
REFLECTIONLESS DIRAC OPERATORS AND
MATRIX VALUED KREIN FUNCTIONS

CHRISTIAN REMLING

Dedicated with great pleasure to my mentor Barry Simon on the occasion of his
80th birthday. Happy Birthday, Barry!

Abstract. This note presents a sharp bound on reflectionless
Dirac operators.

1. Introduction

This brief note is a spin-off of [9]. Its goal is to prove Theorem 1.2
below. I originally tried to do this using the machinery of [9], but I
then realized that the rather different methods from [1, 2] (developed,
as it happens, by Barry and collaborators) work much better for this.
Incidentally, similar remarks apply to some of the results of [4, 7]. So
it seems to make sense to split this part off and present it separately
here.

We consider Dirac equations

(1.1) Jy′(x) +W (x)y(x) = −zy(x), J =

(
0 −1
1 0

)
,

and the associated operators Ly = −Jy′ − Wy on L2(R;C2). We
assume that W (x) ∈ R2×2, W (x) = W t(x), W ∈ L1

loc(R). Then L is
self-adjoint on its natural maximal domain

D(L) = {y ∈ L2(R;C2) : y absolutely continuous, Jy′ +Wy ∈ L2}.
The Titchmarsh-Weyl m functions may be defined as

(1.2) m±(z) = ±y±(0, z),

and here z ∈ C+ = {z ∈ C : Im z > 0} and y±(x, z) denotes the unique,
up to a constant factor, solution y of (1.1) that is square integrable on
±x > 0. On the right-hand side of (1.2), we also use the convenient
convention of identifying a vector y = (y1, y2)

t ∈ C2, y 6= 0, with the
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point y1/y2 ∈ C∞ on the Riemann sphere. So m± take values in C∞,
and in fact these functions are Herglotz functions, that is, they map
the upper half plane C+ holomorphically back to itself.

Clearly, each of m± refers to one half line only. Of course, both of
them combined contain all the information on the whole line problem,
so it must be possible to obtain a spectral representation of L from m+

and m−, and usually one proceeds as follows: combine m± into one
matrix function

(1.3) M(z) =
−1

m+(z) +m−(z)

(
−2m+(z)m−(z) m+(z)−m−(z)
m+(z)−m−(z) 2

)
.

Then M(z) is a matrix valued Herglotz function, that is, M(z) is holo-
morphic on C+ and we still have ImM(z) > 0 there, where we now
define ImM = (M − M∗)/(2i). Please see [3] for a comprehensive
discussion of matrix valued Herglotz functions in general.

Our function has the additional properties M = M t, so maps into
what is often called the Siegel upper half space, and detM(z) = −1 for
all z ∈ C+.

The M matrix provides a spectral representation of the Dirac oper-
ator L in the sense that L is unitarily equivalent to multiplication by
the variable in L2(R, dρ) on the natural domain of this operator, and
here the (matrix valued) spectral measure ρ is the measure from the
Herglotz representation of M :

M(z) = A+Bz +

∫ ∞
−∞

(
1

t− z
− t

t2 + 1

)
dρ(t)

The function M(z) or, equivalently, the pair of functions m±(z) does
not determine W (x) uniquely; such a one-to-one correspondence can
be obtained if W is suitably normalized, which can be done in various
ways. In this paper, I will work with the trW = 0 normalization
throughout. We can then write

(1.4) W (x) =

(
p(x) q(x)
q(x) −p(x)

)
.

These issues are discussed in more detail in the standard literature on
the subject [5] and also in [10, Section 2], from a more abstract point
of view.

We say that W or L = LW is reflectionless on a Borel set A ⊆ R if

(1.5) m+(t) = −m−(t)

for (Lebesgue) almost every t ∈ A. Here, m±(t) ≡ limy→0+m±(t+ iy);
these limits exist at almost all t ∈ R. Reflectionless operators are
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important because they provide the basic building blocks for arbitrary
operators with some absolutely continuous spectrum [6], [8, Ch. 7].

