAN REMLING

Abstract. Let H = −d2/dx2 + V (x) be a Schrödinger operator on L2(0,∞)
with spectral measure ρ, and suppose that the potential V is known on an

initial interval [0, N ]. We show that this information yields strong restrictions

on ρ(I) for intervals I ⊂ R. More precisely, we prove upper and lower bounds
on ρ(I). The upper bound is finite for any I that is bounded above and the

lower bound is positive if the interior of I contains at least two eigenvalues of
the operator on L2(0, N). These results are developments of classical work of

Chebyshev and Markov on orthogonal polynomials.

1. Introduction

We consider one-dimensional Schrödinger equations,

−y′′(x) + V (x)y(x) = Ey(x), 0 ≤ x <∞,(1.1)

and the associated self-adjoint operators Hα = −d2/dx2 + V (x) on L2(0,∞). The
index α ∈ [0, π) refers to the boundary condition

y(0) cosα− y′(0) sinα = 0.(1.2)

In fact, the dependence on α will usually not be made explicit, as α will remain
fixed (but arbitrary) throughout this note. The potential V is assumed to be locally
integrable on [0,∞).

We want to address the following question (which was pointed out to me by
David Pearson): Suppose that an initial piece of the potential V (x), 0 ≤ x ≤ N ,
is known. What, if anything, can then be said about the spectral measure ρ(I)
of intervals I ⊂ R? Apart from the intrinsic interest, such considerations are also
relevant to the numerical computation of spectral measures.

It is clearly not possible to say anything about the type of ρ (absolutely continu-
ous, singular continuous, or point measure or a mixture of these). For example, the
absolutely continuous part of ρ is, up to equivalence, independent of the behavior
of the potential on compact sets. It is obviously not even clear if V will be in the
limit point or limit circle case at infinity. Nevertheless, we will show that V on
[0, N ] basically determines ρ on a length scale that is given by the distance between
the eigenvalues of the problems on [0, N ].

Given V on [0, N ], we will introduce a certain family of measures in Sect. 2,
which we will callMN . The following property ofMN is especially important: For
an arbitrary (locally integrable) extension of V to [0,∞), the spectral measure(s)
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2 CHRISTIAN REMLING

of the corresponding half-line problem will belong toMN . (In fact,MN is a much
larger set.)

For every λ ∈ R, there is a unique boundary condition β ∈ [0, π) so that λ is an
eigenvalue of the problem on [0, N ] with boundary condition (1.2) at x = 0 and

y(N) cosβ − y′(N) sinβ = 0(1.3)

at x = N . Let µλ be the spectral measure of this problem (see again Sect. 2 for a
more detailed description).

Theorem 1.1. For all λ ∈ R, we have

µλ ((−∞, λ]) = max
ρ∈MN

ρ ((−∞, λ]) ,

µλ ((−∞, λ)) = min
ρ∈MN

ρ ((−∞, λ)) .

This is an analog of classical results of Chebyshev and Markov on orthogonal
polynomials – see [1, Sect. 2.5] for these results.

As an illustration, let us fix Neumann boundary conditions at the origin (so
α = π/2 in (1.2)) and suppose that V = 0 on [0, 1]. Then Theorem 1.1 for example
yields the following estimate: For any half-line problem, no matter how V behaves
on [1,∞), the spectral measure ρ satisfies ρ((−∞, 0]) ≤ 1. Note also that without
knowing V on [0, 1], one can only say that ρ((−∞, 0]) <∞.

Since ρ([a, b]) = ρ((−∞, b])− ρ((−∞, a)), Theorem 1.1 also implies estimates on
the spectral measures of bounded intervals.

Corollary 1.2. Let λi, λj be both eigenvalues of (1.1) on an interval [0, N ] with
boundary conditions (1.2), (1.3), and let ρ0 be the spectral measure of this problem.
Then

ρ0 ([λi, λj ]) = max
ρ∈MN

ρ ([λi, λj ]) ,

ρ0 ((λi, λj)) = min
ρ∈MN

ρ ((λi, λj))

In particular, we get a positive lower bound on the spectral measure of an interval
whose closure contains three eigenvalues. This last statement can be improved.

