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Abstract

We discuss the spectral properties of higher order ordinary differential
operators. If the coefficients differ from constants by small perturbations,
then the spectral properties are preserved. In this context, “small pertur-
bations” are either short range (i.e., integrable) or long range, but slowly
varying. This generalizes classical results on second order operators. Our
approach relies on an analysis of the associated differential equations with
the help of uniform asymptotic integration techniques.

1 Introduction

In this paper, we will study differential operators of the form

(τy)(x) =
1

w(x)

n∑
k=0

(−1)k
dk

dxk

(
pk(x)

dky

dxk

)
. (1)

Any self-adjoint expression with sufficiently smooth real valued coefficients can
be written in this form (cf. [20, Theorem I.15.2]), so (1) is a natural starting
point. The factors (−1)k ensure that the kth summand is nonnegative (as
a quadratic form) if pk(x) ≥ 0 pointwise. We are interested in the spectral
properties of the self-adjoint operators on the Hilbert space L2(0,∞;w(x) dx)
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that are generated by the differential expresssion τ . In particular, we always
assume that w(x) > 0 almost everywhere in (0,∞). A second basic assumption
is pn(x) > 0 almost everywhere. One then also needs mild regularity conditions
on the coefficients, mainly in order to make sure that the intial value problems
associated with τy = zy have unique solutions. However, we will impose more
restrictive assumptions anyway (see Theorem 1.1 below), so these conditions
will not be made explicit. Instead, the reader is referred to [33] for the general
theory.

If all coefficient functions w(x), pi(x) are constant, one can of course give
a complete analysis of τ . Namely, by taking Fourier transforms, one sees that
basically τ is unitarily equivalent to multiplication by a polynomial. As a con-
sequence, the operator always has absolutely continuous spectrum, but there
may also be some eigenvalues. Location and multiplicity of the absolutely con-
tinuous spectrum can be read off from the polynomial. We will discuss this in
more detail below.

Our aim in this paper is to identify classes of perturbations which leave
the general picture unchanged. For second order operators (n = 1 in (1)),
this problem has been studied extensively. In particular, the following well-
known result exists, which was first proved by Weidmann in [31]: Consider the
Schrödinger operator (τy)(x) = −y′′(x) + V (x)y(x) on L2(0,∞), and suppose
that V = V1 +V2 where V1 ∈ L1(0,∞) and V2 is (locally) absolutely continuous,
limx→∞ V2(x) = 0, and V ′2 ∈ L1(0,∞). Then for all self-adjoint realizations of τ ,
we have that σac = [0,∞) and the spectrum is purely absolutely continuous on
(0,∞). In other words, the part of the operator on (0,∞) is unitarily equivalent
to the corresponding part of the unperturbed operator associated with τ0y =
−y′′. In a sense, this result is almost optimal. For instance, size conditions
essentially weaker than V1 ∈ L1 are not sufficient to prevent singular spectrum
on (0,∞). Indeed, if V (x) = O(x−1) at infinity, positive eigenvalues are possible,
as was already recognized in [29]. If V is only of order V (x) = O(x−1/2),
one can even have purely singular spectrum [28]. There are more results; in
fact, it seems fair to say that there is now a rather good understanding of
Schrödinger operators with conditions only on the size of V ; we refer the reader
to [7, 9, 24, 27] for recent results and to [26] for an overview.

Continuing the discussion of Weidmann’s result, we note that there are two
different types of admissible perturbations: Either the perturbation itself is
small (in an average sense), or it is slowly varying. It has been known for
a long time that such perturbations have controllable effects on the solutions
of second order differential equations; this often goes under the name WKB
approximation. In fact, these methods can be extended in various directions;
see [3, 5, 6, 12, 34] for further information on this topic (with applications to
spectral theory).

Compared to this huge set of results, very little is known on analogous
problems for higher order operators. We will prove the following generalization
of Weidmann’s theorem. Actually, our technique can be pushed further to cover
larger classes of perturbations. This will be discussed after completing the proof
of Theorem 1.1.
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Theorem 1.1 Suppose that every coefficient function from (1) is almost con-
stant in the following sense:

pi(x) = qi(x) + ri(x) (i = 0, 1, . . . , n− 1),
w(x) = v(x) + r(x),

p−1
n (x) = q−1

n (x) + rn(x),

where r, ri ∈ L1(0,∞) and the limits limx→∞ qi(x) =: ci,limx→∞ v(x) = 1
exist and cn > 0. Moreover, qi, v are locally absolutely continuous and q′i, v

′ ∈
L1(0,∞).

Then for all self-adjoint realizations of τ in L2(0,∞;w(x) dx), we have: The
singular continuous spectrum is empty, and the absolutely continuous part of the
operator is unitarily equivalent to the constant coefficient operator

(τ0y)(x) =
n∑
k=0

(−1)kck
d2ky

dx2k

on L2(0,∞; dx) with boundary conditions y(0) = y′(0) = · · · = y(n−1)(0) =
0. Moreover, the essential spectrum satisfies σess = σac, and the operator is
semibounded below.

Remarks. 1. Basically, this says that the perturbed operator has the same spec-
tral properties as the unperturbed one except that there may be additional point
spectrum. As our discussion below will show, this really gives a rather explicit
description of the spectral properties. Indeed, location and multiplicity of the
spectrum of τ0 can be read off from the polynomial

∑
ckλ

2k in a straightforward
way – see Sect. 3 for further information on this. Note also that, in contrast to
the second order case, multiplicity of the absolutely continuous spectrum is an
issue here.

2. The situation where, more generally, lim v(x) = c > 0, can of course be
reduced to the case c = 1 by a simple normalization.

3. In general, there will also be embedded point spectrum in regions where
the multiplicity of the absolutely continuous spectrum is smaller than the max-
imal possible value n. We do not have very complete results on these embedded
eigenvalues, but offer a few remarks in Sect. 9. In particular, we will present an
example where these eigenvalues have an accumulation point inside σac.

A quick proof of Weidmann’s original result (using modern tools) runs as
follows: Fix E > 0. Then standard asymptotic integration techniques (see, e.g.,
[12, Chapter 2]) show that the DE −y′′ + V y = Ey has solutions y+, y− of the
asymptotic form(

y±(x)
y′±(x)

)
=
(

1
±i
√
E

)
exp

(
±i
∫ x

0

√
E − V2(t) dt

)
+ o(1) (x→∞).

Now the desired assertions on the spectral properties follow directly from this
and the subordinacy theory [13].
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We want to prove Theorem 1.1 using a similar strategy. However, there
is no subordinacy theory for higher differential operators, so we must use the
information on the solutions of τy = zy obtained from asymptotic integration in
a different way. Namely, we will approximately compute the Titchmarsh-Weyl
M -function of operators on L2(a,∞;w dx) for large a and then try to deduce
the spectral properties of the operators on L2(0,∞;w dx) from this.

There are several problems which do not occur in the second order case.
First of all, the M -function is originally defined only off the spectrum, and the
spectral properties depend on the limiting behavior of M(z) as z tends to the
spectrum. This means that we must solve the DE τy = zy for complex z and
then take limits z → E ∈ R. Since we need uniform control on the error terms,
the usual asymptotic integration theory is insufficient for our purposes. We
discussed the extension we need here in [4]. Then, knowledge of the M -function
of operators on L2(a,∞;w dx) does not automatically lead to statements on
operators on L2(0,∞;w dx). To overcome difficulties of this type, we use some
results from [25].

The organization of this paper is as follows: In the next section, we compile
some facts from the general theory of higher order differential operators. Then,
in Sect. 3, we discuss operators with constant coefficients. In Sect. 4–6, we are
concerned with the asymptotic integration of the DE τy = zy. As explained
above, special attention has to be paid to the question of obtaining uniform
estimates on the error terms. To get an overview of the strategy used to prove
Theorem 1.1, it is in fact possible to go directly to Theorem 6.1, where we sum-
marize the results of the discussion of Sect. 4–6. We then use Theorem 6.1 in
Sect. 7 to conclude the proof of Theorem 1.1. An extension of this result is pre-
sented in Sect. 8. Finally, we make some remarks about embedded eigenvalues.
We also include the main result of [4] in an Appendix.

Acknowledgments: H.B. and C.R. thank the Deutsche Forschungsgemein-
schaft for financial support.

2 Hamiltonian systems

The differential expression τ from (1) gives rise to self-adjoint operators on
L2(0,∞;w dx). This is a classical application of von Neumann’s theory of self-
adjoint extensions of symmetric operators; a comprehensive discussion can be
found in [33]. One first introduces the maximal operator T associated with τ .
Loosely speaking, its domain consists of all y ∈ L2(0,∞;w dx) for which τy is
again in L2(0,∞;w dx); for these y, one defines Ty = τy. It turns out that
the minimal operator T0 = T ∗ is symmetric and has equal deficiency indices, so
there are self-adjoint extensions. These self-adjoint restrictions of T can then
also be characterized in terms of boundary conditions at x = 0 (and possibly
also at x =∞).

