
REFLECTIONLESS OPERATORS AND
AUTOMORPHIC HERGLOTZ FUNCTIONS

CHRISTIAN REMLING

Abstract. I am interested in canonical systems and Dirac op-
erators that are reflectionless on an open set. In this situation,
the half line m functions are holomorphic continuations of each
other and may be combined into a single function. By passing
to the universal cover of its domain, we then obtain a one-to-one
correspondence of these operators with Herglotz functions that are
automorphic with respect to the Fuchsian group of covering trans-
formations. I investigate the properties of this formalism, with
particular emphasis given to the measures that are automorphic
in a corresponding sense. This will shed light on the reflectionless
operators as a topological space, on their extreme points, and on
how the heavily studied smaller space of finite gap operators sits
inside the (much) larger space.

1. Introduction

This paper continues the theme of [11, 23] along what I hope is a
natural line of inquiry. We consider canonical systems

(1.1) Jy′(x) = −zH(x)y(x), J =

(
0 −1
1 0

)
,

with coefficient functions H(x) ∈ R2×2, H(x) ≥ 0, H ∈ L1
loc(R), and

Dirac equations

(1.2) Jy′(x) +W (x)y(x) = −zy(x),

with W (x) = W t(x) ∈ R2×2, W ∈ L1
loc(R). In both cases, these equa-

tions generate self-adjoint relations and operators on the associated
Hilbert spaces L2

H(R) and L2(R;C2), respectively.
The Titchmarsh-Weyl m functions may be defined as

(1.3) m±(z) = ±y±(0, z),
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2 CHRISTIAN REMLING

and here z ∈ C+ = {z ∈ C : Im z > 0} and y±(x, z) denotes the
unique, up to a constant factor, solution y of (1.1) or (1.2) that is
square integrable on ±x > 0. On the right-hand side of (1.3), we also
use the convenient convention of identifying a vector y = (y1, y2)

t ∈ C2,
y ̸= 0, with the point y1/y2 ∈ C∞ on the Riemann sphere. So m±
take values in C∞, and in fact these functions are generalized Herglotz
functions, that is, they map the upper half plane C+ holomorphically
back to C+ = C+ ∪ R∞.

Any generalized Herglotz function is the m function of a canonical
system on a half line, and if H(x) is suitably normalized, which is
usually done by imposing the condition trH(x) = 1, then we obtain a
bijection between Herglotz functions and coefficient functionsH(x) [21,
Theorem 5.1]. If H(x) ≡ Pα, the projection onto eα = (cosα, sinα),
on x ≥ 0, then m+(z) ≡ − tanα ∈ R∞, and if H is not of this special
(trivial) type, then m+ is a genuine Herglotz function, so maps C+

back to itself.
We can then also think of Dirac equations as special canonical sys-

tems since we can in particular realize the m functions of a given Dirac
operator by a suitable canonical system. Of course, one can also rewrite
(1.2) directly. These issues are discussed in more detail in [23, Section
2]. When I talk about canonical systems in the sequel, it should be
understood in this sense, that is, as containing Dirac equations as a
special case. In fact, we will mostly focus on Dirac operators in this
paper, but occasionally the more general framework of canonical sys-
tems is useful.

We call a canonical system or a Dirac equation reflectionless on a
Borel set A ⊆ R if

(1.4) m+(x) = −m−(x)

for (Lebesgue) almost every x ∈ A. Reflectionless operators are im-
portant because they can be thought of as the basic building blocks
of arbitrary operators with some absolutely continuous spectrum [20],
[21, Chapter 7].

Here we are interested in operators that are reflectionless on a finite
gap set

U = R∞ \
N⋃

n=1

[an, bn], a1 < b1 < . . . < bN .

Right now, it may seem pointless and even strange to have put ∞ into
this set but it will become clear in a moment why we did this, when
we introduce the function M below.
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So U is an open subset of R∞ whose complement has N components,
and all of these have positive length. Much of what we do below applies
more generally to any such set U ⊆ R∞, whether or not ∞ ∈ U , but I
will not spell this out.

It will be convenient to have short-hand notations available for cer-
tain spaces of reflectionless operators. We set

R(U) = {H(x) : H reflectionless on U},
and we also write D for the collection of canonical systems that are
Dirac operators, in the sense that their m functions m± are the m
functions of some Dirac equation (1.2). Furthermore, we let

D(U) = D ∩R(U).

Finally, we introduce

R0(U) = {H ∈ R(U) : σ(H) ⊆ U}, D0(U) = D ∩R0(U).

Note that the trivial canonical systems H ≡ Pα are in R0(U) (but
not in D0(U)) according to this definition since they satisfy σ(H) = ∅,
m±(z) ≡ ∓ tanα.

The operators from D0(U) are called finite gap operators, and they
and especially their analogs for Schrödinger operators and Jacobi ma-
trices have been studied extensively. See, for example, [3, 10, 17, 26]

If a canonical system H(x) is reflectionless on U , then

M(z) =

{
m+(z) z ∈ C+

−m−(z) z ∈ C−

has a holomorphic continuation to Ω ≡ C+ ∪ U ∪ C−. Compare [23,
Lemmas 1.1, 1.2].

Clearly, M : Ω → C+ still takes values in the (closed) upper half
plane. If N = 1, then Ω is conformally equivalent to C+, and a corre-
sponding (explicit) change of variable realizesM as a Herglotz function,
which we called the F function of H(x) in [23].

If N > 1, then Ω is no longer simply connected and thus not con-
formally equivalent to C+. However, the universal cover can serve as a
substitute, so we can make the following basic definition.

Definition 1.1. Let φ : C+ → Ω be the (unique) universal covering
map with φ(i) = ∞, limz→i −i(z − i)φ(z) > 0. Let H ∈ R(U). Then
we define the F function of H as F (λ) = M(φ(λ)).

This choice of covering map is motivated by [5, 24], which use an
analogous map for different purposes. I take the covering space to be
the upper half plane, not the unit disk, as in [5, 24], which I find more



4 CHRISTIAN REMLING

convenient for my purposes, though that may be a matter of taste.
In any event, as we’ll see, this map φ will interact nicely with the
reflection symmetry of Ω about the real axis. Note also that we make
φ unique in the usual way by prescribing the value and the argument of
the derivative at a point, except that since this value is ∞, the second
part about the derivative is slightly more awkward to write down than
usual.

Our discussion so far has shown that F is a Herglotz function, and
it is clearly automorphic with respect to the action of the group G ≤
PSL(2,R) of covering transformations, that is of automorphisms g of
C+ satisfying φg = φ: we have Fg = F for all g ∈ G. Here and in
the sequel, we employ the convenient notational convention of writing
composition of maps as juxtaposition, so, for example, φg = φ ◦ g.

We will denote the set of G automorphic Herglotz functions by HG.
It is a compact subset of H, the space of all generalized Herglotz func-
tions. Here, we use the topology of locally uniform convergence on H.
In fact, this space is metrizable, and a possible choice of metric is

(1.5) d(F1, F2) = max
|z−i|≤1/2

δ(F1(z), F2(z)),

with δ denoting the spherical metric, and we think of C+ ⊆ C∞ as a
subset of the Riemann sphere S2 ∼= C∞.

The space of all canonical systems also comes with a natural metric,
which is discussed in detail in [21, Section 5.2]. We don’t need an
explicit description here. What matters for our purposes is the fact
that if this metric is used, then the bijection H(x) ↔ (m+(z),m−(z))
between canonical systems and pairs of Herglotz functions becomes a
homeomorphism also [21, Corollary 5.8].

The following facts from [23] generalize to the automorphic setting
without any difficulties.

Theorem 1.1. (a) The map R(U) → HG, H 7→ F (λ;H) that sends
H to its F function is a homeomorphism onto the set of automorphic
Herglotz functions.

(b) Let H ∈ R(U). Then H ∈ D(U) if and only if F (i;H) = i.

To make further progress, we’ll have to study automorphic Herglotz
functions and the associated measures in more detail, and this will be
our topic for much of this paper, in Sections 4–7. I hope that this
analysis will be of some intrinsic interest. Returning to the spectral
theory, we will then be in a position to prove the following.

