
POLYNOMIAL TODA MAPS ARE TRANSFER
MATRICES

CHRISTIAN REMLING

Abstract. We consider entire matrix functions A(z) taking val-
ues in SL(2,C). These map pairs of Herglotz functions by acting
pointwise as linear fractional transformations. The main examples
of such Toda maps are provided by transfer matrices of differen-
tial and difference operators and by the cocycles associated with
the classical integrable systems (Toda, KdV, etc.) on these oper-
ators. Here we consider polynomial matrix functions A(z). We
describe these in terms of a factorization, and we then prove that
if A induces a Toda map, then A is essentially a transfer matrix.

1. Toda maps and transfer matrices

A Herglotz function is a holomorphic map F : C+ → C+. Here
C+ = {z ∈ C : Im z > 0} is the upper half plane, and the closure
C+ = C+ ∪ R∞, R∞ = R ∪ {∞}, is taken in the Riemann sphere C∞.
We denote the set of Herglotz functions by F .

We are interested in matrix functions A(z) from the group

SL = {A : C→ SL(2,C) : A entire, A(x) ∈ SL(2,R) for x ∈ R}.
The reason for this interest lies in the fact that such an A ∈ SL may in-
duce a transformation (F+, F−) 7→ (G+, G−) between pairs of Herglotz
functions by acting pointwise as a linear fractional transformation, as
follows:

(1.1) G±(z) = ± (A(z) · [±F±(z)]) , z ∈ C+.

Here the dot notation refers to the natural action of SL(2,C) on C∞,
which is given by (

a b
c d

)
· w =

aw + b

cw + d
.

Alternatively, we can view C∞ ∼= CP1 as projective space and thus
identify vectors v = (v1, v2) ∈ C2, v 6= 0, with points z = v1/v2 ∈ C∞,
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and then a B ∈ SL(2,C) simply acts on v as a matrix in the natural
way.

Given an A ∈ SL and F± ∈ F , the action (1.1) will always define
two new holomorphic functions G± : C+ → C∞, but of course there
is no guarantee that G± will be Herglotz functions again. We thus
introduce the domain of an A ∈ SL as

D(A) = {(F+, F−) ∈ F2 : ±(A · (±F±)) ∈ F},

and we call the correspondence (F+, F−) 7→ (G+, G−), (F+, F−) ∈
D(A), a Toda map. This notion was introduced and advertised in
[6, 7, 8]. We must keep our expectations on how large D(A) can be
reasonably low here since Toda maps are rather special transforma-
tions: if we view them alternatively as maps of canonical systems, as
will be discussed in a moment, then the transformed system is unitarily
equivalent to the original one, and the absolute values of the (gener-
alized) reflection coefficients are preserved [7, Theorems 7.2, 7.7]. So
the supply of (G+, G−) ∈ F2 that could conceivably be reached from a
given pair (F+, F−) by a Toda map is rather small from the outset.

We will also see below that D(A) = ∅ for many A ∈ SL. At the other
end of the spectrum, the only A ∈ SL with D(A) = F2 are the constant
functions A(z) = B ∈ SL(2,R); then B acts as an automorphism of
C+.

Pairs of Herglotz functions are in one-to-one correspondence with
canonical systems. These are differential equations of the form

(1.2) Jy′(x) = −zH(x)y(x), J =

(
0 −1
1 0

)
, x ∈ R,

with Borel measurable coefficient functions H(x) ∈ R2×2, H(x) ≥ 0,
trH(x) = 1. It is in this context that the transformations (1.1) occur
naturally, in at least two ways.

First of all, the transfer matrices T (x, a; z) are in SL. These are de-
fined as the matrix solution of (1.2) with the initial value T (a, a; z) = 1.
In this paper, it will always be understood that x ≥ a when discussing
transfer matrices. This cases suffices since T (a, x) = T (x, a)−1. Also,
if a = 0, then we usually write the transfer matrix as simply T (x, z).