For our purposes, it will be convenient to write the equation τy = zy as a
linear Hamiltonian system. In this paper, by a linear Hamiltonian system we
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mean a differential equation of the form

JY ′(x) = (zA(x) +B(x))Y (x). (2)

Here, J,A,B ∈ C2n×2n, A(x), B(x) are locally integrable and self-adjoint for
almost every x, J =

(
0 −1
1 0

)
, and A has block form A =

(
A1 0
0 0

)
, with A1 ∈ Cr×r

positive definite almost everywhere. The theory of (1) is contained in the general
framework of Hamiltonian systems. This follows from a result of Walker [30];
note, however, that Walker uses a slightly different J . His equation can be
transformed to the form given above by applying the permutation matrix ( 1 0

0 L )
to the solution vector Y , where L ∈ Cn×n has the matrix elements Lij =
δj,n+1−i. Of course, we can also verify directly that τy = zy is equivalent to a
system of the form (2) by letting

Yi = y(i−1), Yn+i =
n∑
k=i

(−1)k+i
(
pky

(k)
)(k−i)

(i = 1, . . . , n). (3)

One then computes that A1(x) is the 1 × 1-matrix w(x), and B =
(
−P K
K∗ Q

)
,

where the non-zero entries of the n× n-matrices P,Q,K are

Pii = pi−1, Qnn = p−1
n , Ki+1,i = 1.

We now recall some facts from the theory of Hamiltonian systems. Some
general references for this subject are [2, 10, 15, 16, 17].

Under certain additional assumptions, one can again associate Hilbert space
operators with eq. (2); in particular, this can always be done in the case at
hand (where (2) comes from a higher order scalar differential equation). The
appropriate underlying Hilbert space is the space L2,A(0,∞) of (equivalence
classes of) measurable, Cr-valued functions f satisfying

∫
f∗A1f < ∞. Of

course, with A1 as above, this is again the space L2(0,∞;w dx).
In fact, in this paper we will never use the precise definition of these op-

erators; let us just stress the important point that one recovers precisely the
operators associated with (1), so here the theories are equivalent. Now, in the
situation of Theorem 1.1, the deficiency indices of the minimal operator asso-
ciated with (2) (or, equivalently, with (1)) are (n, n) (this will follow from the
discussion below), and x = 0 is a regular endpoint. Therefore, only a bound-
ary condition at x = 0 is needed. In the Hamiltonian system formulation, the
admissable boundary conditions are precisely given by

(α1, α2)Y (0) = 0, (4)

where αi ∈ Cn×n satisfy

α1α
∗
1 + α2α

∗
2 = 1, α1α

∗
2 − α2α

∗
1 = 0.

Next, fix a boundary condition α ≡ (α1, α2) and z ∈ C, and define special
solutions Uα, Vα of (2) by requiring that

(Uα(0, z), Vα(0, z)) =
(
α∗1 −α∗2
α∗2 α∗1

)
. (5)
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So Uα(x, z), Vα(x, z) both have n columns and each column solves (2). Moreover,
since the matrix on the right hand side of (5) is regular, U, V together span the
whole solution space of (2). Note also that Vα satisfies the boundary condition
(4).

Now the M -function can be defined for Im z > 0 (say) by requiring that
Uα(·, z) + Vα(·, z)Mα(z) ∈ L2,A(0,∞). (For the definition of M for general
deficiency indices, see [15].) Mα is a (matrix valued) Herglotz function, that is,
Mα is holomorphic and has positive definite imaginary part. Thus there is a
representation of the form

Mα(z) = c1(α) + c2(α)z +
∫ ∞
−∞

(
1

t− z
− t

t2 + 1

)
dρα(t),

with c∗i = ci, c2 ≥ 0. The matrix valued measure ρα is a spectral measure for the
operator with boundary condition α (call this self-adjoint operator Hα). More
precisely, Hα is unitarily equivalent to the operator of multiplication by the
independent variable in the space L2(R, dρα) (for the definition of this space,
see, e.g., [1]). The spectral measure ρα can be recovered from the boundary
behavior of Mα as the weak limit

dρα(E) =
1
π

lim
ε→0+

Im Mα(E + iε) dE. (6)

In other words, (6) holds when integrated against continuous functions of com-
pact support. The pointwise limit Mα(E) ≡ limε→0+Mα(E + iε) also exists for
almost every E ∈ R, and the absolutely continuous part of ρα is given by

dρ(ac)
α (E) =

1
π

Im Mα(E) dE. (7)

3 Operators with constant coefficients

The differential operators studied in Theorem 1.1 have asymptotically constant
coefficients. It is natural to begin the analysis with the unperturbed problem,
that is, with operators with constant coefficients. So, consider

(τ0y)(x) =
n∑
k=0

(−1)kck
d2ky

dx2k
, (8)

with ck ∈ R, cn > 0. The domain of the corresponding maximal operator T on
L2(0,∞) is

D(T ) = {y ∈ L2(0,∞) :

y, . . . , y(2n−1) locally absolutely continuous, y(2n) ∈ L2(0,∞)}.

We first study the self-adjoint operator H0, whose domain is given by

D(H0) = {y ∈ D(T ) : y′(0) = y′′′(0) = · · · = y(2n−1)(0) = 0}.
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The advantage of this operator lies in the fact that after taking Fourier trans-
forms, the domain is still easy to describe. We could also have chosen the
boundary conditions

y(0) = y′′(0) = · · · = y(2n−2)(0) = 0

instead; in this case, we would have to use the sine transform instead of the
cosine transform.

Take Fourier (cosine) transforms

y 7→ (Cy)(λ) =

√
2
π

∫ ∞
0

y(x) cosλx dx.

C maps L2(0,∞) unitarily onto L2(0,∞; dλ). We claim that the transformed
operator A = CH0C

∗ is multiplication by the polynomial

Q(iλ) ≡
n∑
k=0

(−1)kck(iλ)2k =
n∑
k=0

ckλ
2k;

in particular,

D(A) = {f ∈ L2(0,∞) : λ2nf(λ) ∈ L2(0,∞)}.

This is elementary and can in fact be deduced from the corresponding result
for the operator B = −d2/dx2 on L2(0,∞) with Neumann boundary conditions
y′(0) = 0. Namely, CBC∗ = Mλ2 , the operator of multiplication by λ2 (see
[11, p. 1388]), so Cf(B)C∗ = f(CBC∗) = Mf(λ2). It is a standard fact about
self-adjoint operators that if f is a polynomial, the operator f(B) can be defined
directly (not using the spectral theorem), and this operator f(B) coincides with
the one obtained from the functional calculus (see, e.g., [32]). Hence it is possible
to construct f(B) in the following way: Powers of B are (recursively) given by

D(Br+1) = {y ∈ D(Br) : Bry ∈ D(B)}, Br+1y = B(Bry),

soD(f(B)) = D(Bn) if the degree of f is n. The action of f(B) on elements from
its domain is obvious. Using this, we verify that f(B) = H0 if f(λ) =

∑
crλ

r;
thus CH0C

∗ = Mf(λ2) = A, as claimed.
We now list the spectral properties of A for later reference. Let C be the

set of critical values of Q, that is, C = {Q(z) : z ∈ C, Q′(z) = 0}. (This is
consistent with the notation that will be used in Lemma 3.3 below.)

Proposition 3.1 A has purely absolutely continuous spectrum and σ(A) =
σac(A) = {Q(iλ) : λ ≥ 0}. Let

Sm = {E ∈ σ(A) \ C : #{λ ≥ 0 : Q(iλ) = E} = m}.

Then AχSm(A) is unitarily equivalent to the orthogonal sum of m copies of the
operator of multiplication by λ in the space L2(Sm; dλ).
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Remark. Roughly speaking, the last part says that Sm is the part of the spec-
trum on which A has exact multiplicity m. It is not really necessary to exclude
the critical values of Q, but this makes things somewhat cleaner because then
the sets Sm are finite unions of open intervals. The following proof together
with the figure below should clarify things further.

Proof. Pick 0 = a0 < a1 < · · · < aN−1 < aN = ∞ so that Q(iλ) is strictly
monotone on each interval ai−1 < λ < ai. The subspaces L2(ai−1, ai) reduce
A. By monotonicity, we can use a transformation of the independent variable
to see that A � L2(ai−1, ai) is unitarily equivalent to Mλ in L2(Ii; dλ), where
Ii = {Q(iλ) : ai−1 < λ < ai}. �

a1 a2

S1

S3

S2

We can now analyze self-adjoint realizations of τ0 from (8) with arbitrary
boundary conditions. Denote these operators by Hα, where the index α refers
to the boundary condition at x = 0.

Proposition 3.2 a) For every α, the absolutely continuous part of Hα is uni-
tarily equivalent to the operator A from Proposition 3.1.
b) σsc(Hα) = ∅ for every α.
c) For every α, the point spectrum σp(Hα) is finite.
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d) The operator with boundary conditions

y(0) = y′(0) = · · · = y(n−1)(0) = 0

has empty point spectrum.

Remark. In the framework of Hamiltonian systems, the boundary conditions
of d) correspond to taking α1 = 1, α2 = 0. These boundary conditions will be
particularly convenient in the discussion of the perturbed problem. Note also
that part d) holds for the operator H0 as well; indeed, this is part of what
Proposition 3.1 states. Part b) will only be used for the boundary condition of
part d), and part c) will not be used at all. They are just stated for completeness.

Proof. a) A change of boundary conditions is a finite rank perturbation of
the resolvent, so the claim follows at once from general results of scattering
theory (see, e.g., [22, Theorem XI.9]).

For the remaining parts, we work with the solutions of the DE τ0y = zy.
If the roots λi = λi(z) of the characteristic polynomial Q(λ) − z are distinct,
then the functions yi(x, z) = eλix span the space of solutions (see [8] or any
other ODE text). In the general case, denote the multiplicity of λi (as a zero of
Q(λ)− z) by νi; then a basis consisting of solutions of the form xmieλix can be
found, where mi takes the values 0, 1, . . . , νi − 1 (see again [8]).