Theorem 1.2. D(U) is a compact convex set, and H ∈ D(U) is an
extreme point if and only if H ∈ D0(U).
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Here, the convexity refers to the natural linear structure on the F
functions, so for example the convex combinations of H1, H2 ∈ D(U)
are the coefficients functions H with F functions cF (z;H1) + (1 −
c)F (z;H2).

Theorem 1.2 implies that a continuous linear functional on D(U)
assumes its extreme values on D0(U). An interesting example is pro-
vided by the Dirac potential itself, which indeed depends linearly on
the F function: we have the formula F ′(i) = c(q(0) + ip(0)) [23], and
here we write W =

( p q
q −p

)
, and we normalized W by requiring that

trW (x) = 0; compare [16, 23]. Since D(U), D0(U) are invariant un-
der shifts, it follows that ∥W (x)∥ for any x ∈ R is maximized by a
W ∈ D0(U) (we use sloppy but convenient notation here; it would
be more formally accurate to write H ∈ D0(U), where H = HW is
the associated canonical system). The following was proved in [22], by
different methods.

Theorem 1.3 ([22]). If W ∈ D(U), trW (x) = 0, then

∥W (x)∥ ≤ 1

2

N∑
n=1

(bn − an)

for all x ∈ R. Equality at a single x = x0 ∈ R implies that W ∈ D0(U).

Another interesting linear functional on D(U) is given by the weights
of certain associated measures. We’ll discuss this briefly in Section 9.

We also obtain from Theorem 1.2 and Choquet’s theorem a formula
for the F function (or m±) of a general H ∈ D(U) as an average (or
integral) of the corresponding functions of the H ∈ D0(U), which have
explicit representations; compare (5.1) below. We will not spell this
out here.

Furthermore, the formalism developed in this paper sheds light on
the topology of R(U) and especially D(U). This is perhaps best dis-
cussed when we have a full understanding of the details, in Section
9, but let me at least mention here that we will obtain, among other
things, a natural homeomorphism

(1.6) D(U) ∼= M1(S1)× . . .×M1(SN).

Here, we can for now pretend that Sn is a circle that is obtained by
gluing together two copies of the nth gap [an, bn] at the endpoints (later,
Sn will really be a preimage of this under φ); M1(X) denotes the space
of (Borel) probability measures on X, with the weak ∗ topology. So
M1(Sn) is a compact metric space itself. I remark parenthetically that
it is homeomorphic to the space {F ∈ H : F (i) = i}, via the Herglotz
representation formula (4.1) below, and also to the Hilbert cube [0, 1]N
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[13, 14]. This last fact shows that the spaces from (1.6) for different
values of N ≥ 1 are all homeomorphic to each other.

Nevertheless, it makes sense to set up a homeomorphism in this way.
The map implicit in (1.6) interacts well with the linear structure on the
F functions of the H ∈ D(U) that Theorem 1.2 refers to. Moreover,
(1.6) provides a neat picture of how to find D0(U) inside the much
larger space D(U).

It is well known and quite easy to show (we will review the argument
in Section 5) that D0(U) ∼= TN , an N -dimensional torus. As we will see
in Section 7, the H ∈ D0(U) correspond to the measures (δx1 , . . . , δxN

),
xn ∈ Sn, on the right-hand side of (1.6). Since {δx : x ∈ Sn} ∼= Sn, this
recovers the description of D0(U) as a torus and shows how this space
sits inside D(U).

Acknowledgments. I thank Max Forester for help with preparing
Figure 1 and Robert Furber for bringing to my attention the classical
results [13, 14] on the topology of M1(S), in a Math Overflow answer.

2. Fuchsian groups and the universal cover

A Fuchsian group G may be defined as a discrete subgroup

G ≤ PSL(2,R) = SL(2,R)/{±1}.

The subject is, of course, classical. See, for example, [2, 12, 15] for
general introductions. Its use in spectral theory was pioneered by Pe-
herstorfer, Sodin, and Yuditskii [19, 25]. Further developments are due
to Christiansen, Simon, and Zinchenko [5, 6]. We will make heavy use
of the basic formalism of [5]; a reader friendly textbook style presenta-
tion is given in [24].

It is perhaps worth mentioning that in the works cited above, the
basic object is the meromorphic continuation of them function through
the complement of the essential spectrum, while we continue through
the spectrum itself here. But this is perhaps one of the more superficial
differences since what we do here with the formalism is quite different
from how and for what purposes it is used in [5, 6, 19, 25].

The domain Ω = C+ ∪ U ∪C− ⊆ C∞, viewed as a Riemann surface,
is hyperbolic, that is, it has the unit disk or, equivalently, the upper
half plane as its universal cover. We can obtain a unique covering map
by prescribing the image and the argument of the derivative at a point,
and this is what we did in Definition 1.1. A covering transformation g is
an automorphism g : C+ → C+ satisfying φg = φ. The automorphism
group of C+ is PSL(2,R), with a matrix g =

(
a b
c d

)
acting as a linear
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fractional transformation(
a b
c d

)
· z =

az + b

cz + d
.

This dot notation for group actions will be employed consistently in
this paper. Also, we will never be very particular about the distinction
between matrices A and elements g ∈ PSL(2,R), which are strictly
speaking equivalence classes g = {A,−A}. Of course, this is perfectly
safe as long as we only perform operations that are insensitive to an
overall change of sign.

The group G of covering transformations is a Fuchsian group. It
is isomorphic to the fundamental group of Ω, which is a free group on
N−1 generators. The non-identity elements g ∈ G are hyperbolic, that
is, |tr g| > 2. Elliptic elements, |tr g| < 2, are ruled out here because
covering transformations do not have fixed points, and there are no
parabolic elements, |tr g| = 2, because Ω does not have punctures.
Compare [8, Section IV.9, Corollary 1].

The behavior of φ can be analyzed further by looking at the local
inverse of φ on C∞ \ [a1, bN ] with φ−1(∞) = i. This is carried out in
[5, 24]. I refer the reader to these works for further details; as already
mentioned, [5, 24] use the unit disk, not the upper half plane, as the
covering space, so some small adjustments are necessary. I will now
summarize those facts that we will need below. In fact, much of this is
best told by a picture.

Figure 1: the covering map φ

A1B1B1 A2A2 B2B2 A3A3

This describes the covering map φ in the case N = 3. The labels
indicate images, so for example the point with label A1, which is really
just z = 0, has image φ(A1) = a1 etc. Here, we already make use of
the fact that φ can be extended from its original domain C+ through
parts of the real axis, which is discussed in more detail at the end of
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this section. Similarly, the semicircles connecting A3 and B2, say, are
mapped to (b2, a3) under φ. The imaginary axis, depicted as a dashed
line, is mapped onto the subinterval (b3, a1) ⊆ R∞. In particular,
φ(∞) = b3.

The map φ is symmetric about the imaginary axis in the sense that
φ(−z) = φ(z). The exterior of the four large circles, with the circles
on the left included (shown in bold in the picture) but not the ones
on the right, is a fundamental set: it contains exactly one point from
each orbit G · z, z ∈ C+. I mention in passing that its interior is the
Dirichlet region of z0 = i, that is, it contains from each orbit that point
that is closest to z0 in the hyperbolic distance of C+.

The maps g = IR, with R(z) = −z being the reflection about the
imaginary axis and I denoting inversion about one of the large circles
in the right quarter plane, generate G. Here, an inversion about the
circle |z − c| = r is defined as I(z) = c+ r2/(z − c).

In the situation depicted in Figure 1, there are two such generators
g1, g2. If we apply one of the transformations g±1

j , j = 1, 2, to the
four large circles, then we obtain one large circle and the three small
next generation circles inside. The region bounded by these circles is
another fundamental region. The whole basic picture repeats itself on
this smaller scale, so the intervals on the real line in the closure of
the smaller fundamental region are again mapped to the gaps (aj, bj),
with each gap occurring twice in this way, corresponding to approach
from above and below. Finally, all of this can of course be continued
indefinitely, by applying the generators of G to these smaller circles
etc.