Theorem 1.3. Let I ⊂ R be an interval, and suppose that for some β ∈ [0, π),
the interior of I contains an eigenvalue of (1.1) on [0, N ] with boundary conditions
(1.2), (1.3) and the closure of I contains two eigenvalues of this problem. Then
infρ∈MN

ρ(I) > 0.
In particular, infρ∈MN

ρ(I) > 0 if I is an open interval containing two eigenval-
ues of the problem on [0, N ] for some boundary condition at x = N .

This also follows from Theorem 1.1, but depends on a more careful analysis of
the function λ 7→ µλ((−∞, λ]). Theorem 1.3 is sharp: If I is an open interval that
does not contain two eigenvalues for some boundary condition (1.3) at x = N , then
there is a measure ρ ∈ MN with ρ(I) = 0. In fact, given the precise definition
of MN from Sect. 2, this is trivial because in the situation described above, there
is a boundary condition at x = N for which I contains no eigenvalue, and the
corresponding spectral measure gives zero weight to I.

To prove Theorem 1.1, we will basically follow the simple but surprisingly effec-
tive strategy from [1, Sect. 2.5]. As an important additional ingredient, we need the
Paley-Wiener type description of the spaces of the spectral representation which fol-
lows from the theory of de Branges spaces. This topic will be discussed in the next



SPECTRAL MEASURES OF 1D SCHRÖDINGER OPERATORS 3

section. The proof of Theorem 1.1 is then given in Sect. 3. Theorem 1.3 is proved
in Sect. 4. Finally, in Sect. 5, we derive an asymptotic estimate on ρ((−∞,−κ2])
from Theorem 1.1.

2. Spectral representation of Schrödinger operators

Fix N > 0 and α ∈ [0, π) and consider the Schrödinger operator Hβ on L2(0, N)
with boundary conditions (1.2), (1.3). Hβ is self-adjoint and has purely discrete
spectrum, so the eigenvectors of Hβ form an orthonormal basis of L2(0, N). Thus
a spectral representation of Hβ can be obtained as follows. Let u(x,E) be the
solution of the Schrödinger equation (1.1) with the initial values u(0, E) = sinα,
u′(0, E) = cosα. In particular, u(·, E) satisfies the boundary condition (1.2) at
x = 0. Define

ρβ =
∑
‖u(·, λ(β)

n )‖−2
L2(0,N) δλ(β)

n
.

Here, δλ denotes the Dirac measure at λ (so δλ({λ}) = 1, δλ(R\{λ}) = 0), and the
sum is over the eigenvalues λ(β)

n of Hβ . Note that λ is such an eigenvalue precisely if
u(N,λ) cosβ− u′(N,λ) sinβ = 0. ρβ is called the spectral measure of this problem.

Now the map U defined by

(Uf)(λ) =
∫
u(x, λ)f(x) dx

maps L2(0, N) unitarily onto L2(R, dρβ). This is just another way of saying that
the eigenvectors form an orthonormal basis because U computes the scalar product
of u(·, λ) and f . The weights in the definition of ρβ compensate the fact that the
functions u(·, λ(β)

n ) are not normalized.
We use this property of U to define the familyMN . A positive Borel measure ρ

on R belongs toMN if U maps L2(0, N) isometrically into L2(R, dρ). MN depends
on V on (0, N) and the boundary condition (1.2) at x = 0 only. Note that in the
definition of MN , we do not require U to be onto (and thus unitary); in fact,
UL2(0, N) = L2(R, dρ) precisely if ρ = ρβ for some β ∈ [0, π). Similarly, a spectral
measure of a half-line problem is, by definition, a measure ρ for which U is an
isometry from L2(0, N) to L2(R, dρ) for all N > 0. Then U of course extends to an
isometry from L2(0,∞) to L2(R, dρ). If V is in the limit point case at infinity, there
is precisely one spectral measure, and this unique measure can be obtained from the
classical Weyl construction (see [4, Chapter 9]). In this case, U automatically maps
L2(0,∞) onto L2(R, dρ). In the limit circle case, the measures from the Weyl circle
construction are again spectral measures in this wider sense, but there are many
other spectral measures. The set of all spectral measures admits a Nevanlinna type
description.