To exploit these formulae, we also need some information about the zeros
of polynomials, that is, about algebraic functions. A careful discussion of this
subject is given in [18]. We extract the facts we need here and state them as

Lemma 3.3 Let λ1, . . . , λm be the zeros of a polynomial

p(λ, z) = λm + am−1(z)λm−1 + · · ·+ a0(z)

with coefficients which are themselves polynomial functions of a parameter z.
a) Every λi(z) is a holomorphic function in any simply connected region in

which there are no multiple roots.
b) The critical set

C = {z ∈ C : p(·, z) has multiple roots}

is either finite or else C = C. In the first case, if z0 ∈ C, then in a neighborhood
of z0, the λi can be represented as Puiseux series

∑∞
n=0 cn(z − z0)n/p, with

1 ≤ p ≤ m.
c) A similar statement holds at z0 =∞: There is R > 0, so that for |z| > R,

the λi(z) admit representations of the form
∑∞
n=−N cnz

−n/p, with N ∈ N0 and
1 ≤ p ≤ m.

Remarks. 1. In part a) (and also in Lemma 5.1 below) it is of course tacitly
assumed that the λi are numbered appropriately. In fact, it is clear (either
from part b) or by considering a simple example like p(λ, z) = λ2 − z) that the
labeling of the zeros must in general depend on the region. More precisely, if
D, D̃ ⊂ C are as in part a), then it may be impossible to define the corresponding
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holomorphic functions λi(z), λ̃i(z) so that λi(z) = λ̃i(z) for every i and all
z ∈ D ∩ D̃.

2. In part b), each Puiseux series gives precisely p different roots λi(z) for
z 6= z0, but close to z0. Note that at z0 = ∞ (= part c)), the statement is
weaker because the λi may have poles (as functions of z−1/p).

3. Part a) will also play an important role in the discussion of Sect. 5.
We now resume the proof of Proposition 3.2. Lemma 3.3 applies to p(λ, z) =

(−1)nc−1
n (Q(λ) − z). So off the critical set, which can also be described here

as C = {Q(λ) : Q′(λ) = 0}, the λi(z) are distinct and holomorphic. It can be
worked out now (using the above representation of the solutions of τ0y = zy)
that the M -function M0 of the operator with the boundary conditions of part
d) of the lemma can be holomorphically continued across any interval (a, b) ⊂ R
that does not meet C. This fact and related problems will be discussed again
in Sect. 7, to which we refer for more details. For arbitrary α, there is the
transformation formula

Mα(z) = (−α2 + α1M0(z))(α1 + α2M0(z))−1.

Hence Mα can be meromorphically continued through (a, b) if (a, b) ∩ C = ∅.
The singular part of the spectral measure ρα is supported by

{E ∈ R : lim sup
ε→0+

‖Mα(E + iε)‖ =∞},

so σsc(Hα) = ∅, as claimed.
c) We first prove that no E ∈ R can be an accumulation point of the set

of eigenvalues. The easiest case is E ∈ R \ C. Then the space of solutions
of τ0y = Ey is spanned by the yi = eλix (i = 1, . . . , 2n); by Lemma 3.3a),
we can number so that the λi(z) are holomorphic close to E. The subspace
of square integrable solutions is spanned by the yi with Re λi < 0. For non-
real z, there are precisely n linearly independent square integrable solutions to
τ0y = zy. Moreover, if λi(z) is continuous in some region contained in the upper
(or lower) half-plane, then Re λi(z) does not change sign there. Indeed, if such
a sign change occured, then, by the mean value theorem, Re λi(z0) = 0 for some
non-real z0. This is a contradiction, since Q evaluated at a purely imaginary
number is real and thus cannot be equal to z0.

So, by relabeling if necessary, we may assume that y1(·, z), . . . , yn(·, z) ∈ L2

for z ∈ C+ and close to E. It is then also true that for real z from a neighborhood
of E, every L2 solution of τ0y = zy belongs to L(y1(·, z), . . . , yn(·, z)). Indeed,
for i = 1, . . . , n and such z, the function yi(·, z) may or may not be square
integrable, but if i ≥ n+ 1, then Re λi(z) ≥ 0 and hence no linear combination
containing one of these yi(·, z)’s is in L2.

So for z (close to E) to be an eigenvalue, it is necessary that the n×n-matrix
(α1, α2)(Y1(0, z), . . . , Yn(0, z)) be singular. Now, the 2n-vectors Yi are obtained
from the yi by the transformation given in (3), with pk replaced by ck. However,
since non-real z’s cannot be eigenvalues, this matrix is certainly regular if z /∈ R.
It is also holomorphic, so E cannot be an accumulation point of eigenvalues.
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The case E ∈ C is not much different: Here, Lemma 3.3b) shows that
the λi depend holomorphically on ζ ≡ (z − E)1/N for suitable N ∈ N (N is
the least common multiple of the p’s from the Puiseux series), and with some
determination of the root. Now the reasoning of the preceding paragraph is still
valid, with ζ taking the role of z.

Finally, a similar modification shows that eigenvalues do not accumulate at
∞, either. Namely, we use ζ ≡ z−1/N with appropriate N as the variable this
time and invoke Lemma 3.3c). In this way, we see that the crucial quantity,
namely the determinant of (α1, α2)(Y1(0, z), . . . , Yn(0, z)), viewed as a function
of ζ, has either a pole or a removable singularity at ζ = 0. In either case, it is
impossible that zeros accumulate at ζ = 0. This concludes the proof of c).

d) Let y be solution of τ0y = Ey; so y is of the form

y(x) =
m∑
r=1

eλrx
νr−1∑
s=0

arsx
s, (9)

where λ1, . . . , λm are distinct solutions of Q(λ) = E, and ν1, . . . , νm are the
corresponding multiplicities. We can of course assume that for every r ∈
{1, . . . ,m}, there is at least one s ∈ {0, . . . , νr − 1} with ars 6= 0. Now, if
y is also square integrable, then we must have Re λr < 0 for r = 1, . . . ,m.
Since Q is an even polynomial of order 2n, it follows that

∑m
r=1 νr ≤ n. We see

directly from (9) that y also solves

m∏
r=1

(
d

dx
− λr

)νr
y = 0.

By the above remarks, this is an nth order equation, so if in addition y satisfies
the boundary condition y(0) = · · · = y(n−1)(0) = 0, then y ≡ 0. �

4 Transformation of the DE

In this section, we write the eigenvalue equation τy = zy as a first order system
and transform this system to be able to apply asymptotic integration techniques.
Since this material is rather standard and may be found, for instance, in [12,
Sect. 3.1], we will only sketch the main steps.

The solution vector Y was introduced in (3). Recall that Y solves (2), with
A,B as in Sect. 2. We multiply from the left by J−1 = −J to obtain the
equation Y ′ = CY , where

Ci,i+1 = −Cn+i+1,n+i = 1 (i = 1, . . . , n− 1),
Cn+i,i = pi−1 (i = 2, . . . , n),

Cn,2n = p−1
n , Cn+1,1 = p0 − zw,

and Cij = 0 otherwise. To solve the equation Y ′ = CY asymptotically, we first
split off the L1 terms. That is, we write C = D+R, where the non-zero entries
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of R are

Rn+i,i = ri−1 (i = 2, . . . , n),
Rn,2n = rn, Rn+1,1 = r0 − zr.

It is clear that the hypotheses of Theorem 1.1 ensure that ‖R(x, z)‖ ≤ ρ(x) ∈
L1(0,∞), locally uniformly in z ∈ C. Next, we want to diagonalize D ≡ C −R.
The characteristic polynomial of this matrix is

(−1)nq−1
n (x)

(
n∑
k=0

(−1)kqk(x)λ2k − zv(x)

)
.

So, letting

P (λ;x) ≡
n∑
k=0

(−1)kqk(x)λ2k, (10)

we get the eigenvalues of D = D(x, z) as the solutions of P (λ;x) = zv(x). Now,
let us assume that these roots λ1(x, z), . . . , λ2n(x, z) of P − zv are distinct for
some fixed z and for all large enough x. (It is a simple consequence of Lemma
3.3 that this can fail only for finitely many z’s – we will see this in the next
section.) We can then diagonalize D(x, z); a diagonalizing transformation T is
given by T = ((K−1/2f)(λ1), . . . , (K−1/2f)(λ2n)), where the column vectors f
have the following components:

fi(λ) = λi−1, fn+i(λ) =
n∑
k=i

(−1)k+iqkλ
2k−i (i = 1, . . . , n).

The numbers K are defined by

K(λ) =
∂P (λ;x)
∂λ

. (11)

In particular, K(λi) 6= 0 since the λi are simple roots of P−zv by our assumption
above. There is also a similar formula for the inverse T−1. Namely, the kth row
of T−1 is the vector K−1/2g(λk), where the entries of the row vector g are as
follows:

gi(λ) =
n∑
k=i

(−1)kqkλ2k−i, gn+i(λ) = (−1)iλi−1, (i = 1, . . . , n).

The reader should keep in mind that both the λk’s and the various quantities
introduced above depend on x and z; this was largely suppressed in the notation.