The limit set L = L(G) can be defined as the collection of all limit
points of the form z = lim gn · i, with gn ∈ G being distinct elements
of G. We obtain the same set if we instead collect the limit points
lim gn · z0 for any point z0 /∈ L. The limit set is closed and invariant
under G. In our situation, L ⊆ R∞ is a Cantor set if N ≥ 3. If N = 2,
then G is cyclic and L = {x, y} ⊆ R∞ consists of the two fixed points
of any g ∈ G, g ̸= 1.

For our purposes here, the following description will be extremely
useful. As a preparation, we define In ⊆ R∞ as essentially the preimage
of the nth gap [an, bn] in the closure of the large fundamental region.
More precisely, and referring to Figure 1, we define for example I1 =
[B1, B1), where by this nonsensical looking expression we of course
mean the half open interval between the two points with these labels.
(For the purposes of describing the limit set, the fine details are actually
irrelevant and for example the closed interval would work too, but this
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attention to detail will pay off later.) Similarly, I2 = [B2, A2)∪[A2, B2),
and again the intended interpretation of this formula is clear from the
figure. Finally, I3 = [A3, A3) ⊆ R∞, and here we start at the right
point with label A3 and move to the right through ∞ to the other
point labeled A3. Later on, we will want to give each Ij the topology
of a circle in the natural way, but, as mentioned, this doesn’t matter
right now. We then have

Lc = R∞ \ L =
⋃
g∈G

g · F , F =
N⋃

n=1

In;

compare [24, eqn. (9.6.41)]. In fact, F is a fundamental set for Lc: if we
had g ·x = y for x, y ∈ F , then the mapping properties of the extended
version of φ that we will discuss below show at once that x, y ∈ In
would have to lie in the same interval and in fact in its interior, but
this would then contradict the fact that the region outside the large
circles is a fundamental region if we had x ̸= y.
Finally, let’s state precisely in what way exactly φ can be extended

past its original domain. The following is essentially a summary of [24,
Theorem 9.6.4], translated from the unit disk to the upper half plane.

We have a holomorphic extension φ : C+ ∪ Lc ∪ C− → C∞. This
map is onto, and φ(Lc) = R∞ \ U =

⋃
[aj, bj]. So the extension is by

reflection φ(z) = φ(z), z ∈ C−. Obviously, the extended map can no
longer be an unbranched covering of its image C∞. Rather, we have
φ′(z) = 0 precisely when φ(z) = an or = bn. At these points, φ

′′(z) ̸= 0.
Finally, the extended map still satisfies φg = φ for all g ∈ G.

3. Proof of Theorem 1.1

We pause the general development of the topic of the previous section
to insert the rather routine proof of Theorem 1.1 here, but will then
return to it in the following section.

(a) The map H 7→ F (·;H) is obviously injective since we can recover
m± and thus also the canonical system itself (by [21, Theorem 5.1])
from the F function.

To prove that it is surjective, let F0 ∈ HG be an arbitrary G auto-
morphic Herglotz function. To produce a canonical system that has
F0 as its F function we simply retrace the steps that lead from a
given canonical system to its F function. So define M : Ω → C+,
M(z) = F0(φ

−1(z)), and here we mean by φ−1 any holomorphic local
inverse of φ. These exist since φ is a covering map. It doesn’t matter
which local inverse we use here since F0 is automorphic and the group
G of covering transformations acts transitively on the fibers φ−1({z}).
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Clearly, M is holomorphic, and this function does map to C+, as
claimed. Next, let

m+(z) = M(z), m−(z) = −M(z), z ∈ C+.

These are Herglotz functions and thus there is a unique canonical sys-
tem H that has these functions as its half line m functions. The limits
m±(x) = limy→0+m±(x + iy) exist for all x ∈ U ⊆ Ω. Moreover,
we can make both φ−1(x + iy) and φ−1(x − iy) approach the same
point φ−1(x) ∈ C+ (on one of the four large circles or the imaginary
axis, say). It follows that (1.4) holds on U , and thus H ∈ R(U). By
construction, F (λ;H) = F0(λ).

We have established that the map R(U) → HG, H 7→ F (·;H), is a
bijection. Continuity in both directions is obvious since the topologies
on both spaces refer to locally uniform convergence and we are only
changing variables. (It would actually be enough to confirm continuity
of either the map or its inverse since we are mapping between compact
metric spaces, so have an automatic continuity result available.)

(b) This depends on an inverse spectral theory result and I don’t
want to get into the (unfortunately considerable) intricacies of this
topic here. Basically, the result holds because for H ∈ R(U), the m
functions are holomorphic at z = ∞, and the condition F (i) = i is
equivalent to m±(∞) = i. This asymptotic behavior, in a generalized
version, is a well known necessary condition for a Herglotz function to
be the m function of a Dirac operator [7], and it is also sufficient here
because we are dealing only with the specialized system from R(U).

In any event, the argument is identical to the one presented in the
proof of [23, Theorem 3.2]; please see this reference for further details.

4. Transformation of measures

Herglotz functions F have unique representations

(4.1) F (z) = a+

∫
R∞

1 + tz

t− z
dν(t),

with a = Re F (i) ∈ R∞, and ν is a finite positive Borel measure on
R∞.

Let me state a few basic facts on how to recover ν from the boundary
behavior of Im F (z), without attempting to give a systematic review.
We will make frequent use of these in the sequel. See for example [26,
Appendix B], or pretty much any textbook on spectral theory, for a
more comprehensive review of the subject.
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First of all, F (t) ≡ limy→0+ F (t + iy) exists for (Lebesgue) almost
all t ∈ R. We have

dνac(t) =
1

π

Im F (t)

1 + t2
dt,

and the singular part χRνs is supported by

{t ∈ R : lim
y→0+

Im F (t+ iy) = ∞}.

Finally, point masses correspond to pole type asymptotics; more pre-
cisely,

(1 + t2)ν({t}) = lim
y→0+

−iyF (t+ iy), ν({∞}) = lim
y→0+

−iyF (i/y).

For any Herglotz function F with associated measure ν, we define νg
as the measure of Fg. Since ν is already determined by the function
Im F (z), the measure νg indeed only depends on ν and g and not on a
from (4.1), as suggested by the notation.

We also denote by gν the image measure (gν)(B) = ν(g−1·B). Recall
that this obeys the substitution rule

(4.2)

∫
g·A

f(y) d(gν)(y) =

∫
A

f(g · x) dν(x),

for f ∈ L1(R∞, gν) or measurable f ≥ 0.

Lemma 4.1. We have

(4.3) dνg(t) =
∥w(g · t)∥2

∥g−1w(g · t)∥2
d(g−1ν)(t), w(x) ≡

(
x
1

)
.

This formula also works for t = g−1 ·∞, if interpreted in the obvious
way: we can let w(∞) = e1 in this case (notice that multiplying w by
a factor will not affect the quotient). Of course, we can also express
the density on the right-hand side of (4.3) in terms of the entries of
g =

(
a b
c d

)
:

∥w(g · t)∥2

∥g−1w(g · t)∥2
=

(at+ b)2 + (ct+ d)2

t2 + 1
.

In any event, the slightly different function f(g;x) from Lemma 4.2
below will be more important in the sequel.

Proof. Assume first that F has a continuous extension to C+ ∪ R∞.
Then Fg has the same property, and thus both ν and νg are purely
absolutely continuous. As just reviewed, we have

dν(t) =
1

π

Im F (t)

1 + t2
dt,
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and similarly

νg(B) =
1

π

∫
B

Im F (g · t)
1 + t2

dt.

Since (d/dx)(g−1 · x) = 1/(a − cx)2, where we again write g =
(
a b
c d

)
,

the substitution x = g · t gives

νg(B) =
1

π

∫
g·B

Im F (x)

(a− cx)2∥w(g−1 · x)∥2
dx

=

∫
g·B

1 + x2

(a− cx)2∥w(g−1 · x)∥2
dν(x)

=

∫
g·B

∥w(x)∥2

∥g−1w(x)∥2
dν(x).