It is important to keep in mind that if ρ is a spectral measure of a half-line
problem (as defined above or in the narrower sense of Weyl theory), then ρ ∈MN

for all N > 0. In particular, Theorem 1.1 really addresses the question raised at
the beginning of this paper.

The measures fromMN are sometimes also called spectral measures of the prob-
lem on [0, N ] (for example in [5, 7]), but here it is better to avoid this usage of the
term, in order to avoid confusion with the spectral measures ρβ , β ∈ [0, π), intro-
duced above, which form a (small) subset of MN .

This (very classical) material on the spectral representation of Hβ also admits a
more function theoretic approach. Here, the crucial tool is the notion of de Branges
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spaces. We will not attempt to give an introduction to this subject here; rather, we
will just quote the fact we will need in the next section. For background information
and the proof of Theorem 2.1 below, please refer to [7]. The main source for the
general theory of de Branges spaces is [3].

Define

SN =
{
F (z) =

∫
u(x, z)f(x) dx : f ∈ L2(0, N)

}
;

so, SN is the image of L2(0, N) under U . However, there is a new twist here in that
we view SN as a space of entire functions. Let EN (z) = u(N, z)+iu′(N, z). The so-
called de Branges function EN can now be used to give the following Paley-Wiener
type characterization of the de Branges space SN .

Theorem 2.1. F : C → C is in SN ⇐⇒ F is entire,
∫
R

∣∣∣ F (λ)
EN (λ)

∣∣∣2 dλ < ∞, and

there is a constant C = CF so that |F (z)/EN (z)|, |F#(z)/EN (z)| ≤ C(Im z)−1/2

for all z ∈ C with Im z > 0.

Here, as usual, F#(z) = F (z). Theorem 2.1 follows from the material of [7,
Sect. 2, 3], especially [7, Eq. (3.8)]. The statement of Theorem 2.1 may look rather
unusual at first sight, but it really is a very natural by-product of the theory of
de Branges spaces. It is also similar to the classical Theorem of Paley and Wiener
which states that the Fourier transforms of functions from L2(−a, a) are precisely
those entire functions which are square integrable on the real line and of exponential
type at most a. In fact, Theorem 2.1 basically contains the Paley-Wiener Theorem
as a special case (V ≡ 0).

Finally, let us note that if F ∈ SN , then
∫
R
|F (λ)|2 dρ(λ) has the same finite

value for all ρ ∈MN . Indeed, this follows immediately from the defining property
of the measures from MN . So Theorem 2.1 gives a convenient description of the
functions that are integrated correctly by all measures from MN . In fact, the set
SN is independent of the potential V [7, Theorem 4.1] and it is thus possible to
give an even more explicit description of SN (which does not involve, via EN , the
unknown functions u(N, z), u′(N, z)). However, for our purposes, Theorem 2.1 is
more useful.

3. Proof of Theorem 1.1

Fix λ ∈ R, and determine the (unique) boundary condition β for which λ is an
eigenvalue of Hβ . Here, Hβ still denotes the operator on L2(0, N) with boundary
conditions (1.2), (1.3). Let λ1 < λ2 < · · · be the complete list of eigenvalues of Hβ ,
where, let us say, λ = λk.

Let pn (n > k) be the unique polynomial of degree 2n− 2 with

pn(λi) = 1 (i = 1, . . . , k),

pn(λi) = 0 (i = k + 1, . . . , n),

p′n(λi) = 0 (i = 1, . . . , n, i 6= k).

Existence of pn can be proved by giving an explicit Lagrange type formula. To do
this, put

gj(λ) = (λ− λk)
∏
i 6=k,j

(λ− λi)2 (j = 1, . . . , k − 1),
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fj(λ) = (ajλ+bj)gj(λ). It is easy to see that aj , bj can be chosen so that fj(λj) = 1,
f ′j(λj) = 0; here, one uses the fact that gj(λj) 6= 0. So fj is a polynomial of degree
2n − 2 with fj(λi) = δij , f ′j(λi) = 0 (i 6= k). For j = k, the construction of a
polynomial with these properties is even easier: simply let

fk(λ) =
∏
i 6=k

(λ− λi)2

(λk − λi)2
.