The Titchmarsh-Weyl m functions of (1.2) may be defined as

(1.3) m±(z) = ±f±(0, z), z ∈ C+,

if we again use the convention of identifying a vector v 6= 0 with the
point v1/v2 ∈ C∞ on the Riemann sphere. Here f± denotes the unique,
up to a constant factor, solution of (1.2) that is in L2

H on ±x > 0. In
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other words, ∫ ∞
0

f ∗+(x, z)H(x)f+(x, z) dx <∞,

and similarly for f−. We have m± ∈ F and, conversely, for any given
F ∈ F , there is a unique coefficient function H(x) on x > 0 such that
m+(z;H) = F (z). Of course, the same fundamental result holds for
m− and left half lines. See [7, Theorem 5.1].

Moreover, it is clear from the definitions of m± and the transfer
matrix that if we replace H(x) by its shifted version K(x) = H(x+L),
then the transformation from the original m functions m± = m±(z;H)
to the new ones M± = m±(z;K) is obtained by letting T = T (L, z)
act as in (1.1): M± = ±(T · (±m±)).

More sophisticated examples of Toda maps (which also explain the
terminology) are obtained from the classical integrable systems on dif-
ference and differential operators such as the flows from the Toda hier-
archy (on Jacobi matrices) or the KdV hierarchy (on Schrödinger op-
erators). The subject is discussed in [4, 8] in some detail from precisely
this point of view. Please also consult [1, 3, 9] for more background
information.

It is this connection that provided the original motivation for the
present work. There is some evidence [2, 8] that the usual constructions
of these hierarchies run into considerable obstacles in the more general
framework of canonical systems. The question of whether (and how)
such hierarchies could be constructed seems quite fundamental but, to
my knowledge, has received little attention so far beyond the attempts
in [2, 8].

If one subscribes to the point of view advertised in [4, 8], then the key
feature of these systems is the associated cocycle of matrix functions
A(z) ∈ SL that may be used to implement the dynamics by letting
them act as Toda maps. It is now natural to adopt a more abstract
approach and inquire about Toda maps in general. This paper presents
the attempt to get this program started by looking at what must be the
most basic case, namely that of matrix functions A(z) with polynomial
dependence on z.

We will obtain rather complete answers in this case, and perhaps this
can be the first step of a larger project. We will prove that there are no
new examples of such polynomial Toda maps beyond the obvious ones
of transfer matrices with polynomial dependence on z (see Theorem
1.2 below), even though there is a large supply of polynomial matrix
functions A(z) that are not transfer matrices (see Theorem 1.1 for this).
However, these will turn out to have empty domains D(A).
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In general, an A(z) ∈ SL is a transfer matrix if and only if it satisfies
the additional conditions A(0) = 1 and

(1.4) i(A∗(z)JA(z)− J) ≥ 0 for all z ∈ C+.

This second condition (1.4) is equivalent to w 7→ A−1(z) · w being
a Herglotz function for all (fixed) z ∈ C+ [7, Lemma 3.9]. It is fairly
straightforward to verify that a transfer matrix A(z) = T (L, z) satisfies
these extra conditions; the converse is another major result from the
inverse spectral theory of canonical systems. Please see [7, Section 4.4,
Theorem 5.2] for further discussion.

Condition (1.4) also is the key ingredient to the results on reflection-
less limit points [5]; in the more general context of integrable flows and
Toda maps, these issues have recently been studied in depth by Kotani
[3].

We introduce the notation TM for this subclass of SL, so we define

TM = {A ∈ SL : A(0) = 1, A satisfies (1.4)}.
As announced, we restrict our attention here to polynomial matrix
functions

P = {A ∈ SL : A(z) = 1 + zA1 + . . .+ znAn}.
I have kept the normalization A(0) = 1, but this is only for convenience
and not essential for what follows. A general polynomial A(z) ∈ SL can
be written as A(z) = A(0)(A(0)−1A(z)) = (A(z)A(0)−1)A(0), so differs
from an element of P only by the constant matrix A(0) ∈ SL(2,R).
This acts as an automorphism of C+, so in particular will not affect
the basic question of whether the domain D(A) of the associated Toda
map is non-empty.