Now an application of (4.2) with A = g · B and g−1 taking the role of
g in (4.2) lets us further rewrite this as

νg(B) =

∫
B

∥w(g · t)∥2

∥g−1w(g · t)∥2
d(g−1ν)(t),

as desired.
The general case can then be handled by approximation. Given an

arbitrary Herglotz function F , approximate it by functions Fn of the
type just discussed, d(Fn, F ) → 0, with d denoting the metric from
(1.5); in other words, Fn → F locally uniformly. Then νn → ν in
weak ∗ sense, that is,

∫
f dνn →

∫
f dν for all f ∈ C(R∞), and here

we give R∞ its natural topology as the one-point compactification of
R (so R∞ ∼= S1, a circle). Clearly, we also have d(Fng, Fg) → 0, and
thus (νn)g → νg as well. By what we just established, we have

(4.4) d(νn)g(t) = h(g; t) d(g−1νn)(t), h(g; t) =
∥w(g · t)∥2

∥g−1w(g · t)∥2
.

Since g is a homeomorphism of R∞, the substitution rule (4.2) makes it
clear that the image measures converge to the expected limit g−1νn →
g−1ν. Moreover, h(g; t) is also continuous on R∞, and thus (4.4) implies
that

dνg(t) = lim
n→∞

d(νn)g(t) = h(g; t) d(g−1ν)(t),

as claimed. □

Lemma 4.2.

(4.5) νg−1(g · A) =
∫
A

f(g;x) dν(x), f(g;x) =
∥w(x)∥2

∥gw(x)∥2
.
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The density f is a cocycle: for any g, h ∈ G, x ∈ R∞, we have

(4.6) f(gh;x) = f(g;h · x)f(h;x).

Proof. Of course, (4.5) just rephrases Lemma 4.1; more precisely, this
equation follows from (4.3) and the substitution rule (4.2). The cocycle
identity follows from a straightforward calculation, which I leave to the
reader. □

5. Automorphic measures

Definition 5.1. We call a finite Borel measure ν on R∞ automorphic
if ν = νg for all g ∈ G. The collection of all automorphic measures will
be denoted by MG.

By Lemma 4.2, one possible more explicit way of stating this condi-
tion is: d(g−1ν)(x) = f(g;x) dν(x) for all g ∈ G. One could of course
also consider non-finite measures that are automorphic in this sense
but they are useless for us here since they do not occur in the Herglotz
representation (4.1).

The goal of this section and the next is to study automorphic mea-
sures in more detail and relate them to their restrictions to the funda-
mental set F . Before we do this, it is perhaps worth clarifying explicitly
the relation of Definition 5.1 to the G invariance of the associated Her-
glotz functions.

Proposition 5.1. Let F be a Herglotz function with representation
(4.1). Then the following statements are equivalent:
(a) ν = νg for all g ∈ G;
(b) (Im F )g = Im F for all g ∈ G;
(c) Fg = F + a(g) for all g ∈ G, for certain constants a(g) ∈ R;
(d) There is a homomorphism γ : G → (R,+) such that Fg = F +γ(g)
for all g ∈ G.

The parentheses in part (b) are unnecessary since (Im F )g = Im (Fg);
they emphasize that the condition can be read as stating that the har-
monic function Im F is automorphic.
The homomorphisms γ : G → R form a vector space. Since G is a

free group on N − 1 generators, {γ} ∼= RN−1. Our results below will
show that any homomorphism γ occurs as the γ of a suitable F , as in
part (d). See Section 7, especially Lemma 7.1. I mention these facts in
passing; we will not use them here.

Proof. Since the measure ν is determined by and determines Im F ,
which in turn determines F up to a real constant, it is clear that (a),
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(b), (c) are equivalent. If (c) holds, then of course a(g) = Fg(z0)−F (z0)
for any z0 ∈ C+, so

a(gh) = F (gh)(i)− F (i) = Fg(h · i)− F (h · i) + Fh(i)− F (i)

= a(g) + a(h),

and a = γ turns out to be a homomorphism, as claimed in part (d).
The converse implication is trivial. □

Theorem 5.2. Suppose that ν ∈ MG. Then ν(L) = 0.

Recall that L ⊆ R∞ denotes the limit set of G. This set is closed
and invariant under G.

Proof. If A ⊆ R∞ is a G invariant set, then so is Ac, and now Lemma
4.1 shows that if ν is automorphic, then so is χA dν. We apply this
remark to A = L to obtain the automorphic measure χL dν. Then we
consider the corresponding harmonic function

H(λ) = Im

∫
L

1 + tλ

t− λ
dν(t) = Im λ

∫
L

1 + t2

|t− λ|2
dν(t), λ ∈ C+.

Observe that H has a continuous extension to C+ ∪ (R∞ \ L), and
H = 0 on R∞ \ L.

Proposition 5.1(b) shows that Hg = H for all g ∈ G. So as in the
proof of Theorem 1.1(a), we can define a harmonic function K : Ω →
[0,∞), K(z) = H(φ−1(z)), using local inverses of φ.

Now the description of the mapping behavior of φ from Section 2
shows that if z → x /∈ Ω, then we can make φ−1(z) approach Lc; more
precisely, we can arrange that dist(φ−1(z), {s, t}) → 0, where s, t are
two preimages of x, for example in the same In. (We cannot guarantee
convergence to a single limit because preimages of two small semidisks
above and below x need not be close to each other.)

Since H = 0 on Lc, no matter where exactly we are, this shows that
K has a continuous extension to all of C∞. This extended function
has a maximum on its compact domain, and since K = 0 on C∞ \
Ω =

⋃
[aj, bj], the maximum is assumed at a point of Ω, where K is

harmonic. So K,H ≡ 0 and hence ν(L) = 0, as asserted. □

Theorem 5.2, combined with Lemma 4.2, shows that an automorphic
measure is determined by its restriction to the fundamental set F =⋃N

n=1 In for Lc. Lemma 4.2 also suggests the following procedure for
constructing general automorphic measures: start out with any finite
measure on F , and then propagate it to Lc = G ·F by using (4.5), and
now of course νg−1 = ν if we want to obtain an automorphic measure.
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We must verify two things here: (1) The extended measure is still
finite on Lc; (2) It is indeed automorphic.

The first point is addressed by Lemma 5.4 below, and the second one
will be the content of Theorem 5.6. The question of whether series such
as the ones from (5.2) converge, and for what exponents, is classical for
general Fuchsian groups and has been investigated extensively. This
is no coincidence because our construction of automorphic measures is
quite similar in spirit to the construction of automorphic functions via
Poincaré series. See for example [1, 18].

We will not rely on this theory here. In our more specialized situa-
tion, we can give a considerably simpler and perhaps more transparent
treatment from scratch if we study the issue not in isolation, as a ques-
tion about general Fuchsian groups exclusively, but in the context of
the spectral theory in which it arose here in the first place.

Lemma 5.3. For any x ∈ Lc, there is an F ∈ HG whose associated
automorphic measure satisfies ν({x}) > 0. In fact, F can be the F
function of an H ∈ D0(U).

This depends on a well known parametrization of D0(U). This mate-
rial is almost classical but since we will also need it in Section 7 below,
let me give a very quick review. The basic idea goes back to Craig [4].
In the form used here, the method is discussed in detail in [9, Sections
2, 3], but see also, for example, [3].

Given an H ∈ D0(U), let h(z) = m+(z) + m−(z), and consider
the Krein function of this Herglotz function, which is defined (almost
everywhere) as ξ(t) = (1/π)Im log h(t), 0 ≤ ξ(t) ≤ 1. Since H is
reflectionless on U , we have Re h = 0 there, so ξ = 1/2 on U . The
further condition σ(H) ⊆ U then implies that ξ(t) = χ(µn,bn)(t) on
each gap an < t < bn, for some µn ∈ [an, bn]. The µn determine ξ and
thus already let us recover h as

(5.1) h(z) = 2i
N∏

n=1

√
(an − z)(bn − z)

µn − z
;

compare [9, eqn. (2.4)]. Note that h has a pole at each µn which satisfies
µn ̸= an, bn, and this leads to a point mass in the representing measure.

The function h(z) does not uniquely determine H; rather, we must
introduce the additional parameters σn = ±1. These indicate whether
this point mass at t = µn is assigned to m+ (if σn = 1) or m− (if
σn = −1). Other ways of splitting it are not allowed because that
would produce an eigenvalue at µn, but σ(H) ⊆ U for H ∈ D0(U).