Introduce U = T−1Y ; then U solves

U ′ = (Λ + S + T−1RT )U. (12)
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Here Λij = (T−1CT )ij = δijλi and S = −T−1∂T/∂x. In fact, the matrix
elements of S can be calculated explicitly (cf. [12, Lemma 3.1.1]): We have
Sii = 0, and if i 6= j, then

Sij = (λj − λi)−1 (K(λi)K(λj))
−1/2

[
n∑
k=0

(−1)kq′k(λiλj)k − zv′
]
. (13)

We now want to solve (12) with the help of Theorem A.1. Control of the
perturbations S, T−1RT will be easy; the main issue is the verification of what
we called the weak uniform dichotomy condition (see the Appendix). That is, we
need to study the differences Re (λi−λj), and we need detailed information on
the z dependence of these quantitites. Therefore, we now turn to investigating
the λi.

5 The dichotomy condition

The key technical result that makes asymptotic integration techniques applica-
ble is the following statement on the solutions λi(x, z) of P (λ;x) = zv(x). It
will be convenient to introduce, for easier reference, the (rectangular) sets

Sδ(E) = {z ∈ C : |Re z − E| ≤ δ, 0 ≤ Im z ≤ δ}. (14)

Lemma 5.1 There is an exceptional set E ⊂ R which has only finitely many
accumulation points such that the following holds. If E0 ∈ R \ E, there are
δ, x0 > 0, so that:

1. For fixed x ≥ x0, λi(x, z) is a holomorphic function of z in |z − E0| < δ.
The limits limx→∞ λi(x, z) exist, uniformly in |z − E0| < δ. Moreover,
λi(x, z) 6= λj(x, z) if i 6= j, and in fact

inf{|λi(x, z)− λj(x, z)| : i 6= j, x ≥ x0, |z − E0| < δ} > 0.

2. Re λi(x, z) does not change sign if x ≥ x0 and z ∈ Sδ(E0). Moreover,
either
(i) Re λi(x,E) = 0 for all x ≥ x0, E ∈ Sδ(E0) ∩ R, and |Re λi(x, z)| ≥
c Im z (c > 0) for x ≥ x0, z ∈ Sδ(E0), or
(ii) |Re λi(x, z)| ≥ c > 0 for all x ≥ x0, z ∈ Sδ(E0).

3. Re (λi(x, z) − λj(x, z)) also has constant sign in x ≥ x0, z ∈ Sδ(E0).
Moreover, either
(i) Re (λi(x,E) − λj(x,E)) = 0 for all x ≥ x0, E ∈ R ∩ Sδ(E0), and
|Re (λi(x, z)− λj(x, z))| ≥ c Im z (c > 0) for x ≥ x0, z ∈ Sδ(E0), or
(ii) |Re (λi(x, z)− λj(x, z)| ≥ c > 0 for all x ≥ x0, z ∈ Sδ(E0).

Remarks. 1. Since these statements admittedly look somewhat technical, we
would like to comment on their significance. As we will see later, the asymptotic
behavior of the solutions of τy = zy is governed by the exponential factors
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exp
(∫ x

x0
λi(t, z) dt

)
. Now part 1. of the Lemma establishes regularity properties

of the λi, and 2. tells us that the exponential factors are either not very big or
not very small throughout. Finally, the crucial last part helps to control the
ratio of two such factors. Basically, it says that the worst that can happen
(namely, case (i)) is that the ratio is ≈ 1 for real z but tends to 0 (or infinity,
respectively) off the real axis. But this change of behavior takes place in a very
controlled way, and this is exactly the type of situation we can deal with using
Theorem A.1.

2. Unfortunately, there will be three different (though closely related) poly-
nomials associated with (1), each playing a slightly different role. The reader
should keep in mind the following: P (λ;x), defined in (10), determines the eigen-
values of the matrix D in Y ′ = (D + R)Y and thus the asymptotic behavior
of the solutions to this equation. Letting x → ∞, we obtain the limiting poly-
nomial Q(λ) =

∑
(−1)kckλ2k; in particular, the solutions of Q(λ) = z are the

limits of the eigenvalues λi(x, z) from above. Finally, Q(iλ), which is the poly-
nomial introduced in Sect. 3, describes the spectral properties. We will often
use the fact that all three polynomials are even and have real coefficients. So,
if λ solves an equation of the form Q(λ) = z (say), then so does −λ. Moreover,
if z ∈ R, λ and −λ are solutions, too.

3. We can give a more explicit description of the accumulation points of E .
The proof below will show that the only possible accumulation points are the
real values of the limiting polynomial Q at its critical points.

Proof of Lemma 5.1. Basically, it will be sufficient to study the solutions
λi(z) of the limiting equation Q(λ) = z. Here, as explained in Remark 2,

Q(λ) =
n∑
k=0

(−1)kckλ2k (15)

and Q(λ) = limx→∞ P (λ;x). To be able to apply Lemma 3.3 to the polynomials
we are concerned with here (namely, Q(λ)− z and P (λ;x)− zv(x)), we have to
normalize to make sure that the leading coefficient is equal to one. However, to
keep the notation transparent, we will not carry this out explicitly in the sequel.

Let w1 < w2 < · · · < wm be the elements of C∩R, where C is the critical set
of Q(λ)− z, as introduced in Lemma 3.3b). So, more explicitly, the wk are the
real numbers among the values Q(µi), where the µi are the zeros of Q′. Also,
put w0 = −∞, wm+1 = ∞. Then, if z /∈ {wk} is sufficiently close to the real
axis, the λi(z) are distinct. Moreover, these functions are holomorphic there by
Lemma 3.3a).

We now let, for i 6= j ∈ {1, 2, . . . , 2n},

Si =
{
E ∈

⋃
(wk, wk+1) : Im λi(E) 6= 0, Im λ′i(E) = 0

}
,

Tij =
{
E ∈

⋃
(wk, wk+1) : Re λi(E) = Re λj(E), λi(E) 6= λj(E)

}
,

Uij =
{
E ∈

⋃
(wk, wk+1) : λ′i(E) = λ′j(E)

}
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and define

E = {w1, . . . , wm} ∪
⋃
Si ∪

⋃
Tij ∪

⋃
Uij .

We first show that the Si, Tij , Uij cannot have accumulation points different
from the wk’s. In other words, a “generic” choice of E removes unnecessary
degeneracies: There is no reason for λ′i(E) to be real unless λi(E) itself is real,
and similarly for the other sets.

The discussion is easier for Si, so we start with these sets. Note that if
E0 ∈ Si, then by the first condition, there is an index j 6= i so that λj(E0) =
λi(E0). The λ’s are distinct at E0, so by continuity, if E ∈ R is sufficiently
close to E0, we still have λj(E) = λi(E). Now assume, to obtain a contradic-
tion, that points of Si accumulate at some point inside some (wk, wk+1). Then,
with j as above, we have that λ′j(E) = λ′i(E) = λ′i(E) on a set with an accu-
mulation point in (wk, wk+1), and hence by analyticity for all E ∈ (wk, wk+1).
Differentiating the equation Q(λi(E)) = E, we get Q′(λi(E))λ′i(E) = 1, thus
Q′(λi(E)) = Q′(λj(E)) for all E ∈ (wk, wk+1). We can differentiate again to
deduce that also Q′′(λi(E)) = Q′′(λj(E)). Continuing in this way, we finally
arrive at Q(2n−1)(λi(E)) = Q(2n−1)(λj(E)), which is the desired contradiction
since Q(2n−1)(λ) = (2n)! (−1)ncnλ and λj = λi 6= λi.

Consider now Tij , and assume again that this set has an accumulation point
in (wk, wk+1). Then Re λi(E) = Re λj(E) for all E ∈ (wk, wk+1) by analyticity.
Write, for m = i, j, λm(E) = µ(E) + iνm(E), with µ(E), νm(E) ∈ R for E ∈
(wk, wk+1). Then µ(E)− iνm(E) are also solutions of Q(λ) = E. The functions
µ, νm can be holomorphically continued along any curve that avoids the (finite)
critical set C from Lemma 3.3b). To see this, simply observe that for z ∈
(wk, wk+1), we have

µ(z) =
1
2

(
λm(z) + λm(z)

)
, νm(z) =

1
2i

(
λm(z)− λm(z)

)
,

and apply Lemma 3.3a). Furthermore, these continuations µ(z) ± iνm(z) still
solve Q(µ(z)± iνm(z))− z = 0 because the left-hand side of this equation is a
holomorphic continuation of the zero function and thus indeed equal to zero for
all z for which it has been defined. (However, µ(z), νm(z) will not, in general,
be real, even if z ∈ R \ (wk, wk+1). This reflects the fact that the continuation
of the real part (say) of the holomorphic function λm is not necessarily equal to
the real part of the continuation.)

We can now use this continuation procedure to define the µ, νm for big
positive values of z. For such z, write z = k2n with k > 0 (and large). Then an
elementary discussion (see also [18]) shows that the solutions of Q(λ) = k2n are
of the asymptotic form

λr(k2n) = akeiπr/n +O(1) (r = 1, 2, . . . , 2n) (16)

as k →∞, with a = ic
−1/2n
n (with some fixed choice of the root). In particular,

the solutions constructed above by holomorphic continuation must be of the
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form (16); that is, there must be indices r1, . . . , r4 ∈ {1, 2, . . . , 2n} so that

µ(k2n) + iνi(k2n) = akeiπr1/n +O(1) (k →∞),

and r2, r3, r4 correspond in the same way to µ − iνi, µ + iνj , and µ − iνj ,
respectively. By adding the asymptotic representations of µ± iνm for m = i, j
and equating the results, we obtain

ak
(
eiπr1/n + eiπr2/n

)
= ak

(
eiπr3/n + eiπr4/n

)
+O(1).

Letting k →∞, we deduce that

eiπr1/n + eiπr2/n = eiπr3/n + eiπr4/n.