We can describe the class of polynomial transfer matrices T ∈ P ∩
TM very explicitly. The general such T is given by

(1.5) T (z) = (1 + L1zJP1) · · · (1 + LNzJPN),

and here Lj > 0, and each Pj = Pαj
is a projection, onto some eαj

,
with eα = (cosα, sinα)t; compare [7, Lemma 5.9]. So

Pα = eαe
∗
α =

(
cos2 α sinα cosα

sinα cosα sin2 α

)
.

In the sequel, by a projection P we will always mean a matrix of this
form.

We can be more explicit still. The matrix function S(z) = 1+LzJP
is the transfer matrix S(z) = T (L, z) of the coefficient function H(x) =
P on 0 ≤ x ≤ L; such an interval on which H is a constant projection
is called a singular interval. See also [7, Section 1.2]. So the polynomial
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transfer matrices are obtained by solving (1.2) across a finite number
of singular intervals.

We will prove the following version of (1.5) for general A ∈ P .

Theorem 1.1. Let A ∈ P. Then there are non-zero polynomials pj(z),
pj(0) = 0, with real coefficients and projections Pj satisfying Pj 6= Pj+1

such that

(1.6) A(z) = (1 + p1(z)JP1) · · · (1 + pN(z)JPN).

This factorization is unique. Conversely, any such product defines an
A ∈ P.

This clarifies the relation between P and the smaller subclass P ∩
TM. The factorization (1.6) is more general than (1.5) in two ways:
the polynomials pj can be of degree larger than one, and even if deg pj =
1, so pj(z) = Lz, then we can have L < 0 so that then the corresponding
factor 1 + LzJP is not a transfer matrix across a singular interval but
rather the inverse of such a matrix. So already in this special case
deg pj = 1, we are dealing with a considerably larger class of matrix
functions, which can now be built from the basic transfer matrices
S(z) = 1 + LzJP and their inverses in arbitrary succession.

For transfer matrices A(z) = T (L, z), there is an easy complete
description of D(A). We have (F+, F−) ∈ D(A) if and only if F+(z) lies
in the Weyl disk A−1(z)C+ for all z ∈ C+, and F− can be an arbitrary
Herglotz function. Equivalently, F+ must be the half line m function of
a canonical system K(x), x ≥ 0, that agrees with H(x) on 0 ≤ x ≤ L
if A(z) = T (L, z;H) was the transfer matrix of H across [0, L]. Please
see [7, Theorem 6.1] for a discussion of these facts.

In particular, we see that always D(T ) 6= ∅ for a transfer matrix
A(z) = T (z) (whether a polynomial of z or not), and in fact these
domains are rather large.

Observe also that it is clear that there is no condition on F−. We
can implement multiplication by −1 by letting the matrix

I =

(
1 0
0 −1

)
act, so −(A · (−F )) = (IAI) · F , and now (1.4) also implies that
w 7→ IA(z)I ·w is a Herglotz function for z ∈ C+. Compare [7, Lemma
4.14].

The main result of this paper was stated in its title. It essentially
says that if A ∈ P and D(A) 6= ∅, then A is a transfer matrix or the
inverse of a transfer matrix, so the T ∈ P ∩TM already give us all the
polynomial Toda maps. However, the statement is not true in literally
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this form due to the presence of the trivial example

(1.7) A(z) = 1 + p(z)JP.

For any polynomial p, if F±(z) ≡ ±x ∈ R∞, with x ∈ R∞ denoting
the extended real number represented by the unit vector v ∈ N(P ),
then trivially A · F+ = F+, IAI · F− = F−. So this is the identity
transformation, and we will see later, in Lemma 3.2 below, thatD(A) =
{(x,−x)} if deg p ≥ 2, so this A can not be applied to anything else
and is thus completely uninteresting as a Toda map. Moreover, this
pair of constant real m functions (x,−x) corresponds to the canonical
system with coefficient function H(x) ≡ P , which is also trivial from
a spectral theoretic point of view. On the other hand, if deg p = 1
in (1.7), then A or A−1 is a transfer matrix across a single singular
interval.