If µn = an or = bn, then there is no such point mass and σn becomes
irrelevant. It is thus natural to combine µn, σn into one parameter
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µ̂n = (µn, σn) and view µ̂n as coming from a circle, which is obtained
by gluing together two copies of the gap [an, bn] at the endpoints.

A more careful version of this analysis shows that the procedure sets
up a homeomorphism between D0(U) and a torus TN , by sending an
H ∈ D0(U) to its parameters (µ̂1, . . . , µ̂N).

Proof of Lemma 5.3. We can focus on the case x ∈ F since an auto-
morphic measure with ν({x}) > 0 will also have point masses on the
whole orbit G · x.

For such an x ∈ F , let t = φ(x). Then t ∈ R∞ \ U , let’s say
an ≤ t ≤ bn. If t ̸= an, bn, then introduce also σ = sgn Im φ(x + iy),
y > 0, y small. So σ = ±1 informs us whether φ(x+ iy) approaches t
from above or below.

We now simply pick an H ∈ D0(U) whose parameters (µ̂1, . . . , µ̂N)
satisfy µ̂n = (t, σ). As discussed, the measure of mσ(z;H) will then
have a point mass at t or, equivalently, limy→0+ y Immσ(t + iy) > 0.
This means that also limy→0+ y ImM(t + iσy) > 0 and this, in turn,
implies that limy→0+ y Im F (x+ iy) > 0, as desired.

If t = an, bn, the argument will not work in exactly this form because
now the measures of m± have no point masses on [an, bn]. However,
we can still take µn = t, and this will make m±(z) ≃ 1/

√
t− z near t;

compare (5.1) above and equation (2.8) from [9].
Let’s say t = b1, to make this discussion more concrete, so that

then x is the (left) point with label B1 in Figure 1. In this situation,
m±(z) have continuous extensions to C+ ∪ (a1, b1) which are real on
this interval (in fact, we can continue holomorphically, but we won’t
need this here). Consider now a small semidisk

D = {z : |z − x| < δ, Im z > 0},
centered at x = B1. The semicircle ending at x from Figure 1 cuts this
into two parts, and F (λ) = m+(φ(λ)) on the left part while F (λ) =

−m−(φ(λ)) on the right part, and of course F is holomorphic on the
full semidisk. So what we just observed about the behavior of m±
shows that F similarly has a continuous extension to D \ {x}, and
Im F = 0 on (x − δ, x) and (x, x + δ). Hence ν gives zero weight to
these sets. If we had ν((x − δ, x + δ)) = 0, then F could in fact be
extended continuously to this whole interval, but we already know that
this isn’t working since limy→0+ |F (x + iy)| = ∞. Hence ν({x}) > 0,
as desired. □

In this last part of the argument, it is really the same mechanism
at work as in the easier case t ̸= an, bn, only in a more elaborate
version: M has a square root type singularity, which does not lead to
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a point mass in the associated measure, but then φ(x + h) − t ≃ h2,
so the change of variable that happens when we move from M to F
amplifies this and we do end up with the required pole type behavior
that corresponds to a point mass.

In the next result, we again write a matrix representing a general
g ∈ G as g =

(
a b
c d

)
.

Lemma 5.4. We have

(5.2)
∑
g ̸=1

(
1

a2
+

1

b2
+

1

c2
+

1

d2

)
< ∞.

Moreover,
∑

g∈G f(g;x) converges locally uniformly on x ∈ Lc.

The result in this form depends on our specific choices for the cover-
ing map (and thus the Fuchsian group), which make sure that 0,∞ /∈ L.
It fails badly for example for the cyclic group with generator g · z = 2z
since then b = c = 0 for all g ∈ G and, to add insult to injury,
{a2} = {d2} = {2n : n ∈ Z}.
Proof. We start by observing that a ̸= 0 for all g ∈ G, because oth-
erwise g · ∞ = 0, which is impossible because the extended version of
φ satisfies φ(∞) ̸= φ(0). For the same reason, d ̸= 0 for all g ∈ G.
Similarly, if we had b = 0 or c = 0 for a g ̸= 1, then z = 0 or z = ∞
would be a fixed point of g, but fixed points are in L; in fact, L can
also be obtained as the closure of the fixed points [12, Theorem 3.4.4].

We have uniform bounds on the quotients

(5.3) 0 < C1 ≤
∣∣∣a
b

∣∣∣ , ∣∣∣a
c

∣∣∣ , ∣∣∣∣ bd
∣∣∣∣ , ∣∣∣ cd∣∣∣ ≤ C2, g ∈ G, g ̸= 1.

Indeed, if we had, let’s say, an/bn → 0 for certain gn ∈ G, then g−1
n ·0 →

∞, which would imply that ∞ ∈ L. Similar arguments establish the
other bounds.

We know from Lemma 5.3 that there is an automorphic measure
with ν({0}) = 1. Now (4.5) shows that ν({g · 0}) = f(g; 0), and these
points g ·0, g ∈ G, are distinct because fixed points are in L and 0 /∈ L.
Thus

∑
f(g; 0) < ∞. We have f(g; 0) = 1/(b2 + d2), and then (5.3)

implies that
∑

1/X2 < ∞ for X = a, b, c, d.
Next, I claim that

∑
g∈G f(g;x) converges uniformly on

|x| ≥ max{2/C1, 1},
and here C1 > 0 is the constant from (5.3). Indeed, for these x, we
have |b/a| ≤ |x|/2, so (ax+ b)2 ≥ a2x2/4 and hence

f(g;x) =
x2 + 1

(ax+ b)2 + (cx+ d)2
≤ x2 + 1

(ax+ b)2
≤ 8

a2
.
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The uniform convergence of
∑

f(g;x) now follows from the convergence
of

∑
1/a2.

So, to establish uniform convergence on an arbitrary compact subset
K ⊆ Lc, it now suffices to consider the case ∞ /∈ K, so K is a bounded
subset of R. Then obviously

f(g;x) ≤ C

(ax+ b)2

for g ∈ G, x ∈ K.
There can be only finitely many g ∈ G with −b/a ∈ K because

−b/a = g−1 ·0 and thus the existence of an infinite sequence of such g’s
would give us a limit point in K. We can then estimate (ax+ b)2 ≳ a2,
uniformly in x ∈ K and g ∈ G\F , with F denoting this finite (possibly
empty) set of g ∈ G with −b/a ∈ K. Indeed, suppose that on the
contrary we had

(anxn + bn)
2

a2n
=

(
xn +

bn
an

)2

→ 0

for certain gn ∈ G \F , xn ∈ K. We can also assume here that xn → x,
and it then follows that x = − lim bn/an = lim g−1

n · 0. Since x /∈ L,
this would imply that the gn come from a finite set, but then −bn/an =
x ∈ K for large n even though we specifically avoided the g satisfying
this condition. So we again have a uniform estimate f(g;x) ≲ 1/a2 for
g ∈ G, x ∈ K. □

Corollary 5.5. Let

D(x) =
∑
g∈G

f(g;x).

Then D(x) is a continuous positive function on the open set x ∈ Lc,
and D(x) = ∞ for all x ∈ L.

Since it is also clear from this that D(x) gets large when x ∈ Lc

approaches a point of L, we can rephrase the statement as follows:
D : R∞ → [1,∞] is continuous and D−1({∞}) = L.

Proof. Lemma 5.4 immediately implies that D is continuous on Lc and
1 ≤ D < ∞ there.
We will not need the second part here, about the behavior of D on L,

so I will just sketch the argument. First of all, if x0 ∈ L is a fixed point
of a g0 ∈ G, g0 ̸= 1, then g0w(x0) = λw(x0) and thus f(gn0 ;x0) = |λ|−2n.
Hence

∑
n∈Z f(g

n
0 ;x0) already diverges.

Suppose now that x0 ∈ L is not a fixed point of any g ∈ G, g ̸= 1,
so that the points g · x0, g ∈ G, are all distinct. If we had D(x0) < ∞,
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then the measure
ν =

∑
g∈G

f(g;x0)δg·x0

would be finite. It is also automorphic, and this we can see in the same
way as below, when we discuss this construction in general. See the
proof of Theorem 5.6 below. We have reached a contradiction because
we already know from Theorem 5.2 that automorphic measures can not
give weight to L. □

We now have all the tools needed to carry out the construction of
automorphic measures that was already described above. Given a finite
Borel measure ν0 on F =

⋃
In and a Borel set A ⊆ F , let

(5.4) ν(g · A) =
∫
A

f(g;x) dν0(x).