There are three possibilities to satisfy this equation, namely r1 = r3, r2 = r4 or
r1 = r4, r2 = r3 or both sides equal zero. In the first case, it follows that µ+ iνi
and µ+ iνj differ only by a term of order O(1). But (16) clearly implies that if
r 6= s, then |λr − λs| ≥ ck as k → ∞, with c > 0, so in fact µ + iνi = µ + iνj
for large k. Now these two functions were holomorphic continuations of λi and
λj , respectively, thus also λi(E) = λj(E) for all E ∈ (wk, wk+1). This is a
contradiction since i 6= j.

If r1 = r4 (and r2 = r3, but this will not be used), then similar reasoning
shows that λi(E) = λj(E) on (wk, wk+1), which is also impossible in view of the
definition of Tij . Finally, in the third case it follows that µ ≡ 0, in contradiction
to Re λi 6= 0.

The proof that the Uij have no accumulation points outside {wk} is analo-
gous, but simpler.

Summing up, we have shown that the accumulation points of E are contained
in {w1, . . . , wm}. It remains to check assertions 1.-3. of the Lemma for fixed
E0 /∈ E and δ, x0 sufficiently small and big, respectively. It may be necessary to
change the values of δ, x0 several times in the following arguments, but we will
not mention this explicitly.

With this understanding, statement 1. is a consequence of Lemma 3.3a). In
particular, we use the fact that the λi depend continuously on the coefficients
qk(x), v(x) of the polynomial P − zv which tend to limits as x→∞. For later
use, note that we indeed have much more regularity: The λi are (multiple)
power series in the qk, v and z.

Moving on to 2., we observe that if Re λi(E0) 6= 0, then, again by continuity,
(ii) holds. On the other hand, we will prove below that if Re λi(E0) = 0, then
Re λi(x,E) = 0 for all x ≥ x0, E ∈ R∩Sδ(E0). Accepting this for the moment,
we then see that Re (dλi/dE)(x,E) = 0. But (dλi/dE)(x,E) 6= 0, so the Taylor
expansion

λi(x,E + iε) = λi(x,E) + iε
dλi
dE

(x,E) +O(ε2)

shows that (i) holds. (dλi/dE is bounded away from zero and the control on
the error term O(ε2) is uniform in x,E.)
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We now prove the claim made above. So suppose that Re λj(E0) = 0 for
some j and some E0 ∈ R \ E . Think of Q = Q(λ; c0, . . . , cn) as a function of
λ and of the coefficients ci. In this notation, P (λ;x) = Q(λ; q0(x), . . . , qn(x)).
Recall that the polynomial Q(iµ) has real coefficients. Finally, (dQ/dµ)(iµ) 6= 0
if µ solves Q(iµ) = E0. Indeed, the values of E0 where this fails are precisely the
wk’s. So the implicit function theorem (for real valued functions!) applies: In
a neighborhood of (E0, c0, . . . , cn, 1), the equation Q(iµ; d0, . . . , dn) = Ew has a
real valued, continuous solution µ = µ(E; d0, . . . , dn, w) with µ(E0; c0, . . . , cn, 1) =
−iλj(E0). In particular, if x is sufficiently large, we can take di = qi(x), w =
v(x), and we obtain a real solution µ of P (iµ;x) = Ev(x). Since the λi
are distinct, this solution µ is of course nothing but −iλj(x,E) itself. So
−iλj(x,E) ∈ R for E sufficiently close to E0 and x ≥ x0.

Finally, we come to assertion 3. If i, j are such that Re λi(E0) 6= Re λj(E0),
then, again, a straightforward continuity argument shows that 3.(ii) holds. So
assume that Re λi(E0) = Re λj(E0). The point E0 was not in E , so by the
definition of this set, we must have either λj(E0) = λi(E0) and Im λ′i(E0) 6= 0
or Re λi(E0) = Re λj(E0) = 0 and λ′i(E0) 6= λ′j(E0). In the first case, by
continuity, these two conditions will also hold for λi(x,E) and λj(x,E), provided
E ∈ R is close to E0 and x is sufficiently large. Hence a Taylor expansion gives

Re (λi(x,E + iε)− λj(x,E + iε)) = −2ε Im
dλi
dE

(x,E) +O(ε2). (17)

The constant implicit in O(ε2) can be estimated uniformly with respect to x,E.
Moreover, Im (dλi/dE)(x,E) is bounded away from zero. We thus see from
(17) that condition 3.(i) of the Lemma holds. The proof in the second case is
similar. �

Lemma 5.1 gives us enough information to verify the weak uniform di-
chotomy condition of Theorem A.1 on the sets Sδ(E0) from the Lemma (assum-
ing, of course, E0 /∈ E). We leave the details of this verification to the reader
and just give the result: If, for some pair i 6= j, statement 3.(i) of Lemma 5.1
holds, then, referring to the list of conditions given in the Appendix, 4. or 5.
holds, depending on the sign of Re (λi − λj) in 3.(i). In the case of 3.(ii), we
have 1. or 2., again depending on the sign of Re (λi − λj). The last possibility
allowed by Theorem A.1, namely condition 3., does not occur here.

6 Asymptotic integration

Having discussed the dichotomy condition, we now turn to the required uniform
estimates on the remainders S, T−1RT from (12). As usual, z runs over some
Sδ(E0), and, according to Theorem A.1, our goal is to establish estimates of the
form ‖S(x, z)‖, ‖T−1(x, z)R(x, z)T (x, z)‖ ≤ ρ(x) for x ≥ x0 with ρ ∈ L1(x0,∞).
It follows from Lemma 5.1, part 1., and the formulae of Sect. 3 that ‖T‖ and
‖T−1‖ are uniformly bounded. We have already observed that R itself satisfies
an estimate of the above form, thus also ‖T−1RT‖ ≤ ‖T−1‖ ‖R‖ ‖T‖ ≤ ρ, as
desired. To bound S, we use similar arguments together with the hypotheses
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of Theorem 1.1 and (13). Finally, it is also easy to see that Λ, S, T,R are
continuous functions of z for fixed x ≥ x0 and that ‖Λ(x, z)‖ ≤ f(x) ∈ L1,loc.
This concludes the verification of the hypotheses of Theorem A.1.

Applying this result to (12), we get solutions of the form

Uk(x, z) = (ek + rk(x, z)) exp
(∫ x

x0

λk(t, z) dt
)
. (18)

Here, k runs over {1, 2, . . . , 2n}, ek denotes the kth unit vector, and rk is jointly
continuous in x, z and tends to zero as x → ∞, uniformly in z. Of course, we
were originally interested in solutions of τy = zy, so we transform back to
Y = TU . For later reference, we formulate the results of our discussion as a
theorem:

Theorem 6.1 Assume the hypotheses of Theorem 1.1, and let E be the set from
Lemma 5.1. Then, for every E ∈ R\E, there is a δ > 0, so that for all z ∈ Sδ(E)
(this set was defined in (14)), the following (vector) functions Y form a basis
of the space of solutions of (2):

Yk(x, z) = (f̃(λk(z)) + rk(x, z)) exp
(∫ x

x0

λk(t, z) dt
)
.

Here, the λk(z) are the zeros of the limiting polynomial Q(·)− z (Q was defined
in (15)), while λk(x, z) denotes the corresponding zero of P (·;x) − zv(x), with
P defined in (10). Furthermore,

f̃i(λ) = λi−1, f̃n+i(λ) =
n∑
k=i

(−1)k+ickλ
2k−i (i = 1, . . . , n).

The remainders rk are (jointly) continuous and tend to zero as x → ∞, uni-
formly in z ∈ Sδ(E).

Remark. By (3), the first components of the Yk, for k = 1, . . . , 2n, give a basis
of the solution space of the original equation τy = zy. Moreover, (3) obviously
also yields asymptotic formulae for the (quasi-)derivatives of these solutions y.

Sketch of proof. We just have to carry out the transformation Y = TU . Of
course, we then get certain new combinations of the original remainders rk from
(18), but these new combinations still have the same properties. This follows
from the fact that all matrix elements of T (x, z) tend to limits as x → ∞,
uniformly in z. By the same token, we can replace the vectors f(λk(x, z)) by
their limits f̃(λk(z)). �

7 Spectral analysis

In this section, we want to use Theorem 6.1 to prove Theorem 1.1. We need two
criteria from [25] (namely, Theorems 5.1 and 6.3 of that paper); we consider
general differential operators of the form (1) which are regular at x = 0 and
have deficiency indices (n, n) (minimal possible).
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Theorem 7.1 ([25]) Suppose that the equation τy = Ey has r linearly inde-
pendent solutions y ∈ L2(0,∞;w dx) for all E in some Borel set S ⊂ R. Then
for all self-adjoint realizations of τ , the multiplicity of the continuous spectrum
of the part of the operator in S is ≤ n− r.

This is a consequence of

Lemma 7.2 ([25]) Suppose there are r linearly independent solutions y1, . . . , yr
∈ L2(0,∞;w dx) of τy = Ey and D(Hα) ∩ L(y1, . . . , yr) = {0} (in other
words, no nontrivial linear combination of the yi’s satisfies the boundary condi-
tion). Then there are r linearly independent vectors v1, . . . , vr ∈ Cn such that
v∗i Im Mα(E + iε)vi = O(ε) as ε→ 0+.