Theorem 1.2. Let A ∈ P, and suppose that D(A) 6= ∅ and A is not
of the type (1.7) with deg p ≥ 2. Then A ∈ TM or A−1 ∈ TM.

So, to summarize the whole plot, while there are many polynomial
matrix functions A ∈ P that are not transfer matrices, these can not be
applied to anything, so do not induce Toda maps and thus the transfer
matrices suffice if we are interested in the maps. I should perhaps
also mention one more time that the situation is completely different
once the assumption of polynomial dependence on z is dropped because
then the classical flows do provide examples of Toda maps that are not
induced by transfer matrices.

Sections 2 and 3 will present the proofs of Theorems 1.1 and 1.2,
respectively.

2. Proof of Theorem 1.1

The matrix J acts as a rotation by 90 degrees, so PJP = 0 for any
projection P . As a consequence, epJP = 1 + pJP , and since tr JP = 0,
this shows that det(1 + pJP ) = 1. It is now clear that the product
from Theorem 1.1 defines a matrix function from P .

Conversely, suppose that an A ∈ P is given, and to avoid trivialities,
assume also that n = degA ≥ 1. If we expand A(z) = 1 + . . .+ znAn,
then detAn = 0. We bring An ∈ R2×2 to Jordan normal form SAnS

−1,
which we can do by changing bases by an S ∈ SL(2,R) since An has
the real eigenvalues 0, tr An. Let’s first deal with the case when An is
diagonalizable. Consider the transformed B ∈ P , B(z) = SA(z)S−1.
We can assume that

(2.1) B(z) =

(
azn bzs

czt dzk

)
+ lower order terms.
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More precisely, what we mean by this is that the first matrix displays
the highest order term in each entry separately; it is of course quite
likely that the next term in for example the (1, 1) element is ezn−1,
which is not of lower order than dzk, say. We have a, b, c, d 6= 0, s, t, k ≤
n− 1, and also n+ k = s+ t and ad = bc, or the highest order term in
the expansion of detB(z) would not equal zero. Hence the degree of

C(z) =

(
1 −a

c
zn−t

0 1

)
B(z)

is at most n− 1, and we have successfully factored

(2.2) B(z) =

(
1 a

c
zn−t

0 1

)
C(z).

Observe now that the first matrix on the right-hand side of (2.2) equals
1− a

c
zn−tJP2, with P2 =

(
0 0
0 1

)
denoting the projection onto e2. We then

return to A(z) = S−1B(z)S. Recall that any S ∈ SL(2,R) satisfies the
identity S−1J = JSt. Thus

S−1(1 + p(z)JP2)S = 1 + p(z)JStP2S = 1 + rp(z)JQ,

and here Q is another projection, onto Ste2, and r > 0. This simple
fact will be used frequently in the sequel, so let me state it separately.

Lemma 2.1. Let S ∈ SL(2,R) and let P be the projection onto v ∈ R2.
Then S−1JPS = cJQ, with c > 0, and Q is the projection onto Stv.

We conclude that we have split off a factor of the desired form in the
original matrix function also: we have

A(z) = (1 + kzmJQ)D(z),

with D ∈ P , degD ≤ n− 1.
The same procedure works ifAn is not diagonalizable. Since detAn =

0, this matrix now has λ = 0 as its only eigenvalue. We thus obtain
the following analog of (2.1):

B(z) =

(
azs ±zn
czk dzt

)
+ lower order terms.

We can then lower the degree by multiplying from the left by

1± 1

d
zn−tJP2 =

(
1 ∓1

d
zn−t

0 1

)
and otherwise argue as above.

Finally, we of course repeat this whole basic step with the new matrix
function D(z) etc. until the degree is zero. It could happen here that
successive factors contain the same projection but this is not a problem
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because (1 + pJP )(1 + qJP ) = 1 + (p+ q)JP , so if it does happen, we
simply combine these factors into a single one.