Now pn =
∑k
j=1 fj is the sought polynomial. Uniqueness of pn is clear (and not

needed here) because the difference of two such polynomials has 2n − 1 zeros,
counting multiplicities.

Next, we claim that pn ≥ χ(−∞,λk]. To show this, note that p′n has a zero in each
of the intervals (λ1, λ2), . . . , (λk−1, λk), (λk+1, λk+2), . . . , (λn−1, λn). This follows
from Rolle’s Theorem. Moreover, p′n(λi) = 0 (i = 1, . . . , k − 1, k + 1, . . . , n). We
have just recorded 2n − 3 zeros of p′n, but the degree of p′n is 2n − 3, so we have
the complete list of zeros of p′n, and all these zeros are simple. It follows that pn is
decreasing in [λk, λk+1] because pn(λk) = 1, pn(λk+1) = 0, and p′n has no zero in
(λk, λk+1). It also follows that pn has local minima precisely at the λi with i 6= k
(and i ≤ n) and no maxima outside [λ1, λn]. Thus the asserted inequality holds.

Introduce qn by writing pn as

pn(λ) = qn(λ)
n∏

j=k+1

(
1− λ

λj

)2

.(3.1)

Obviously, this must be modified if one of the λj ’s equals zero. In this case, we
replace (1 − λ/λj)2 by λ2. In the sequel, we will simply assume that λj 6= 0 for
all j. The general case can immediately be reduced to this situation by adding a
suitable constant to the potential V .

So qn is a polynomial of degree 2k − 2. The function

U(λ) := u(N,λ) cosβ − u′(N,λ) sinβ

has zeros precisely at the eigenvalues {λj}. U is an entire function of order 1/2
(see [6, Chapter 1, Theorem 3]). This means that |U(z)| . e|z|1/2+ε

for all positive
ε, but for no negative ε. So the Hadamard factorization of U reads

U(z) = c
∞∏
j=1

(
1− λ

λj

)
.

Since U is real on the real line, c ∈ R. See [2] for background information on the
Hadamard factorization.

We now see that if n → ∞, the products from (3.1) converge locally uniformly
to the function

U2(λ)

c2
∏k
j=1

(
1− λ

λj

)2 .(3.2)

Moreover, the polynomials qn also converge locally uniformly to a limiting polyno-
mial q of degree 2k − 2. To see this, we proceed as in the existence proof for the
pn’s. Denote the product from (3.1) by rn(λ). Then the polynomials qn satisfy

rn(λi)qn(λi) = 1 (i = 1, . . . , k),

r′n(λi)qn(λi) + rn(λi)q′n(λi) = 0 (i = 1, . . . , k − 1),
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and, conversely, these conditions uniquely determine the qn’s: Construct polyno-
mials fj , gj of degree 2k − 2 with fj(λi) = δij (i ≤ k), f ′j(λi) = 0 (i < k) and
gj(λi) = 0 (i ≤ k), g′j(λi) = δij (i < k). Using these functions, we can write qn as

qn(λ) =
k∑
i=1

1
rn(λi)

fi(λ)−
k−1∑
i=1

r′n(λi)
r2
n(λi)

gi(λ).

Now rn(λi) converges to the function from (3.2), evaluated at λi. The derivative
r′n is also convergent (this of course follows automatically from the convergence of
rn with the help of Cauchy’s integral formula for the derivative), so we conclude
that qn converges, as desired.

Since both factors converge, pn itself also converges (locally uniformly) to a
limiting function. On the real line, we can write this limiting function in the form

lim
n→∞

pn(λ) = F1(λ)F2(λ) (λ ∈ R).

Here,

Fi(λ) =
U(λ)

c
∏k
j=1

(
1− λ

λj

) si(λ),

where si is a polynomial of degree k − 1. In fact, this just summarizes what we
have proved above, provided that s1(λ)s2(λ) = q(λ) (λ ∈ R). To obtain such a
factorization of q, we only need to distribute the linear factors of q evenly among
the two factors s1, s2 in an arbitrary way.