We remark parenthetically that it seems to be an interesting open problem to
determine to what extent a converse to Lemma 7.2 holds. If limε→0+Mα(E+iε)
exists, then every vi as above yields (in the Hamiltonian system formulation)
an L2,A solution fi by letting

fi(x,E) ≡
(
Uα(x,E) + Vα(x,E) lim

ε→0+
Mα(E + iε)

)
vi,

but it is not clear what happens in the general case.
The second criterion alluded to above is

Theorem 7.3 ([25]) Fix a boundary condition α and a ≥ 0, and let M(z) be
the M -function of the operator on L2(a,∞;w dx) with boundary condition α at
x = a. Let S ⊂ R be a Borel set and r ∈ {0, 1, . . . , n}, such that the following
holds for every E ∈ S:

1. lim supε→0+ ‖M(E + iε)‖ <∞.

2. There are r linearly independent solutions in L2(a,∞;w dx) to τy = Ey,
but no L2 solution satisfies the boundary condition at x = a.

3. lim infε→0+ w
∗Im M(E + iε)w > 0 for all w ∈ Cn \ L(v1(E), . . . , vr(E)),

where v1(E), . . . , vr(E) ∈ Cn are linearly independent vectors with v∗i Im M(E+
iε)vi = O(ε). (The existence of such vi’s follows from assumption 2. to-
gether with Lemma 7.2.)

Then for all boundary conditions β, the singular continuous part of the spectral
measure ρβ of the operator on L2(0,∞;w dx) with boundary condition β at x = 0
gives zero weight to S, i.e. ρ(sc)

β (S) = 0.

Actually, we could also allow r to depend on E, but this is not really a more
general result because we can always decompose S according to the value of r.
Roughly speaking, Theorem 7.3 says that if the limiting behavior of a particular
M corresponds to either L2 solutions (Im M(E + iε) ∼ ε) or absolutely con-
tinuous spectrum (Im M(E) > 0), then there can never be singular continuous
spectrum, no matter what boundary condition and left endpoint are chosen.
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The additional hypothesis 1. is essential: in general, absence of singular con-
tinuous spectrum is not a property that is stable under a change of boundary
conditions and/or left endpoint.

We now turn to proving Theorem 1.1. Large parts of the argument will
depend on the simple but important observation that Yk(·, z) ∈ L2,A precisely
if Re λk(z) < 0 (where the Yk are the solutions from Theorem 6.1). Indeed, if
Re λk(z) = 0, then z must be real because Im Q(λ) = 0 for purely imaginary
λ. But then Re λk(x, z) = 0 for all sufficiently large x by Lemma 5.1, part 2.,
and hence Yk /∈ L2,A. This establishes our claim since the assertion is obvious
in all other cases. Moreover, it is also easy to see that a linear combination of
the Yk’s is square integrable if and only if Re λk < 0 for every k occuring in
this linear combination. Also, we showed already (see the proof of Proposition
3.2) that Re λk(z) is non-zero and does not change sign for z from the upper
half-plane.

We can thus label the λ’s in such a way that Re λk(z) < 0 for k = 1, . . . , n if
Im z > 0, and if z ∈ R, we have Re λk(z) = 0 for k = 1, . . . , r and Re λk(z) < 0
for k = r+1, . . . , n. Here, r ∈ {0, . . . , n} depends on z but is locally constant as
long as the exceptional set E from Lemma 5.1 is avoided. Finally, the remaining
n roots are λn+i = −λi (since Q is even, zero can never be a simple root of
Q− z = 0).

We now also see that there are precisely n linearly independent solutions
Y (·, z) ∈ L2,A if Im z > 0; the corresponding space is spanned by Y1, . . . , Yn.
In particular, the deficiency indices are (n, n), and the theory of Sect. 2 applies.

Having made these preliminary remarks, let us now first discuss semibound-
edness and the location of σess. (Regarding σess, the reader should recall that
by the results of Sect. 3, the assertion of Theorem 1.1 is that σess is equal to
the range of the polynomial Q(iλ). Also, since the leading coefficient of Q(iλ)
is positive, {Q(iλ) : λ ∈ R} = [minQ(iλ),∞).)

We will need the following result from what is usually called “oscillation
theory”. We consider differential operators generated by expressions of the type
(1) on the interval x ∈ [0,∞):

Theorem 7.4 Suppose that the range of the spectral projection on (−∞, λ0) is
of infinite dimension. Fix E ≥ λ0. Then, for arbitrarily large a and L, there
exists b ≥ a + L so that the DE τy = Ey has a non-trivial solution y with
y(k)(a) = y(k)(b) = 0 for k = 0, 1, . . . , n− 1.

Although this is only a slight variation of statements presented in [14, Sect.
2.12], we give the full proof below. It is based on

Lemma 7.5 Let E0(b) ≤ E1(b) ≤ · · · be the eigenvalues of the self-adjoint
realization of τ on [a, b] with boundary conditions y(k)(a) = y(k)(b) = 0 (k =
0, 1 . . . , n− 1). Then En(b) is a continuous, decreasing function of b ∈ (a,∞).

The dependence of the eigenvalues on the parameters of the problem has been
studied in much greater generality by Kwong, Wu, and Zettl in [19]. It is not
completely clear, however, if this lemma can be derived from their results. In
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the special case we are interested in here, the following routine argument based
on the min-max principle seems more appropriate anyway.

Proof. The operators Hb on finite intervals [a, b] are semibounded below
(see [21]). So, the min-max principle for quadratic forms [23, Theorem XIII.2]
applies, and we have

En(b) = sup
g1,... ,gn∈L2(a,b)

inf {〈f,Hbf〉 : f ∈ Q(Hb), ‖f‖ = 1, f ⊥ g1, . . . , gn} .

Note that by L2(a, b), we really mean the weighted space L2(a, b;w(x) dx), but
w is fixed, so this has not been made explicit in the notation. The form domain
Q(Hb) is given by

Q(Hb) = {f ∈ L2(a, b) : f, f ′, . . . , f (n−1) absolutely continuous,∫ b

a

pn|f (n)|2 <∞, f (k)(a) = f (k)(b) = 0 for k = 0, 1, . . . , n− 1}.

For b′ > b, we can also interpret Hb = Hb ⊕ 0 as an operator in the space
L2(a, b′) = L2(a, b) ⊕ L2(b, b′), and correspondingly for the quadratic forms.
With this understanding Q(Hb) ⊕ {0} ⊂ Q(Hb′) and 〈f,Hb′f〉 = 〈f,Hbf〉 for
all f ∈ Q(Hb). It now follows that

En(b′) = sup
gi∈L2(a,b′)

inf {〈f,Hb′f〉 : f ∈ Q(Hb′), ‖f‖ = 1, f ⊥ g1, . . . , gn}

≤ sup
gi∈L2(a,b′)

inf {〈f,Hb′f〉 : f ∈ Q(Hb)⊕ {0}, ‖f‖ = 1, f ⊥ g1, . . . , gn}

= sup
gi∈L2(a,b)

inf {〈f,Hbf〉 : f ∈ Q(Hb), ‖f‖ = 1, f ⊥ g1, . . . , gn} = En(b).

The continuity of En is a consequence of the norm convergence of the resolvents
as b′ → b; for example, one can use a min-max principle for the resolvents (see
also [19]). �

Proof of Theorem 7.4. Consider τ on the interval [a, b′] with boundary
conditions y(k)(a) = y(k)(b′) = 0 (k = 0, . . . , n− 1). Put b′ = a+ L and pick n
(large enough) so that En(b′) ≥ E. As b′ →∞, the operators on [a, b′] converge
to the operator on [a,∞) in the sense of strong resolvent convergence. So, by
assumption and Lemma 7.5, En(b′) < λ0 for sufficiently large b′. By continuity,
there exists b ≥ a+ L so that En(b) = E, and the sought y can be taken as an
eigenfunction associated with this eigenvalue. �

We will now prove that the assertion of Theorem 7.4 cannot hold if E /∈
{Q(ix) : x ∈ R} ∪ E . Since such an E can still be chosen arbitrarily close
to minQ(ix), this will show at one stroke that the operators are semibounded
below and that σess ⊂ {Q(ix) : x ∈ R}. So fix E as above. Then Q(λ) = E has
no purely imaginary solution, so Re λk(E) 6= 0 for all k. More precisely, by the
way the λ’s were labeled, Re λk(E) < 0 if k ≤ n and Re λk(E) > 0 if k > n.
We now use the asymptotic formulae from Theorem 6.1. (What we need in this
part of the proof is actually only a very special case of Theorem 6.1: We only
need to solve the DE τy = Ey for fixed E.)
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Transforming back from the vectors Yk of Theorem 6.1 to the original func-
tions (compare (3)), we get solutions y1, . . . , y2n of the form

y
(k)
i (x,E) = (λki (E) + rk+1,i(x)) exp

(∫ x

a

λi(t, E) dt
)

(k = 0, 1, . . . , n− 1),

with limx→∞ rk+1,i(x) = 0. (As already observed in the remark following The-
orem 6.1, there are also asymptotic formulae for the higher quasi-derivatives,
but we do not need them here.) The argument E will from now on be dropped
in this part of the proof. We want to show that there are a, L > 0 so that
if y(x) =

∑
ciyi(x) and y(k)(a) = y(k)(b) = 0 for all k = 0, 1, . . . , n − 1

and for some b ≥ a + L, then c1 = · · · = c2n = 0. Introduce the matrices
A(x), B(x) ∈ Cn×n by letting

Aij(x) = λi−1
j + rij(x),

Bij(x) = λi−1
n+j + ri,n+j(x).