It remains to prove the uniqueness of these factorizations.

Lemma 2.2. Given projections P1, . . . , PN , we have

JP1JP2 · · · JPN 6= 0

if and only if Pj 6= Pj+1 for j = 1, 2, . . . , N − 1.

Proof. One direction is obvious because, as we observed earlier, PJP =
0 for any projection P .

Conversely, suppose now that Pj 6= Pj+1. We can argue by induc-
tion on N , so we can assume that JP1 · · · JPN−1 6= 0. Since this ma-
trix is singular, its kernel must be one-dimensional and is thus equal
to N(PN−1). Since J is rotation by 90 degrees, we have R(JPN) =
R(PN)⊥ = N(PN). By assumption, this is not the same space as
N(PN−1) and thus (JP1 · · · JPN−1)JPN 6= 0, as claimed. �

Lemma 2.2 shows that if an A ∈ P with degA = n is factored
as stated in Theorem 1.1, then the coefficient (matrix) An of zn is a
multiple of JP1 · · · JPN . In particular, PN can be recovered from A(z)
via An as the projection with the same null space as An. So a second
factorization

A(z) = (1 + q1JQ1) · · · (1 + qMJQM)

would have to satisfy QM = PN . Thus if we multiply by the inverse
1− pNJPN of the last factor of the first factorization, we obtain

(1 +p1JP1) · · · (1 +pN−1JPN−1) = (1 + q1JQ1) · · · (1 + (qM −pN)JPN).

If we had qM 6= pN , then the same argument would now show that
PN−1 = PN , which contradicts our assumptions. So we also have qM =
pN . In other words, the rightmost factors agree, and then we can of
course continue in this style to deduce that the whole factorizations
must be identical. This concludes the proof of Theorem 1.1.

A key step of this proof (and also the one of Theorem 1.2, to be dis-
cussed in the next section) was to bringAn or, equivalently, JP1 · · · JPN ,
to Jordan normal form. Therefore the following observation is perhaps
of some interest even though we will not need it here.

Proposition 2.3. Let P1, . . . , PN , N ≥ 1, be projections and suppose
that Pj 6= Pj+1, j = 1, 2, . . . , N−1. Then JP1 · · · JPN is diagonalizable
if and only if P1 6= PN .

Proof. Call this matrix B. Recall that detB = 0, B 6= 0, so the
eigenvalues of B are 0, trB, and thus B is diagonalizable if and only



TODA MAPS 9

if trB 6= 0. We compute the trace using an orthonormal basis {e, f}
satisfying PNe = 0, f = Je. This gives

trB = 〈f,Bf〉 = 〈Je,Bf〉 = −〈e, JBf〉.
As in the proof of Lemma 2.2, we have JBf 6= 0. Since J2 = −1, we
see that JBf ∈ R(P1) = N(P1)

⊥. This is orthogonal to e ∈ N(PN) if
and only if P1 = PN . �

3. Proof of Theorem 1.2

Let’s start by reviewing the one basic fact about Herglotz func-
tions that we will need here. Namely, if F ∈ F , F 6≡ ∞, then
b = limy→∞−iF (iy)/y exists and b ≥ 0. This is well known and
also an immediate consequence of the Herglotz representation formula

F (z) = a+

∫
R∞

1 + tz

t− z
dν(t).

This property may also be applied to −1/F , which is another Herglotz
function, so it is also true that if F ∈ F , F 6≡ 0, then either y|F (iy)| →
∞ or else c = limy→∞−iy F (iy) exists and c > 0.

Or, to summarize this somewhat imprecisely but more intuitively,
Herglotz functions cannot grow faster than bz and they cannot decay
more rapidly than −c/z for large z. This will become important when
we analyze later how they could alter the asymptotics of the polynomial
entries of an A ∈ P .

Let’s then start the proof of Theorem 1.2 with some observations on
more specialized situations.

Lemma 3.1. Suppose that A(z) = T1(z)T−12 (z), with Tj ∈ TM, and
A · F = G for some F,G ∈ F . Then A ∈ TM or A−1 ∈ TM.