By passing to the limit in the inequality pn ≥ χ(−∞,λk], we obtain

F1(λ)F2(λ) ≥ χ(−∞,λk](λ) (λ ∈ R).

Moreover, since pn(λi) = χ(−∞,λk](λi) for i = 1, . . . , n, we have equality at the
eigenvalues λi:

F1(λi)F2(λi) = χ(−∞,λk](λi) (i ∈ N).(3.3)

Next, we claim that Fi ∈ SN for i = 1, 2. To prove this, we use Theorem 2.1.
Obviously, Fi is entire. For large |λ|, we have the estimate |Fi(λ)| . |U(λ)|

|λ| , and
|U(λ)| ≤ |EN (λ)| for all λ ∈ R, so

∫
R
|Fi/EN |2 <∞. To verify the third condition

from Theorem 2.1, we use the fact that Im u′(N,z)
u(N,z) < 0 if Im z > 0. This is well

known and can be seen by evaluating
∫ N

0
|u(x, z)|2 dx with the help of Green’s

identity. As a consequence, |u(N, z)|2 + |u′(N, z)|2 < |EN (z)|2 if Im z > 0 and
hence |U(z)| < |EN (z)| for these z. Thus |Fi(z)/EN (z)| . |z|−1 for large z ∈ C with
positive imaginary part. Since U# = U , we also have that |F#

i (z)/EN (z)| . |z|−1.
If |z| ≥ 1, then |z|−1 ≤ |z|−1/2 ≤ |Im z|−1/2, as required. For small |z|, there is of
course nothing to prove.

Now recall the definitions from the beginning of this section. Denote the spectral
measure of Hβ by ρβ . Let ρ ∈ MN be arbitrary. Note that {λi : i ∈ N} supports
ρβ , so (3.3) says that F1F2 = χ(−∞,λk] ρβ-almost everywhere. Therefore,

ρ((−∞, λk]) =
∫
χ(−∞,λk] dρ ≤

∫
F1F2 dρ

=
∫
F1F2 dρβ =

∫
χ(−∞,λk] dρβ = ρβ((−∞, λk]).
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The second equality holds because Fi ∈ SN , so, as observed at the end of Sect. 2,∫
|Fi|2 dρ is independent of ρ ∈MN . By polarization,

∫
F1F2 dρ then also has the

same value for all ρ ∈MN . So we may use the measure ρβ ∈MN to evaluate this
integral. Since ρβ = µλk if the notation from Theorem 1.1 is used, we have proved
the first part of Theorem 1.1. The proof of the second part is analogous. �

4. Proof of Theorem 1.3

We will prove below (see Theorem 4.1) that the function λ 7→ µλ((−∞, λ]) is
strictly increasing. Theorem 1.3 follows rather quickly from this fact.

To fix ideas, let us assume that the interval I from the statement of Theorem
1.3 is of the form I = (λk − δ, λk+1), where δ > 0 and λk, λk+1 are consecutive
eigenvalues for some (fixed, but arbitrary) boundary condition (1.3) at x = N .
Then Theorem 1.1 shows that for all ρ ∈MN ,

ρ(I) = ρ((−∞, λk+1))− ρ((−∞, λk − δ])
≥ µλk+1((−∞, λk+1))− µλk−δ((−∞, λk − δ])
= µλk((−∞, λk])− µλk−δ((−∞, λk − δ]),

and this is positive by Theorem 4.1 below. The case I = (λk, λk+1 + δ) is treated
similarly, and a general I satisfying the hypotheses of Theorem 1.3 must contain
either such an interval or one of the form discussed above. �

Theorem 4.1. The function λ 7→ µλ((−∞, λ]) from Theorem 1.1 is strictly in-
creasing, piecewise real analytic and C∞.

These properties of µλ((−∞, λ]) seem to be of some independent interest, so we
state more here than needed for the proof of Theorem 1.3.

Proof of Theorem 4.1. Let λ1 < λ2 < . . . be the Dirichlet eigenvalues (that is,
β = 0 in (1.3)). For λ /∈ {λj} and n ∈ N0, let En(λ) be the solution E ∈ (λn, λn+1)
(λ0 := −∞) of

u′(N,E)
u(N,E)

=
u′(N,λ)
u(N,λ)

.