We also associate with c ∈ C
2n the vector d ∈ C

2n with the components
di = ci exp

(∫ b
a
λi(t) dt

)
. Then, in view of the above formulae, we must show

that there are a, L so that if b ≥ a+L, no non-zero vector c ∈ C2n satisfies simul-
taneously (A(a), B(a))c = 0 and (A(b), B(b))d = 0. The matrices A(x), B(x)
are, for large x, small perturbations of Vandermonde matrices. Thus, by taking
a sufficiently large, we can ensure that

m ≡ inf{‖A(x)v‖, ‖B(x)v‖ : x ≥ a, v ∈ Cn, ‖v‖ = 1} > 0,
M ≡ sup{‖A(x)v‖, ‖B(x)v‖ : x ≥ a, v ∈ Cn, ‖v‖ = 1} <∞.

By the remarks on the λi(t) made at the beginning of the argument, we can
further achieve that for some δ > 0,∣∣∣∣∣exp

(∫ b

a

λi(t) dt

)∣∣∣∣∣
{
≤ e−δL if i ≤ n,
≥ eδL if i > n.

Writing c = (c1, c2)t with ci ∈ C
n, and similarly for d, we now see that

‖A(b)d1‖ ≤Me−δL‖c1‖ and ‖B(b)d2‖ ≥ meδL‖c2‖, so it follows from (A(b), B(b))d =
0 that

‖c2‖ ≤
M

m
e−2δL‖c1‖.

Similarly, the condition at a implies ‖c1‖ ≤ (M/m)‖c2‖. Now the parameter
L is still at our disposal, so these two inequalities together yield the desired
conclusion c1 = c2 = 0, provided we take L large enough.

We have now established semiboundedness and we have shown that σess ⊂
{Q(ix)}. The converse inclusion will follow from the results on the absolutely
continuous spectrum (to be proved below), which include σac ⊃ {Q(ix)}.
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Next, we study the M -function of the perturbed problem on x ∈ [a,∞) with
boundary conditions

y(a) = y′(a) = · · · = y(n−1)(a) = 0.

Call this M -function Ma; also, denote the M -function of the unperturbed oper-
ator (8) with the same boundary conditions by M0 (of course, M0 is independent
of the left endpoint a). We will show that Ma is close to M0 in the following
sense:

Lemma 7.6 Fix E0 ∈ R\E. Then there are δ, a0 > 0 and a continuous function
η(a, z), defined for a ≥ a0, z ∈ Sδ(E0) and satisfying

lim
a→∞

max
z∈Sδ(E0)

‖η(a, z)‖ = 0,

so that Ma(z) = M0(z) + η(a, z) if Im z > 0.
Moreover, the limit Ma(E) ≡ limε→0+Ma(E + iε) exists for every E ∈

(E0 − δ, E0 + δ), and Ma(E) = M0(E) + η(a,E).

Proof. For Im z > 0, let F (x, z) be a basis of the space of L2,A solutions of (2).
By this we mean that F has 2n rows and n columns, and the columns span the
space of L2,A solutions of (2). Then, by definition of M , there is C(z) ∈ Cn×n so
that F (x, z)C(z) = Ua(x, z) +Va(x, z)Ma(z). Write F =

(
F1
F2

)
with Fi ∈ Cn×n.

By eliminating C and taking into account the initial values of U, V (compare
(5)!), we get

Ma(z) = F2(a, z) (F1(a, z))−1
.

Of course, there is an analogous formula for M0. In this case, we can plug in
the explicit form of the L2 solutions to obtain the representation M0 = AB−1,
where

Aij(z) =
n∑
k=i

(−1)k+ickλ
2k−i
j (z), Bij(z) = λi−1

j (z).

Note that B is again a Vandermonde matrix. Thus, it is invertible precisely if
the λj are distinct; as a consequence, the above formulae may only be used in
this case.

Fix E0 ∈ R \ E , and pick δ small enough, so that the assertions of Theorem
6.1 hold for z ∈ Sδ(E0). By the above remarks on M0, we may also require
that M0(E) ≡ limM0(E + iε) exists for all |E − E0| < δ. Now, to compute
Ma(z) for z ∈ Sδ(E0) \R, we can simply take F = (Y1, . . . , Yn). It follows from
Theorem 6.1 that F2(a, z) = A(z) + R1(a, z) and F1(a, z) = B(z) + R2(a, z).
Here, the remainders Ri are defined for all z ∈ Sδ(E0) (so z may be real), they
are continuous functions of (a, z), and lima→∞maxz∈Sδ(E0) ‖Ri(a, z)‖ = 0.

By Lemma 5.1, part 1., the λj(z) are separated from one another by a
positive distance as z runs over Sδ(E0). So, B(z) is invertible for all z ∈ Sδ(E0),
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and in fact supz∈Sδ(E0) ‖B−1(z)‖ <∞. Hence we can find an a0 so that B(z) +
R2(a, z) is also invertible if a ≥ a0. (Note that for complex z, the matrix F1(a, z)
must be invertible for general reasons; the point is that here this is still true
on the real line.) Obviously, we also have that supz∈Sδ(E0) ‖A(z)‖ < ∞, so we
can indeed write Ma = (A+R1)(B +R2)−1 in the form Ma = AB−1 + η, with
a remainder η that is easily checked to have the stated properties. The last
assertion is now also obvious because both M0(E + iε) and η(a,E + iε) tend to
limits as ε→ 0+. �

With this Lemma, we can now complete the proof of Theorem 1.1. Let Sm be
the sets defined in Proposition 3.1. Lemma 7.6 shows that for every E0 ∈ Sm\E ,
the limit Ma(E) = limMa(E + iε) exists for all E from a neighborhood of E0

and big enough a. We pick δ > 0 so that (E0 − 2δ, E0 + 2δ) is contained in
this neighborhood and also in Sm. Moreover, we see from the discussion above
that we can also achieve that M0(z) has a holomorphic continuation across
(E0 − 2δ, E0 + 2δ). This together with Propositions 3.1, 3.2a) and (7) imply
that for all but finitely many E ∈ [E0 − δ, E0 + δ], the rank of Im M0(E) is m.
Let E1, . . . , Es be these exceptional points. Since the rank of a matrix can only
increase under small perturbations, Lemma 7.6 shows that we can find, for any
ε > 0, an a0 > 0 so that rank Im Ma(E) ≥ m if a ≥ a0 and E ∈ [E0− δ, E0 + δ],
|E−Ei| ≥ ε (i = 1, . . . , s). Lemma 7.6 also shows that Im Ma(E) is continuous
on E ∈ [E0 − δ, E0 + δ].

The absolutely continuous part of the operator is independent of a. More
precisely (using self-explanatory notation), H(0,∞) differs from H(0,a) ⊕H(a,∞)

by a finite rank perturbation of the resolvent, so the absolutely continuous parts
are unitarily equivalent. Furthermore, σac(H(0,a)) = ∅. We can therefore con-
clude, using the results of the discussion above and also (7), that the absolutely
continuous part of an arbitrary self-adjoint realization of (1) contains some part
which is unitarily equivalent to the orthogonal sum of m copies of the operator of
multiplication by the variable in the space L2(E0− δ, E0 + δ). Finally, E0 ∈ Sm
was almost arbitrary: only the countable set E had to be excluded. So we have
actually shown that the absolutely continuous part contains some part which is
unitarily equivalent to the operator A from Proposition 3.1 and thus also to the
realization of τ0 with boundary conditions y(0) = · · · = y(n−1)(0) = 0.

On the other hand, we will see in a moment that the multiplicity of the
absolutely continuous spectrum on (E0− δ, E0 + δ) is also ≤ m if this interval is
contained in Sm. Combining this with the result from the preceding paragraph,
we obtain the assertion of Theorem 1.1 on the absolutely continuous part of (1).

To prove the claim made above, we will use Theorem 7.1. By definition of
Sm, there are precisely 2m purely imaginary solutions to Q(λ) = E for every
E ∈ (E0 − δ, E0 + δ) \ E if, as we assumed, (E0 − δ, E0 + δ) ⊂ Sm. Hence, since
λ = 0 is not a solution, the remaining 2n − 2m solutions have non-zero real
parts, and thus there are n − m solutions λi(E) with negative real parts. So
there are n−m L2,A solutions of τy = Ey, as desired.

Having discussed the absolutely continuous part, it only remains to show
that σsc = ∅. To this end, we check the hypotheses of Theorem 7.3. We again
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fix E0 ∈ Sm \ E , and take S = (E0 − δ, E0 + δ) with small δ > 0. Actually,
by throwing away an at most countable set of E0’s, we can further require
that rank Im M0 = m in S. Of course, as α in Theorem 7.3 we take again
the standard boundary condition α1 = 1, α2 = 0. Then hypotheses 1.–3. in fact
immediately follow from the discussion above, with r = n−m. So an application
of Theorem 7.3 concludes the proof of Theorem 1.1. �

It is perhaps interesting to pause for a moment and take a bird’s eye view on
the proof: We started out by analyzing the spectral representation of τ0. This
knowledge was later used to deduce properties of M0. Since we had detailed
information about the solutions of τy = zy, we could conclude that the M -
function of the full problem must be a small perturbation of M0. Finally, we
could then go back again to the spectral properties, but this time those of the
perturbed operator τ .

8 Extensions

The asymptotic integration techniques leading to Theorem 6.1 can be carried
further. This leads to extensions of Theorem 1.1. Since only the technical details
of the argument change, we will be extremely sketchy in this section.