Proof. We have T−12 ·F = T−11 ·G. As we discussed earlier, the Herglotz
functions {T (L, z;H)−1 · M : M ∈ F} are exactly the half line m
functions of those canonical systems whose coefficient function agrees
with H(x) on 0 ≤ x ≤ L; see [7, Theorem 6.1] again. Thus in our
situation, if we write Tj(z) = T (Lj, z;Hj) and L2 ≥ L1, say, then
H1(x) = H2(x) on 0 ≤ x ≤ L1. This means that T2 = T3T1, and here
T3(z) = T (L2, L1, z;H2) also lies in TM. In the other case, when L1 >
L2, we similarly obtain T1 = T4T2. In either case, there is a cancellation
in the product defining A(z), and the statement follows. �

Lemma 3.2. (a) Let A ∈ P, and suppose that A · x ∈ F for some
x ∈ R∞. Then A is of the form A(z) = T−1(z)(1 + p(z)JP ), with
T ∈ TM∩P and Pv = 0 for the vector v representing x.
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(b) If, in addition, D(A) 6= ∅, then A ∈ TM or A−1 ∈ TM, or else
A = 1 + pJP with deg p ≥ 2 and D(A) = {(x,−x)}.

We can take the vector v from part (a) as v = (x, 1)t if x 6= ∞ and
v = (1, 0)t if x =∞.

Proof. (a) The function A(z) · x is rational, and the rational Herglotz
functions are exactly those of the form T−1(z)·y, with T ∈ TM∩P and
y ∈ R∞. See [7, Lemma 5.9]. So if v, w ∈ R2 denote vectors represent-
ing x and y, respectively, then A(z)v = λ(z)T−1(z)w or TAv = λw.
Since A(0) = T (0) = 1, this is only possible if v = w. So we now
have a matrix function B = TA ∈ P satisfying B(z)v = λ(z)v. If we
work with C(z) = RB(z)Rt instead, for a rotation R ∈ SO(2) that
maps Rv = e1, then we will have C(z)e1 = λ(z)e1. In other words
C21(z) = 0. Clearly, the only such C ∈ P are

C(z) =

(
1 −p(z)
0 1

)
= 1 + p(z)JP2.

We can now transform back. Since J is a rotation itself and thus
commutes with R, we have RtJP2R = JP , and here P = RtP2R still
is a projection, and Pv = PRte1 = 0. This confirms that A is of the
asserted form.

(b) It is easy to verify, using (1.4) or the reformulation mentioned
above, that if T ∈ TM, then T1 = IT−1I ∈ TM also. See [7, Lemma
4.14] again.

Thus part (a) shows that IAI is of the form IAI = T1(1 − pJQ),
with T1 ∈ TM ∩ P . If deg p ≤ 1 here, then this matrix function is
of the form IAI = T1T

±1
2 . However, Lemma 3.1 now shows that the

minus sign is only possible if there is a cancellation or one of the two
matrix functions is the identity matrix. In every case, it turns out that
IAI or its inverse lies in TM and thus the same is true of A itself.

It remains to discuss the case deg p ≥ 2. By assumption, there are
F,G ∈ F such that IAI · F = G. We can write this in the form
K = (1−pJQ) ·F , and here K = T−11 ·G is another Herglotz function.
We again rotate such that RtQR = P2. Then Rt ·K = (1−pJP2) ·RtF ,
and if M = Rt ·F 6≡ ∞, then this equals M(z) + p(z). Since deg p ≥ 2
now, this contradicts the asymptotic behavior of Herglotz functions
that was discussed at the beginning of this section. We conclude that
F ≡ y = R · ∞, and here y ∈ R∞ can also be characterized as the
unique number for which the corresponding vector v ∈ R2 satisfies
Qv = 0. We have also shown that F ≡ y is the only Herglotz function
to which IAI can be applied.
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Moreover, T−11 · G = y also, and now we again make use of the
description of the Herglotz functions of this type from [7, Theorem
6.1]. Since y is the m function of the constant coefficient function
H(x) = Q, we see that T1 = 1 +LzJQ is the transfer matrix across an
interval of this coefficient function. This shows that