In other words, En(λ) is chosen so that u(·, En(λ)) satisfies the same boundary
condition as u(·, λ). Oscillation theory shows that En(λ) is well defined. In fact,
the function u′/u is strictly decreasing on (λn, λn+1). So En is a real analytic
function on each of the intervals (λj , λj+1) by the implicit function theorem.

Assume that λ ∈ (λn, λn+1). We then have the following formula for f(λ) ≡
µλ((−∞, λ]):

f(λ) =
n∑
j=0

ρβ({Ej(λ)}) =
n∑
j=0

(∫ N

0

u2(x,Ej(λ)) dx

)−1

,(4.1)

where β ∈ (0, π) satisfies cotβ = u′(N,λ)/u(N,λ). This representation makes it
clear that f is a real analytic function on (λn, λn+1).

From the role of f as an upper bound for ρ((−∞, λ]) in Theorem 1.1, it is
immediately clear that f is increasing. To prove that f is strictly increasing, assume
the contrary: Then there are a < b with f(a) = f(b). The interval (a, b) will
intersect (λn, λn+1) for some n ∈ N0. But f is real analytic on (λn, λn+1), so f
is constant on this whole interval. It is easy to see that f is continuous – we will
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prove in a moment that f ∈ C∞. So f is constant on [λn, λn+1]. This is clearly
impossible, because f(λn+1) = f(λn) + ρ0({λn+1}).

We now come to the most difficult part of the proof: We still have to show that
f ∈ C∞(R). We know already that f is real analytic on the intervals (λn, λn+1),
so it remains to investigate the behavior of f at the points λn. From (4.1) and the
discussion preceding this equation, we see that for sufficiently small h > 0,

f(λn + h) = f̃(λn + h) +

(∫ N

0

u2(x,−κ2(h)) dx

)−1

.(4.2)

Here, f̃ is the analytic continuation of f from (λn−1, λn), and the energy −κ2(h) <
λ1 is defined by the requirement that u(·,−κ2(h)) satisfy the same boundary con-
dition as u(·, λn + h). In other words, κ(h) is the unique solution κ > 0, −κ2 < λ1

of
u(N,−κ2)
u′(N,−κ2)

=
u(N,λn + h)
u′(N,λn + h)

.(4.3)

Note that (4.2) expresses the fact that f fails to be analytic at λn only because of
the emergence of a new term in the sum from (4.1), and this new summand has
been recorded separately in (4.2). Call this last term from (4.2) F (h). We will prove
that limh→0+ F (h) = 0 and the continuously extended F satisfies F ∈ C∞([0, h0))
for some h0 > 0. Finally, we will also prove that F (n)(0) = 0 for all n ∈ N0. Here,
we take one-sided derivatives at h = 0. These properties of F will of course imply
that f ∈ C∞ at λn also, as desired.

We need the following Lemma, which will be proved below.

Lemma 4.2.

u(x,−κ2) = coshκx+O

(
eκx

κ

)
,

u′(x,−κ2) = κ sinhκx+O(eκx).

These formulae hold uniformly in sets of the form 0 ≤ x ≤ N , κ ≥ κ0. Moreover,∣∣∣∣∂nu∂κn
(x,−κ2)

∣∣∣∣ ≤ Cneκx, ∣∣∣∣∂nu′∂κn
(x,−κ2)

∣∣∣∣ ≤ Cnκeκx.
By induction, Lemma 4.2 implies that∣∣∣∣∣ dndκn

∫ N

0

u2(x,−κ2) dx

∣∣∣∣∣ ≤ Cn e2κN

κ

for all n ∈ N0 (and with new constants Cn, of course). Now another induction
shows that ∣∣∣∣∣∣ d

n

dκn

(∫ N

0

u2(x,−κ2) dx

)−1
∣∣∣∣∣∣ ≤ Cnκe−2κN(4.4)