For fixed g ∈ G, this defines a measure on g · F . Now since F is a
fundamental set for Lc, the rule (5.4) also uniquely determines a Borel
measure ν on all of Lc (or on R∞, with ν(L) = 0). More explicitly, if
B ⊆ Lc is an arbitrary Borel set, then we writeB =

⋃
Ag as a countable

disjoint union of the sets Ag = B ∩ g · F , and we set ν(B) =
∑

ν(Ag),
with the summands defined via (5.4). Corollary 5.5 shows that

(5.5) ν(Lc) =

∫
F
D(x) dν0(x) < ∞

since F is contained in a compact subset of Lc, so D is bounded there.

Theorem 5.6. For any finite Borel measure ν0 on F , the measure ν
defined above is automorphic.

Proof. We will verify that νg−1 = ν for all g ∈ G. As above, given a
Borel set B ⊆ Lc, we can write B =

⋃
h · Ch, Ch ⊆ F , so it suffices to

check that νg−1(h · A) = ν(h · A) for A ⊆ F .
By Lemma 4.2 and the substitution rule (4.2), we have

νg−1(h · A) =
∫
g−1h·A

f(g;x) dν(x) =

∫
A

f(g; g−1h · t) d(h−1gν)(t).

Also, d(k−1ν)(t) = f(k; t) dν0(t) on F by the defining property (5.4) of
ν. Thus the cocycle identity (4.6) shows that

νg−1(h · A) =
∫
A

f(g; g−1h · t)f(g−1h; t) dν0(t)

=

∫
A

f(h; t) dν0(t) = ν(h · A)

as desired. □
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6. Automorphic measures and their restrictions to F

Of course, (5.4) and the above procedure were forced on us by Lemma
4.2, so ν is the only automorphic measure whose restriction to F is
ν0. We have set up a bijection between arbitrary finite measures on
F and automorphic measures on Lc or R∞. We want to go further
here and show that this map is a homeomorphism if we use the weak
∗ topology on measures. Here we give the subintervals In ⊆ F the
topology of a circle S1. (If this seems unmotivated at this point, please
see the discussion following the statement of Theorem 6.1 below for an
explanation of why this is important.)

This latter topology matters even if we are only interested in the
measures because if J = [C,D) is a half-open interval, then for example
δD−1/n → δC if J is given the circle topology.

To constantly remind ourselves that this is the topology on F we are
using, we now denote the subintervals of this set by Sn. So Sn = In as
a set, and for example S1 can be viewed as the segment between the
two points with label B1 in Figure 1 of Section 2, with these points
identified. To obtain S2, we must first glue together the two pieces
[B2, A2) and [A2, B2) of I2 and then again endow the resulting interval
[B2, B2) with the circle topology. Finally, in the situation of Figure 1,
the last set I3 is again already a single interval since it goes through
the point ∞ ∈ R∞, which we can’t see in the picture. We glue together
the two points labeled A3 to produce S3.

Recall that we denote the space of automorphic measures by MG.
The almost self-explanatory notation M(F) will similarly refer to the
space of finite measures on F . In both cases, we use the weak ∗ topol-
ogy, and, as discussed, we give F ∼= S1 ⊔ . . . ⊔ SN the topology of
a disjoint union of N circles. We then also have an obvious (linear)
homeomorphism

M(F) ∼= M(S1)× . . .×M(SN),

and we switch between these two realizations of the space without
further comment when convenient.

Theorem 6.1. The restriction map MG → M(F), ν 7→ (ν1, . . . , νN),
νn(A) = ν(A), A ⊆ Sn, is a homeomorphism.

We can now appreciate the significance of the circle topology in this
context by running a quick informal check on this result. Observe
first of all that the restriction map is not continuous on general, not
necessarily automorphic measures. For example, we can again consider
ν = δx, with x converging from the left to (let’s say) the left endpoint
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B1 of I1. Then all restrictions to I1 = S1 are zero, but the sequence
converges to δB1 , which is equal to its restriction.

This kind of example would also be a problem for automorphic mea-
sures if we weren’t using the circle topology. With the circle topology,
all will be well because such a point mass will lead to a corresponding
point mass near the right endpoint of I1, and this measure is now close
to δB1 .

The following observation will make sure that the weights come out
right in this type of example.

Lemma 6.2. Consider one of large semicircles |z+ c| = r from Figure
1 (or, more formally, a suitable preimage under φ of a subinterval
(bj, aj+1) ⊆ U). Let g ∈ G be the unique map that maps this semicircle
to its reflected version |z − c| = r. Then, for x = −c ± r, we have
g · x = −x and f(g;x) = 1.

Proof. Recall from Section 2 that we have a description of g = IR as
the composition of reflection about the imaginary axis with an inversion
about |z − c| = r. More explicitly,

g · z = c− r2

z + c
=

cz + c2 − r2

z + c
.

So as the SL(2,R) matrix representing g we can take

g =
1

r

(
c c2 − r2

1 c

)
,

and given this information, a straightforward calculation will now finish
the proof. □

Proof of Theorem 6.1. As discussed earlier, we already know that the
map is a bijection. We must still establish that both the map and its
inverse are continuous.

We start with the restriction map itself, and here we’ll discuss ex-
plicitly only the map ν 7→ ν1. The general case ν 7→ νn is of course
similar but more awkward to write down when In has two pieces that
need to be glued together.

Let’s write I1 = I = [c, d). As a preliminary, recall that the weak ∗
topology is metrizable on the bounded open subsets ν(R∞) < A, and
it suffices to prove continuity on these sets. We must thus show that if
νn → ν in MG and f ∈ C[c, d], f(c) = f(d), then

(6.1)

∫
[c,d)

f(x) dνn(x) →
∫
[c,d)

f(x) dν(x),
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and here the hypothesis νn → ν means that similarly

(6.2)

∫
R∞

g(x) dνn(x) →
∫
R∞

g(x) dν(x)

for all g ∈ C(R∞).
To do this, write f(x) = f(c) + h(x). Then h ∈ C[c, d] can be

continuously extended to R∞ by setting h(x) = 0 for x /∈ I, so (6.1)
for f = h is essentially the same as our assumption (6.2).

So we need only show that νn([c, d)) → ν([c, d)). This is clear if
ν({c}) = ν({d}) = 0.
In general, we can move the endpoints c, d slightly to avoid possible

point masses. If we do this judiciously, we can exploit the fact that
the measures are automorphic to make sure that the measure doesn’t
change much when we adjust the interval in this way.

Here are the details. Let ϵ > 0 be given. Let g0 be the map from
Lemma 6.2 for the circles ending at c and d, respectively. So g0 · c = d
and f(g0; c) = 1. Now pick a small δ1 > 0 and define δ2 > 0 by
g0 · (c− δ1) = d− δ2. Then δ2 will be small as well and in fact δ2 will
also decrease strictly as δ1 > 0 approaches zero. Thus, by taking δ1
small enough and avoiding the at most countably many point masses,
we can make sure that the following statements will hold:

1− ϵ ≤ f(g0;x) ≤ 1 + ϵ for c− δ1 ≤ x ≤ c,(6.3)

ν({c− δ1}) = ν({d− δ2}) = 0.(6.4)

Notice that g0 · [c− δ1, c) = [d− δ2, d), so (6.3), combined with Lemma
4.2, shows that

(1−ϵ)µ([c−δ1, c)) ≤ µ([d−δ2, d)) ≤ (1+ϵ)µ([c−δ1, c)) for all µ ∈ MG.