The idea is to diagonalize the coefficient matrix of the DE a second time.
More precisely, introduce V = T−1

2 U (using the notation from Sect. 4), where
T2 is picked so that T−1

2 (Λ + S)T2 is diagonal modulo integrable terms. Since
Λ is already diagonal and S(x, z)→ 0 as x→∞, one can take T2 = 1 +Q with
Q→ 0 also.

This procedure is carried out in [12, Sect. 1.6], of course for fixed z. However,
the same proof gives an analogous result on uniform asymptotic integration if
the application of Levinson’s Theorem is replaced by an application of Theorem
A.1. This also goes for the simplified version of [12, Theorem 1.6.1] that is
presented in [12] following the proof of the original theorem. The net result is
that the condition ‖S(x, z)‖ ≤ ρ(x) ∈ L1 is now replaced by the set of conditions

lim
x→∞

sup
z

(λi(x, z)− λj(x, z))−1 ‖S(x, z)‖ = 0,∥∥∥∥ ∂∂x ((λi(x, z)− λj(x, z))−1
S(x, z)

)∥∥∥∥ ≤ ρ1(x), (19)

|λi(x, z)− λj(x, z)|−1 ‖S(x, z)‖2 ≤ ρ2(x),

with ρi ∈ L1.
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This allows us to treat, more generally, coefficients of the following form:

pk(x) = ck +
3∑
i=1

pk,i(x) (k = 0, . . . , n− 1),

p−1
n (x) = (cn + pn,2(x) + pn,3(x))−1 + pn,1(x),

w(x) = 1 +
3∑
i=1

vi(x),

with pk,1, p
′
k,2, p

′′
k,3, p

′2
k,3 ∈ L1 and pk,2, pk,3 → 0, and similarly for the vi.

We proceed as outlined above. We first split off the contributions coming
from the L1 terms (that is, coming from the pk,1’s), then diagonalize as in Sect.
4. The matrix S thus obtained contains again integrable terms (associated
with the pk,2’s) which can be absorbed by a remainder. Finally, we apply the
transformation discussed above; so we need to check conditions (19), where S
is still given by (13), but with qk, v replaced by pk,3, v3 (the other terms have
already been separated!). To this end, we have to recall that the λi(x, z) tend
to distinct limits as x → ∞, uniformly in z. Also, since λ solves P (λ;x) =
z(w(x)− v1(x)), we get from (11) that

∂λ

∂x
=
z(v′2 + v′3)−

∑n
k=0(−1)k(p′k,2 + p′k,3)λ2k

K(λ)
.

The details are left to the reader.
In conclusion, we see that the statement of Theorem 6.1 still holds. Then,

by the discussion of Sect. 7, we also still have the assertions of Theorem 1.1.

9 Embedded eigenvalues

It is clear that if E ∈ Sm \ E with 1 ≤ m ≤ n − 1 (using the notation from
Proposition 3.1), then the equation τy = Ey has L2 solutions, so any such
E is an eigenvalue for suitable boundary conditions. Since also Sm ⊂ σac,
these eigenvalues are embedded in the absolutely continuous spectrum. So far,
the situation is as in the unperturbed case. However, it turns out that the
perturbations can even produce non-discrete embedded point spectrum:

Example. Let

S = − d2

dx2
− 1
x

be the Schrödinger operator of the hydrogen atom. To avoid a singular left
endpoint, we consider S on L2(1,∞). Then, for every boundary condition at
x = 1, the corresponding operator has infinitely many eigenvalues E1 < E2 <
· · · < 0, and En → 0. An elementary calculation shows that the differential
expression τ defined as τ = (S − 1)2 has the form

(τy)(x) =
d4y

dx4
+ 2

d

dx

(
(x−1 + 1)

dy

dx

)
+
(
2x−3 + x−2 + 2x−1 + 1

)
y.
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Clearly, this falls under the scope of Theorem 1.1. The unperturbed problem is
τ0y = y(4) + 2y′′+ y, and thus the polynomial describing the spectral properties
of τ is given by Q(iλ) = λ4 − 2λ2 + 1 = (λ2 − 1)2. So in particular, σess =
σac = [0,∞). However, for suitable self-adjoint realizations of τ , eigenvalues
accumulate at 1 ∈ σac.

This can be seen as follows: Fix a self-adjoint boundary condition for the
second order differential expression S (one can take y(1) = 0, say). Denote the
domain of the corresponding operator by D0. Then the operator H which acts
as Hy = τy on the domain

D(H) = {y ∈ D0 : Sy ∈ D0}

is a self-adjoint realization of τ in L2(1,∞) (see [32] and also the discussion of
Sect. 3). But clearly, the eigenfunctions of S that are in D0 also lie in D(H),
so H has eigenvalues (En − 1)2. �

This counterexample, however, is of a rather special type. Namely, the
accumulation point 1 is a critical value of the polynomial Q. Indeed, one can
prove that these critical values are the only possible accumulation points for
operators of order four! We give a rough outline of this argument: If E ∈ S2,
there are no L2 solutions (this follows from Theorem 6.1 if E /∈ E , and even
if E ∈ E , one can still verify the hypotheses of the original Levinson theorem
to obtain the claim in this case as well). So suppose E ∈ S1. Recall that
the λi(E) are the zeros of Q(λ) − E, which is an even polynomial with real
coefficients. The λ corresponding to the L2 solution has negative real part, so
the four λ’s must be of the form ±µ(E),±iν(E), with µ, ν > 0. Not surprisingly,
the analysis of Lemma 5.1 can be improved in this very special situation. It is
not hard to show that the eigenvalue associated with the L2 solution y (namely,
−µ) satisfies a much stronger form of the dichotomy condition. This, in turn,
implies that the corresponding solution vector Y (0, z) is an analytic function
of z in a neighborhood of E. (See also [4] for a more comprehensive discussion
of these issues.) Since the eigenvalues are the solutions of an equation of the
form (α1, α2)Y (0, z) = 0, we see that E cannot be an accumulation point of
eigenvalues.

For operators of order six or higher, this argument breaks down. More specif-
ically, it is possible that Re λi = Re λj < 0, so one does not obtain analytic
solutions from the asymptotic integration machine. We always get continuous
dependence on z outside E , but this only implies that an accumulation of eigen-
values must itself be an eigenvalue. (As a consequence, any fixed E /∈ E is not
an accumulation point of the eigenvalues of Hα for lots of boundary conditions
α.) But of course this remark does not clarify the situation completely, so we
conclude with the following

Open Question. In the situation of Theorem 1.1 with n ≥ 3, what are the
possible accumulation points of the point spectrum?

If something positive can be said, then the two obvious candidates are the
sets E and {Q(iλ) : λ ∈ R, Q′(iλ) = 0} (which is a subset of E).
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A Uniform asymptotic integration

In this appendix, we state the result from [4] which is used in this paper. So
consider a linear differential system of the form

Y ′(x, z) = (Λ(x, z) +R(x, z))Y (x, z) (x ∈ [c,∞)), (20)

where Λ, R are m×m matrices (so m = 2n in the applications in this paper) and
Λ is assumed to be diagonal: Λij(x, z) = δijλi(x, z). The parameter z = E + iε
runs through a set M of the form M = {z : a ≤ E ≤ b, 0 ≤ ε ≤ δ}. The
asymptotic integration result below requires a peculiar form of the dichotomy
condition; one might call this a weak uniform dichotomy condition (although
this term is not especially fortunate since there are five alternatives and not
two). Put νij(x, z) =

∫ x
c

Re (λi − λj)(s, z) ds; then we say that Λ satisfies the
dichotomy condition if for any two indices i, j ∈ {1, . . . ,m}, i 6= j, one of the
following (mutually exclusive) conditions holds:

1. There exists a constant K so that νij(x, z) − νij(t, z) ≤ K for all z ∈ M
and x ≥ t ≥ c. Moreover, limx→∞ supz∈M νij(x, z) = −∞.

2. Condition 1. holds with νij replaced by νji.

3. There exists a constant K so that −K ≤ νij(x, z) − νij(t, z) ≤ K for all
z ∈M and x ≥ t ≥ c.

4. There exists a constant K so that νij(x, z) − νij(t, z) ≤ K for all z ∈ M
and x ≥ t ≥ c. For all ε0 ∈ (0, δ], we have

lim
x→∞

sup
{z∈M :Im z≥ε0}

νij(x, z) = −∞.

Moreover, if z ∈ M ∩ R = [a, b], then also −K ≤ νij(x, z)− νij(t, z) ≤ K
for all x ≥ t ≥ c.

5. Condition 4. holds with νij replaced by νji.

Roughly speaking, this gives uniform control off the real line, while allowing
“discontinuities” as z approaches [a, b] (if conditions 4. or 5. hold). In a sense
4./5. “interpolate” between 1./2. and 3. This dichotomy condition just abstract
the situation encountered in the analysis of higher order differential equations,
as discussed in the body of this paper.

The result from [4] is:

Theorem A.1 ([4]) Suppose that Λ(x, z), R(x, z) are continuous functions of
z for (almost every) fixed x and ‖Λ(x, z)‖ ≤ a(x) and ‖R(x, z)‖ ≤ ρ(x) with
a ∈ L1,loc([c,∞)) and ρ ∈ L1(c,∞). Suppose further that Λ satisfies the di-
chotomy condition, in the sense discussed above. Then (20) has solutions of the
asymptotic form

Yk(x, z) = (ek + rk(x, z)) exp
(∫ x

c

λi(t, z) dt
)

(k = 1, . . . ,m).
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Here, ek is the kth unit vector, and the error terms rk are (jointly) continuous
in (x, z) and tend to zero as x→∞, uniformly in z ∈M .
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