Next, we study the function κ(h), which was implicitly defined by (4.3). The
right-hand side of (4.3) is in C∞(−h0, h0) for some h0 > 0. The left-hand side will
be denoted by g(κ). Clearly, g is also C∞ for sufficiently large κ, and by standard
oscillation theory, g is strictly decreasing for these κ. Thus κ = κ(h) is well defined
for small h > 0 and κ ∈ C∞(0, h0), where h0 > 0 must be taken sufficiently small.
Moreover, by Lemma 4.2, g(κ) = κ−1 +O(κ−2). Since the right-hand side of (4.3)
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has a positive derivative at h = 0 (this also follows from oscillation theory or,
alternatively, from a computation), we obtain, after some standard manipulations
with asymptotic expressions, the formula

κ(h) =
c

h
+O(1) (c > 0).(4.5)

We have that dg/dκ = (uκu′ − uu′κ)/u′2; here, an index κ indicates partial
differentiation with respect to κ. By a computation using Green’s identity, the
numerator is equal to −2κ

∫ N
0
u2. Thus Lemma 4.2 shows that |dg/dκ| & κ−2.

Recalling (4.5), we now see from (4.3) (by taking derivatives with respect to h and
solving for κ′) that |κ′(h)| . h−2. More generally, arguments of this type also allow
us to control the higher order derivatives of κ. The result of this straightforward
but somewhat tedious procedure is an estimate of the form∣∣∣κ(n)(h)

∣∣∣ ≤ Cnh−αn (0 < h < h0, n ∈ N0).

There is no need to keep track of the optimal exponents αn here.
By using the chain rule and combining this estimate with (4.4), we obtain (in-

ductively) that ∣∣∣F (n)(h)
∣∣∣ ≤ Cne−γ/h (0 < h < h0, n ∈ N0),(4.6)

with γ > 0. Now a final inductive argument yields the desired assertion: Clearly,
(4.6) with n = 0 shows that limh→0+ F (h) = 0. If, for general n ∈ N0, F (n)(0) = 0,
then, since (4.6) shows that limh→0+ F

(n)(h)/h = 0, F (n+1)(0) also exists and
equals zero.

Proof of Lemma 4.2. The first part is a standard asymptotic formula (see, for ex-
ample, [6, Chapter 1, Theorem 3]); we will only prove the estimates on ∂nu/∂κn

and ∂nu′/∂κn.
The derivatives uκ ≡ ∂u/∂κ, uκκ ≡ ∂2u/∂κ2 etc. satisfy the equations

−u′′κ + (V + κ2)uκ = −2κu,

−u′′κκ + (V + κ2)uκκ = −4κuκ − 2u,

and so on. Moreover,

∂nu

∂κn
(0,−κ2) =

∂nu′

∂κn
(0,−κ2) = 0

for all n ∈ N.
The variation-of-constants formula says that the solution of the inhomogenous

problem −y′′ + (V + κ2)y = g, y(0) = y′(0) = 0 is given by

y(x) =
∫ x

0

K(x, t;κ)g(t) dt,(4.7)

where

K(x, t;κ) =
u(x,−κ2)f(t,−κ2)− u(t,−κ2)f(x,−κ2)

W (u, f)
.

Here, f is an arbitrary solution of the homogenous equation −y′′ + (V + κ2)y = 0
that is linearly independent of u, and W (u, f) = uf ′ − u′f . Note that this latter
combination (the Wronskian of u and f) is independent of x.
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We will take f as an exponentially small solution. More precisely, let f be the
solution of −f ′′ + (V + κ2)f = 0 with f(N) = e−κN , f ′(N) = −κe−κN . Define
g(x) = f(x)eκx. Then g is the unique solution of the integral equation

g(x) = 1− 1
2κ

∫ N

x

(
e2κ(x−t) − 1

)
V (t)g(t) dt.(4.8)

It follows directly from this equation that ‖g‖∞ ≤ 2 if κ ≥ ‖V ‖L1(0,N), and hence

|f(x,−κ2)| ≤ 2e−κx (κ ≥ ‖V ‖1).(4.9)

By evaluating at x = N , we see that

W (u, f) = −κe−κN coshκN − e−κNκ sinhκN +O(1) = −κ+O(1).