In particular, we have

(6.5) |νn([c− δ1, c))− νn([d− δ2, d))| ≤ ϵνn(R∞) ≤ Cϵ,

and of course the same estimate holds for ν. Moreover, (6.4) implies
that νn([c − δ1, d − δ2)) → ν([c − δ1, d − δ2)), and if we combine this
with (6.5), we see that

|νn([c, d))− ν([c, d))| < (2C + 1)ϵ

for all sufficiently large n.
To prove that the inverse map is continuous, we again restrict the

(original) map to the subsets {ν ∈ MG : ν(R∞) ≤ C}. These are closed
subsets of the compact metric spaces {ν ∈ M(R∞) : ν(R∞) ≤ C} and
thus compact themselves. To confirm this, assume that the νn are
automorphic measures and νn → ν. Then the associated Herglotz
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functions, normalized by requiring that Re Fn(i) = Re F (i) = 0 con-
verge similarly Fn → F , and the functions Im Fn are automorphic by
Proposition 5.1(b). Clearly a pointwise limit of automorphic functions
is automorphic itself, so by referring to Proposition 5.1 for a second
time, we see that ν ∈ MG, as claimed.

So we now have a continuous map between the compact metric spaces
{ν ∈ MG : ν(R∞) ≤ C} → {ν ∈ M(F) : ν(F) ≤ C}, and it is a
bijection onto its image. The continuity of the inverse is automatic in
this situation. We can now finish the proof by recalling (5.5) and the
fact that the function D(x) from that identity is bounded on F . This
makes sure that for any A > 0, the set {ν ∈ M(F) : ν(F) < A} is in
the image of the restricted maps discussed above if we choose C > 0
large enough. □

7. From automorphic measures to automorphic Herglotz
functions

Theorems 5.2, 5.6, and 6.1 give us a description of the automorphic
measures, and we must now clarify which of these will lead to auto-
morphic functions when used in (4.1). Notice that Proposition 5.1(d)
associates a homomorphism γ(g, ν) with each ν ∈ MG, which is given
by

(7.1) γ(g, ν) = Re (Fg(i)− F (i)),

with F = Fν being the Herglotz function with measure F , as in (4.1).
This function is strictly speaking not completely determined by ν, but
of course the unknown constant a will drop out of the difference and
thus is irrelevant here.

We can alternatively view γ as a map on M(S1) × . . . ×M(SN) ∼=
M(F) (for fixed g ∈ G), using Theorem 6.1, and then we write it
as γ(g, ν1, . . . , νN). We see from (7.1) that γ(g, ν) is a continuous R-
linear functional of ν. It is also a continuous function of ν1, . . . , νN , by
Theorem 6.1, but of course not multilinear in the individual measures
in this version. In the sequel, we will again switch without further
comment between these viewpoints, interpreting γ and also Γ from
(7.2) below as a map on MG, M(F), or M(S1)× . . .×M(SN).

The homomorphism γ(g) for a general g ∈ G (and fixed ν, for now)
is determined by its values on a set of generators g1, . . . , gN−1. Fixing
such a set of generators, we can then define a single continuous linear
map

(7.2) Γ : MG → RN−1, Γ(ν) = (γ(g1, ν), . . . , γ(gN−1, ν)) .
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We are interested in the question of when Γ(ν) = 0 for an automorphic
measure ν.

Lemma 7.1. Suppose that ν ∈ MG, Γ(ν) = 0. If ν(Sn) = 0 for some
n = 1, 2, . . . , N , then ν = 0.

Put differently, if the representing measure of an automorphic Her-
glotz function gives zero weight to an In, then F ≡ a ∈ R∞.

Proof. Let’s again suppose that n = 1, for convenience. Observe that
the intervals adjacent to I1 in Figure 1 are images g · I1 of the same
interval. So if ν(I1) = 0, then in fact ν(J) = 0 for a larger open
interval J which contains I1 and the neighboring intervals, which are
also mapped to (a1, b1) by φ. The associated automorphic Herglotz
function F (λ) =

∫
R∞

1+tλ
t−λ

dν(t) thus has a holomorphic continuation to

C+ ∪ J ∪ C−, and Im F (x) = 0 for x ∈ J .
We then deduce that the functionsm± have similar behavior near the

gap (a1, b1). Of course, we can not automatically conclude that they
are holomorphic at the branch points a1, b1 of φ; rather, these functions
will have square root type behavior there. However, it is true and easy
to see that m± have continuous extensions to C+ ∪ (a1 − δ, b1 + δ) and
m±(x) ∈ R for x ∈ (a1, b1). This is impossible, basically because it
contradicts (5.1).

Of course, (5.1) as stated does not apply here because we did not
assume that H ∈ D0(U). However, the reasoning that led to (5.1)
remains valid and gives the same behavior of h locally. The point
is that no matter what the value of µn is, we cannot avoid h being
unbounded near some point of [an, bn]. This would be obvious from
(5.1) if we had this formula available, and it is still true in our much
more general situation. Let me provide a somewhat more detailed
sketch of this step.

First of all, observe that the Krein function ξ of h(z) = m+(z) +
m−(z) does satisfy ξ = 1/2 on U if h is not a constant from R∞.
Moreover, the properties of the functions m± that were just derived
imply that their measures and thus also the one associated with h give
zero weight to [a1, b1]. In this situation, the Herglotz representation of
h shows that

h′(x) =

∫
R∞\[a1,b1]

t2 + 1

(t− x)2
dµ(t) > 0

on x ∈ (a1, b1). This in turn implies that ξ(x) = χ(a1,c)(x) there,
for some a1 ≤ c ≤ b1. No matter what the value of c is, we have
ξ(x) = 1 near a1 or ξ(x) = 0 near b1 (or both) for x ∈ (a1, b1) and of
course ξ = 1/2 on the other side of this point t = a1 or t = b1. In
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either case, this behavior of ξ gives us a square root type singularity
h(z) ≃ (t − z)−1/2 there. This contradicts what we learned about m±
above. We have to admit that we are actually in the degenerate case
h ≡ a ∈ R∞, and thus ν(R∞) = 0, as claimed. □

Corollary 7.2. Suppose that ν ∈ MG, ν ̸= 0, Γ(ν1, . . . , νN) = 0.
Then, if also Γ(c1ν1, . . . , cNνN) = 0, cn ≥ 0, then c1 = c2 = . . . = cN .

Proof. Denote the second measure, with restrictions cnνn, by µ ∈ MG.
Let’s say c1 = max cn. Consider ρ = c1ν − µ. This measure is still
positive since its restriction to Sn is ρn = (c1 − cn)νn, and obviously it
is automorphic and Γ(ρ) = 0. However, ρ1 = 0, so Lemma 7.1 shows
that ρ = 0. Since also νn ̸= 0 for all n, by the same result, this implies
that cn = c1. □

We now turn to existence of solutions of Γ(ν) = 0.

Theorem 7.3. For any νn ∈ M(Sn), νn(Sn) > 0, n = 1, 2, . . . , N ,
there are unique constants cn > 0,

∑
cn = 1, such that

Γ(c1ν1, . . . , cNνN) = 0.

Proof. Uniqueness is guaranteed by Corollary 7.2, so we only need to
prove the existence of such cn. Of course, we need not pay any attention
to the condition

∑
cn = 1, which we can always satisfy by multiplying

the cn by a constant.
We start with the case when νn = δxn , xn ∈ Sn. We mostly did

this already, in the proof of Lemma 5.3, though we focused on a single
xn there. Let’s briefly review the argument one more time: we take
the (unique) H ∈ D0(U) with parameters µ̂n = (tn, σn), tn = φ(xn),
with σn = ±1 determined by whether φ(xn + iy) ∈ Ω approaches
tn ∈ (an, bn) from above or below when y → 0+. Then the measure ν
of the F function of H will satisfy Γ(ν) = 0 because F is automorphic,
and it will have the desired point masses at the xn. This was fairly
obvious when tn ∈ (an, bn), and, as we argued above, it is still true,
though less obvious, when tn = an or = bn. Finally, the parametrization
of D0(U) that was reviewed following the statement of Lemma 5.3 also
makes it clear that ν(In \ {xn}) = 0. This follows because if, say,
tn ∈ (an, bn) and σn = 1, then m− can be holomorphically continued
through (an, bn) while m+ is meromorphic there, with a single pole at
tn, and both functions are real and continuous on [an, bn] \ {tn}. The
other cases lead to similar scenarios.