IAI = T1(1− pJQ) = 1 + (Lz − p)JQ = 1 + qJQ

and thus A = 1− qJP as well. We find ourselves in the last case from
the statement of Lemma 3.2(b), and we can finally analyze A itself in
the same way to confirm that D(A) is as described. �

We now come to the main step. Let us introduce two more pieces of
notation:

F1 = F \ {F ≡ x : x ∈ R∞},
T1 = {1 + LzJP : L > 0, P projection}.

So F1 is the collection of genuine Herglotz functions F : C+ → C+, with
those functions that are identically equal to an extended real number
x ∈ R∞ excluded, and T1 ⊆ TM ∩ P is the collection of degree one
transfer matrices, across a single singular interval.

Lemma 3.3. Let A ∈ P, with n = degA ≥ 2. Suppose that (F+, F−) ∈
D(A), with F± ∈ F1 and G+ = A · F+, G− = IAI · F− ∈ F1 also.

Then either A = T1BT2, with Tj ∈ T1, B ∈ P, degB = n − 2, and
F+ = T−12 ·K+ for some K+ ∈ F , or else IAI is of this form and the
corresponding statements hold for this matrix function and F−.

Before we prove this, let’s discuss how Lemma 3.3 can be used to
establish Theorem 1.2. Let A ∈ P , with D(A) 6= ∅, be given. We
then have four Herglotz functions F±, G± such that A · F+ = G+,
IAI · F− = G−. If at least one of the four functions is not in F1

here, then Lemma 3.2, applied to A or to A−1, will give the desired
conclusions.

So we can focus on the case F±, G± ∈ F1, and now Lemma 3.3
applies. Let’s say we are in the first case, so A = T1BT2. Since F+ =
T−12 ·K+, we have T1B ·K+ ∈ F1. Moreover, I(T1B)I · (IT2I ·F−) ∈ F1

as well, and here IT2I = T−13 is the inverse of a T3 ∈ T1, so in particular
IT2I · F− = T−13 · F− ∈ F .

The upshot of all this is that we may remove the last factor T2 of the
factorization of A, and the reduced matrix still has a non-empty domain
because, as we just saw, (K+, K−) ∈ D(T1B), with K+ = T2 · F+,
K− = T−13 · F−. The images (G+, G−) haven’t changed.

It could happen here that K+ = x ∈ R∞, so K+ /∈ F1, but this
only opens up a short-cut to our eventual goal. (We do always have
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K− ∈ F1, as we can confirm by comparing with Lemma 3.2 or by using
the description of the Herglotz functions {T−13 · N : N ∈ F} again.)
We may now refer to Lemma 3.2(b), and only the case T1B ∈ TM is
consistent with what we already know about the factorization of this
matrix function. In particular, observe that if we had T1B = 1 + pJP
with deg p ≥ 2, then factoring out a T1 ∈ T1 would not reduce the
degree, so this is impossible here. We conclude that A = T1BT2 ∈ TM,
as claimed.

In the other case, when K± ∈ F1, we can apply Lemma 3.3 again,
this time to T1B = T1CT4, to remove one more factor T4 ∈ T1 and
reducing the degree at the same time.

We continue in this style until we have completely factored A as a
product of matrices from T1. In particular, A ∈ TM, as desired. It is
of course not possible here that we suddenly find ourselves in the other
case of Lemma 3.3 in the middle of this process. More explicitly, we
cannot have, say, I(T1B)I = T5DT6 rather than T1B = T1CT4 because
IT5I /∈ T1 if T5 ∈ T1, so this would contradict the uniqueness of such
factorizations.

The other case, when IAI = T1BT2 initially, is completely analogous.
This time, the method will show that A−1 ∈ TM.