So, by (4.9) and again the formula for u from the first part of the Lemma,

|K(x, t;κ)| . 1
κ
eκ(x−t).

Now the desired estimates on ∂nu/∂κn follow immediately from (4.7) by induction
on n.

The argument for ∂nu′/∂κn is similar: one takes derivatives in (4.7), and so it
is now necessary to estimate ∂K(x, t;κ)/∂x. Basically, this is done as above. To
control f ′, one differentiates (4.8) to obtain

g′(x) = −
∫ N

x

e2κ(x−t)V (t)g(t) dt.

It follows that if κ ≥ ‖V ‖1, then ‖g′‖∞ ≤ 2‖V ‖1 ≤ 2κ and hence |f ′(x,−κ2)| ≤
4κe−κx. This in turn implies that |Kx(x, t;κ)| . eκ(x−t), and the claim now follows
as before.

5. A universal asymptotic estimate

Theorem 1.1 shows that the potential on an initial interval has a strong influ-
ence on the spectral measure above a certain length scale. In fact, this information
basically determines the spectral measure of intervals that contain several eigen-
values of the restricted problem. In this section, we will use Theorem 1.1 to prove
a universal estimate on ρ((−∞,−κ2]) for large κ, in order to further illustrate the
result.

It is well known (see, for example, [5, Theorem 2.4.2]) that

lim
κ→∞

ρ((−∞,−κ2])eNκ = 0 ∀N > 0(5.1)

if ρ is a spectral measure of a half-line problem. We will prove the following more
explicit statement. We will only treat the case of Neumann boundary conditions
at the origin (y′(0) = 0 or, in other words, α = π/2 in (1.2)). However, the
same method works for arbitrary boundary conditions. In fact, one can also prove
two-sided estimates on ρ((k2, l2)) (k, l large) along these lines.

Theorem 5.1. Let ρ be a spectral measure of a half-line problem with Neumann
boundary conditions at x = 0. If N ≥ 1, κ ≥ 8 exp

(∫ N
0
|V (x)| dx

)
, then

ρ((−∞,−κ2]) ≤ 17κe−2Nκ.

Since N can be taken arbitrarily large here (provided κ is large enough), (5.1)
follows immediately from Theorem 5.1.
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Proof. Our starting point is the estimate∣∣∣u(x, λ)− cos
√
λx
∣∣∣ ≤ 1
|λ|1/2

e|Im λ|1/2x+
∫ x
0 |V (t)| dt.

This is a quantitative version of the first part of Lemma 4.2 – see also [6, Chapter
1, Theorem 3] (note, however, that in [6] it is assumed that V ∈ L2(0, x), but the
same proof works in the general case (V ∈ L1(0, x)) as well).

In particular, we have that for κ > 0 and 0 ≤ x ≤ N ,

u(x,−κ2) ≥ coshκx− 1
κ
eκx+Vx ≥ 1

2
eκx − 1

κ
eκx+VN .

Here, we have used the abbreviation Vx =
∫ x

0
|V (t)| dt. It follows that∫ N

0

u2(x,−κ2) dx ≥
(

1
4
− eVN

κ

)∫ N

0

e2κx dx =
e2κN − 1

8κ

(
1− 4eVN

κ

)
.

So, if κ ≥ 8eVN , then ∫ N

0

u2(x,−κ2) dx ≥ e2κN − 1
16κ

≥ e2κN

17κ
.

The last inequality follows from the fact that N ≥ 1, κ ≥ 8. The problem on
[0, N ] with (let us say) Dirichlet boundary conditions at x = N (y(N) = 0) has
no eigenvalues in (−∞,−64e2VN ] (in fact, −V 2

N is a lower bound for the smallest
eigenvalue). Therfore −κ2 is the smallest eigenvalue for the boundary condition for
which this energy is in the spectrum. Otherwise, we would get a contradiction to
oscillation theory. Hence

µ−κ2((−∞,−κ2]) = µ−κ2({−κ2}) =

(∫ N

0

u2(x,−κ2) dx

)−1

≤ 17κe−2κN .

Theorem 1.1 shows that this estimate holds for any ρ ∈MN .
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