Next, suppose that, more generally, ν1 =
∑J

j=1wjδxj
, but still νn =

δyn for n ≥ 2, with xj ∈ S1, yn ∈ Sn, wj > 0. If we replace ν1 by just
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one of its point masses wjδxj
, then we are back in the first case, so we

know there are d2(j), . . . , dN(j) > 0 such that

Γ(wjδxj
, d2(j)δy2 , . . . , dN(j)δyN ) = 0.

Thus c1 = 1, cn =
∑J

j=1 dn(j) works for the original measures.
Now we can repeat the same procedure in the second component, so

we consider measures of the form

(7.3) (ν1,
K∑
k=1

wkδxk
, δy3 , . . . , δyN ),

where ν1 =
∑J

j=1 vjδtj is of the type just discussed. By the previous
step, we can now handle the measures where we replace the second
component by one of its summands wkδxk

and then also the full measure
from (7.3), in the same way as above. Continuing in this way, we
establish the claim of Theorem 7.3 in the case when all νn are finitely
supported measures.

In general, if arbitrary measures νn are given, approximate them by

such finitely supported measures ν
(j)
n → νn. By what we just showed,

there are cn(j) > 0,
∑N

n=1 cn(j) = 1, such that

Γ
(
c1(j)ν

(j)
1 , . . . , cN(j)ν

(j)
N

)
= 0.

By passing to a subsequence, we may assume that cn = limj→∞ cn(j)
exists. We have cn ≥ 0,

∑
cn = 1. We observed at the beginning of

this section that Γ(ν) is continuous. Thus

Γ(c1ν1, . . . , cNνN) = 0,

as desired. Since
∑

cn = 1, and, by assumption, νn(Sn) > 0, Lemma
7.1 guarantees that cn > 0 for all n. □

8. Proof of Theorem 1.2

We’ll prove the following slightly more detailed version of Theorem
1.2.

Theorem 8.1. (a) {F ∈ HG : F (i) = i} is a compact convex set.
(b) Let F = Fν = F (·;H) be an automorphic Herglotz function from

the set of part (a) with associated measure ν ∈ MG. Let H ∈ D(U) be
the associated canonical system, that is, F is the F function of H.
Then the following are equivalent: (i) F is an extreme point; (ii)

H ∈ D0(U); (iii) The restrictions νn = χSnν are of the form νn =
wnδxn, with xn ∈ In, wn > 0.
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Proof. Part (a) is obvious from the already mentioned fact that HG is
compact and was only stated here because the corresponding claims
were also made in Theorem 1.2.

A Herglotz function F with representation (4.1) satisfies F (i) =
a+ iν(R∞). In particular, if F is from the set of part (a), then a = 0,
ν(R∞) = 1.

To prove part (b), observe that the linear structure on the set from
part (a) is the same as the one on the associated measures ν ∈ MG.
More explicitly, we have Fcµ+(1−c)ν = cFµ + (1 − c)Fν . So we may as
well try to find the extreme points of the space of measures

(8.1) X ≡ {ν ∈ MG : ν(R∞) = 1,Γ(ν) = 0}.

Since for given xn ∈ In, the wn from part (iii) are uniquely deter-
mined if we want to obtain a measure from this space, it is already
clear that these measures are extreme points.

Conversely, if ν ∈ X is not of the type described in (iii), then for
at least one n, let’s say for n = 1, we can write ν1 = µ1 + ρ1, with
µ1, ρ1 ̸= 0 and singular with respect to each other. Now Theorem 7.3
lets us find constants c2, . . . , cN > 0 such that

Γ(µ1, c2ν2, c3ν3, . . . , cNνN) = 0.

Let’s denote the corresponding measure from MG by µ. Of course, we
can do the same thing for ρ1, and we obtain a second measure ρ ∈ MG,
satisfying Γ(ρ) = 0, and with restriction to S1 equal to ρ1, and the other
restrictions, to Sn, are multiples of the νn. Now σ = µ + ρ satisfies
Γ(σ) = 0, σ1 = ν1, σn = dnνn (n ≥ 2). Hence σ = ν by Corollary 7.2.
We have succeeded in writing

ν = µ(R∞)
µ

µ(R∞)
+ ρ(R∞)

ρ

ρ(R∞)

as a non-trivial convex combination. Notice here that µ(R∞), ρ(R∞) >
0, and indeed

µ(R∞) + ρ(R∞) = ν(R∞) = 1,

as required. Obviously, the normalized versions of µ, ρ are in X. Fur-
thermore, µ ̸= ρ by construction. We have shown that only the mea-
sures listed in (iii) are extreme points.

Finally, we already discussed earlier that exactly these measures give
us the finite gap operators H ∈ D0(U). □
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9. Representation of reflectionless operators by
measures

We already have a homeomorphism D(U) ∼= {F ∈ HG : F (i) = i}
from Theorem 1.1. The correspondence between a Herglotz function
and the data (a, ν) from its representation (4.1) is a homeomorphism
also; see, for example, [21, Theorem 7.3]. So in our current situation, we
have a homeomorphism D(U) ∼= X, with X still denoting the space of
measures from (8.1). In this version, the statement contains a condition
involving the map Γ; we can give it a more satisfying form with the
help of Theorems 6.1, 7.3.

Theorem 9.1. The following map is a homeomorphism:

D(U) → M1(S1)× . . .×M1(SN),

H 7→
(

ν1
ν1(S1)

, . . . ,
νN

νN(SN)

)
.

It sends an H to the normalized versions of the restrictions to Sn of
the automorphic measure associated with the F function of H.

Proof. The preceding discussion has already established the variant
version of this statement where we don’t normalize the measures. Next,
notice that Theorem 7.3 lets us recover the numbers νn(Sn) > 0 from
the normalized measures µn = νn/νn(Sn) since Γ(ν1, . . . , νN) = 0 and
ν(R∞) = 1. Lemma 7.1 guarantees that indeed νn(Sn) > 0.

Clearly the maps ν 7→ νn(Sn) are continuous, by Theorem 6.1, so
the map from Theorem 9.1 has now been recognized as a continuous
bijection. We are mapping between compact metric spaces, so the
continuity of the inverse map is automatic. □

We can elaborate some more on this theme. Since we are mapping
from a compact space, we in fact have

mn ≡ min
H∈D(U)

νn(Sn) > 0.

Moreover, this map is linear with respect to the natural linear structure
on F functions satisfying F (i) = i, so, as already mentioned in the
introduction, Theorem 1.2 now shows that mn = minH∈D0(U) νn(Sn).
Or, if we use the more explicit description from Theorem 8.1(b)(iii),
then we can say that mn = minwn where now the minimum is taken
over the torus (x1, . . . , xN) ∈ S1 × . . .×SN and, given such points, the
wn > 0 denote the unique weights for which the automorphic measure
ν with restrictions (w1δx1 , . . . , wNδxN

) satisfies Γ(ν) = 0, ν(R∞) = 1.
Of course, similar remarks apply to the maximum of νn(Sn).
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Finally, while most of our results dealt with Dirac operators exclu-
sively, we can easily go back to the more general setting of canonical
systems, if this is desired, for example by using the same simple device
that was also employed in [9, 23] in similar situations. Please see these
references for more on this theme; we limit ourselves to a few quick and
mostly obvious remarks here. As a preparation, introduce the notation

Z = {H(x) ≡ Pα : 0 ≤ α < π}

for the trivial canonical systems with constant (extended) real m func-
tions. So the F function of H(x) ≡ Pα is F (λ) ≡ − tanα ∈ R∞. Then
R(U)\Z can be restored from D(U) by letting the translation/dilation
group w 7→ cw + a, c > 0, a ∈ R, act on m functions, or, what is the
same here, on F functions. So we similarly map F to cF +a. I mention
in passing that there is also an easy explicit description of what this
action does to the coefficient functions H(x) [21, Theorem 3.20].

Obviously, we recover all F functions except the trivial ones F ≡
b ∈ R∞ from above if we act in this way on the F functions satisfying
F (i) = i. Since the acting group is homeomorphic to C+, this gives a
natural identification R(U) \ Z ∼= C+ × D(U), and allows us to make
use of the maps constructed above, for example in Theorem 9.1, for
general canonical systems also. In the same way, we obtain a natural
correspondence R0(U) \ Z ∼= C+ ×D0(U).

References

[1] A.F. Beardon, The exponent of convergence of Poincaré series, Proc. London
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