We also define, for closed sets E ⊆ R,

R(E) = {W : LW is reflectionless on E},
R0(E) = {W ∈ R(E) : σ(W ) ⊆ E}.

We will focus on finite gap sets

(1.6) E = R \
n⋃
j=1

(aj, bj),

with a1 < b1 < a2 < . . . < bn, though the arguments below can also
handle more general situations.

As in the scalar case, we can take the (matrix valued) logarithm of a
matrix valued Herglotz function to obtain a new Herglotz function. We
will review the details of the procedure in Section 2. The new function
logM(z) has bounded imaginary part; in fact 0 < Im logM(z) < π for
a suitable choice of the logarithm, and this implies that the representing
measure of logM(z) is purely absolutely continuous. Its matrix valued
density ξ(t) ∈ R2×2, 0 ≤ ξ(t) ≤ 1, is called the Krein function of M(z).
We have

(1.7) logM(z) = A+

∫ ∞
−∞

(
1

t− z
− t

t2 + 1

)
ξ(t) dt,

with A = Re logM(i) ∈ R2×2, A = At.
The Krein function is a standard tool in the scalar case but it has

not been used much for matrix valued Herglotz functions. It is easy
to understand why this is so: if, let’s say, ξ(t) = 0 or ξ(t) = 1 in the
scalar setting, then obviously m(t) = |m(t)|eiπξ(t) is real. However, if
ξ(t) = P , a projection, in the matrix valued case, then we cannot au-
tomatically conclude that M(t) is real even though ξ(t) still has eigen-
values 0 and 1. More precisely, M(t) will be real only if Re logM(t)
commutes with P . So the converse of Proposition 1.1(c) below fails
badly.

These issues might deserve further investigation in a general frame-
work. I will not try to do this here. For my current purposes, the
following straightforward properties of ξ will be sufficient.

Proposition 1.1. (a) For any W , we have tr ξ(t) = 1, t ∈ R.
(b) [1] W ∈ R(E) if and only if ξ(t) = 1/2 on t ∈ E.
(c) For t /∈ σ(L), the Krein function is a projection:

ξ(t) = Pα =

(
cos2 α sinα cosα

sinα cosα sin2 α

)
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for some α = α(t).

When combined with the methods of [1, 2], this will imply the fol-
lowing result. Recall here that if W ∈ R(E), trW = 0, then W (x)
is real analytic [10, Theorem 4.1], so it makes sense to evaluate this
(matrix) function pointwise.

Theorem 1.2. If W ∈ R(E), trW (x) = 0, with E as in (1.6), then

(1.8) ‖W (x)‖ ≤ 1

2

n∑
j=1

(bj − aj).

Moreover, equality at a single x0 ∈ R implies that W ∈ R0(E), and for
any fixed x = x0 ∈ R, there are such W ∈ R0(E) for which (1.8) holds
with equality.

Here, ‖W (x)‖ =
√
p2(x) + q2(x) denotes the operator norm ofW (x).

If n = 1, so E = R \ (a, b), then ‖W (x)‖ = (b − a)/2 for all W ∈
R0(E) and x ∈ R, and each W ∈ R0(E) is constant. This slightly
strengthened version of Theorem 1.2 was obtained in [10], by different
methods. The present proof is simpler.

However, if n > 1, a given W ∈ R0(E) need not realize the bound
(1.8) at any x ∈ R because orbits under the shift mapW (x) 7→ W (x+a)
need not be dense in R0(E), and (of course) the map W 7→ ‖W (0)‖ is
no longer constant on R0(E) when n > 1.

2. Matrix valued logarithms and Krein functions

This section presents a quick review of material that can also be
found in other sources such as [3] in one form or another, with a view
towards our needs here.

For a complex number w ∈ Ω ≡ C \ {−iy : y ≥ 0}, we define logw
as the holomorphic function on this domain with elogw = w, log 1 = 0.
So in particular 0 < Im logw < π for w ∈ C+.

Having fixed this branch of the logarithm function, we then have
available a well defined matrix logA for any A ∈ C2×2 with σ(A) ⊆ Ω.
It satisfies (logA)v = (log λ)v if Av = λv. This property determines
logA if A is diagonalizable and could serve as the definition of logA
in this case. The general case can be handled by approximation or a
similar procedure, using the Jordan normal form. We have elogA = A,
and here we define the matrix exponential as usual by its power series.

In particular, since ImM(z) > 0, so σ(M(z)) ⊆ C+, we may use this
matrix logarithm for A = M(z). For such matrices A, with spectrum
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in the upper half plane, we can also compute logA as

(2.1) logA =

∫ ∞
0

(
t

t2 + 1
− (t+ A)−1

)
dt,

as proposed in [3]. This formula works because the integral evaluates
logw correctly if we plug in a number w = A ∈ C+. Representation
(2.1) is useful here because it shows that logM(z) is holomorphic on
z ∈ C+ and Im logM(z) > 0 there. Moreover, there is a similar
formula for iπ − logA, which will show that Im logM(z) < π.

As anticipated, we now define the Krein function ξ(t) as

ξ(t) =
1

π
lim
y→0+

Im logM(t+ iy).

The limit will exist for almost all t ∈ R. Of course, M has the
same property, and if M(t) = limM(t + iy) does exist, then also
ξ(t) = (1/π) Im logM(t) (though we cannot use (2.1) to compute the
logarithm if M(t) has real spectrum). Recall here that detM = −1,
so we still have σ(M(t)) ⊆ Ω.

The above discussion shows that 0 ≤ ξ(t) ≤ 1. Moreover, ξt = ξ
because M and thus also logM have this property.

We can deduce the additional properties of ξ listed in Proposition
1.1 most conveniently from the following elementary description of the
matrix logarithm.

Lemma 2.1. Suppose that σ(A) ⊆ Ω. Then B = logA is the unique
matrix satisfying eB = A, σ(B) ⊆ {z : −π/2 < Im z < 3π/2}.

Sketch of proof. The above discussion has shown that B = logA has
these properties. To prove that there is only one such B for a given A,
notice that eC is diagonalizable if and only if C is. This observation
immediately gives us uniqueness of B when A is diagonalizable. It also
implies that if A is not diagonalizable, then B must be of the form
B = λ + N , N2 = 0. In that case, since λ = λI and N commute,
eB = eλ(1 +N), and again B is determined by A. �

3. Proof of Proposition 1.1

Part (a) is immediate from the formula

−1 = detM(t) = det elogM(t) = etr logM(t),

since Im tr logM(t) = π tr ξ(t) and 0 ≤ tr ξ(t) ≤ 2.
To prove part (b), recall that (1.5) is equivalent to

(3.1) ReM(t) = 0;



6 CHRISTIAN REMLING

compare [8, Proposition 7.8], [11, Lemma 8.1]. We can of course re-
strict our attention to those t ∈ E for which M(t) exists. Clearly, if
ξ(t) = 1/2, then M(t) = elogM(t) = eA(t)+iπ/2 = ieA(t) satisfies (3.1).
Conversely, if (3.1) holds, then M(t) = iB with B > 0 (recall again
that detM(t) = −1), so B = eA for some self-adjoint matrix A, and
thus logM = A+ iπ/2 by Lemma 2.1.

Similarly, in the situation of part (c), ImM(t) = 0, so M(t) =
−λP + (1/λ)(1 − P ) for some λ > 0 and some projection P . Lemma
2.1 thus shows that logM(t) = (log λ + iπ)P − log λ(1 − P ), and in
particular ξ = P is the projection onto the negative eigenspace of M(t).

4. Proof of Theorem 1.2

If W ∈ R(E), trW = 0, then W (x) is real analytic [10, Theorem
4.1]. Moreover, m±(z) andM(z) are holomorphic at z =∞ [10, Lemma
1.2], and then [10, eqn. (5.6)] says that m+(z) = i− (q(0) + ip(0))/z +
O(1/z2), and here p, q are the entries of W , as in (1.4). While this is
not explicitly done in [10], of course the same treatment applies to m−,
and it shows that similarly m−(z) = i+ (q(0)− ip(0))/z+O(1/z2). In
terms of M , this means that

M(z) = i

(
1− 1

z
W (0) +O(1/z2)

)
.

So, since the factor i commutes with everything and log(1 +A) can be
computed in terms of its power series for ‖A‖ < 1, we have

(4.1) logM(z) =
iπ

2
− 1

z
W (0) +O(1/z2).

On the other hand, we can also obtain an asymptotic formula from
(1.7). Write ξ = ξ − 1/2 + 1/2 and recall that ξ = 1/2 is the Krein
function of M(z) = i and ξ = 1/2 on E by Proposition 1.1(b). Hence

logM(z) =
iπ

2
+

n∑
j=1

∫ bj

aj

ξ(t)− 1/2

t− z
dt

=
iπ

2
− 1

z

n∑
j=1

∫ bj

aj

(ξ(t)− 1/2) dt+O(1/z2);

notice that while (1.7) would normally deliver an extra constant matrix
B on the right-hand side, we immediately see from the asymptotic
expansions that this equals zero here. Comparison with (4.1) then
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shows that

(4.2) W (0) =
n∑
j=1

∫ bj

aj

(ξ(t)− 1/2) dt.

This only gives W at x = 0, but it actually suffices to discuss the claims
of Theorem 1.2 for x = x0 = 0 since R(E) and R0(E) are invariant
under shifts W (x) 7→ W (x+ a).

Since ‖X − 1/2‖ ≤ 1/2 for any X ≥ 0, trX = 1, the bound of
Theorem 1.2 is immediate from (4.2) and Proposition 1.1(a).

To prove the final claims of Theorem 1.2, observe that ‖X − 1/2‖ <
1/2 unless X = P is a projection. Moreover, the projections are the
extreme points of the set of such matrices X ≥ 0, trX = 1. Hence
(4.2) also shows that ‖W (0)‖ < (1/2)

∑
(bj − aj) unless ξ(t) ≡ P on

t /∈ E. We now finish the proof by showing that if ξ is of this form, so
ξ = 1/2 on E, ξ = P on Ec, then M(z), defined via (1.7) with A = 0,
is the M matrix of a W ∈ R0(E).

Observe first of all that then M is holomorphic near z = ∞ and
M(∞) = i; compare also (4.3) below. This implies that m± have
the same properties, and then we can conclude as in the proof of [10,
Theorem 3.2] that M is the M matrix of a Dirac operator L = LW .
Recall in this context that m±(z) can be recovered from M(z), for
example as the eigenvectors of MJ , as follows:

M(z)J

(
±m±(z)

1

)
= ∓

(
±m±(z)

1

)
.

Also, we clearly have W ∈ R(E), by Proposition 1.1(b).
To show that W ∈ R0(E), we again compute

logM(z) =
iπ

2
+

n∑
j=1

∫ bj

aj

ξ(t)− 1/2

t− z
dt

=
iπ

2
+

n∑
j=1

log
bj − z
aj − z

(
P − 1

2

)
.(4.3)

This matrix is normal, with eigenvalues

(4.4) λ±(z) =
iπ

2
± 1

2

n∑
j=1

log
bj − z
aj − z

,

and thus M(z) will also be normal, with eigenvalues eλ±(z). We also see
from (4.3) that logM(z) and thus also M(z) itself have holomorphic
continuations through each gap (aj, bj). For z = t ∈ (aj, bj), the corre-
sponding logarithm from (4.4) has a negative argument, while all the
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other ones have positive arguments. Thus Im λ+(t) = π, Im λ−(t) = 0,
and it follows that ImM(t) = 0. (The potential objection that was
mentioned in the introduction does not apply here since M(t) is normal,
so Re logM(t), Im logM(t) do commute.) Hence (aj, bj) ∩ σ(L) = ∅;
in other words, σ(L) ⊆ E, and thus L ∈ R0(E), as claimed.
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