Proof of Lemma 3.3. We again bring the highest order coefficient An of
A(z) = 1 + . . .+ znAn to Jordan normal form, so work with SA(z)S−1,
for suitable S ∈ SL(2,R). Let’s first assume that An is diagonalizable.
Then again, as in (2.1),

(3.1) SA(z)S−1 =

(
azn bzs

czt dzk

)
+ lower order terms.

Here a, b, c, d 6= 0, ad = bc, n + k = s + t, s, t ≤ n − 1, k ≤ n − 2.
We can extract additional information on the degrees from the extra
assumptions on the existence of non-trivial Herglotz functions in the
domain. I claim that s = n− 1. If, on the contrary, we had s ≤ n− 2,
then

(3.2) SA(z)S−1 · (SF+) =
aznK(z) +O(zn−1K(z)) +O(zn−2)

cztK(z) +O(zt−1K(z)) +O(zt−2)
,

and here we have written K = S · F+. This follows because, by as-
sumption, s ≤ n − 2, and thus also k = t + s − n ≤ t − 2. Note also
that since S ∈ SL(2,R) acts as an automorphism of C+, we still have
K ∈ F1. Furthermore, SA · F+ ∈ F1, for the same reason.

We now make use of the fact, reviewed at the beginning of this
section, that the Herglotz function K 6≡ 0 can not decay faster than
c/z. Hence the right-hand side of (3.2) has the asymptotic behavior
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' (a/c)zn−t. This could be compatible with this function being a
Herglotz function if t = n− 1, a/c > 0. However, we can then run the
same analysis for IAI · F−, and this time we obtain the asymptotics
(a/(−c))z because ISAS−1I = (ISI)IAI(ISI)−1 is the same matrix
as SAS−1, but with the signs changed in the off-diagonal elements. We
have run into a contradiction after all. We must admit that s = n− 1.
Finally, a similar argument may be applied to A−1, and this will show
that t = n− 1 also.

So we now have the following more precise version of (3.1):

(3.3) SA(z)S−1 =

(
azn bzn−1

czn−1 dzn−2

)
+ lower order terms.

Moreover, as above, by making the appropriate choice between A and
IAI, we may also assume that a/c < 0. Let’s assume, for convenience,
that this happens for A itself.

We can now repeat the asymptotic analysis of SAS−1 ·K from above.
The contradictory asymptotics (a/c)z+o(z) can only be avoided if the
terms aznK(z) and czn−1K(z) do not dominate all other contributions
from the numerator and denominator, respectively. This in turn is only
possible if K(z) = −γ/z + o(1/z), with γ > 0. In this situation, (3.2)
becomes

SA(z)S−1 · (SF+) =
(−γa+ b)zn−1 + o(zn−1)

(−γc+ d)zn−2 + o(zn−2)
.

Since ad = bc, we see from this that we must insist that γ = b/a = d/c,
or else we would still obtain the asymptotics (a/c)z. In particular,
b/a > 0.

Recall that if K = m+(z;H) is viewed as the half line m function of
a canonical system, then such asymptotics K(z) ' −γ/z are equivalent
to H(x) starting with a singular interval of the type H(x) = P1. Put
differently, we have K(z) = (1 − (z/γ)JP1) ·M(z), for some M ∈ F .
See [7, Theorem 4.33] and also the argument from the proof of Theorem
4.34 there for further details on this step.

We now compare this information with what we know about the
factorization of SAS−1 from the proof of Theorem 1.1. Recall that
(3.3) lets us reduce the degree by pulling out a factor on the left as
follows:

SA(z)S−1 =

(
1 a

c
z

0 1

)
C(z).

Alternatively, we could have factored out on the right, and since both
factors reduce the degree, the uniqueness of such factorizations implies
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that we can do both. So we have

SA(z)S−1 =

(
1 a

c
z

0 1

)
D(z)

(
1 0
a
b
z 1

)
,

with degD = n − 2. Notice that the other two factors are equal to
1−(a/c)zJP2 and 1+(a/b)zJP1, respectively, and since a/c < 0, a/b >
0, they both lie in T1. We just saw that K = (1 + (a/b)zJP1)

−1 ·M ,
so we have established the claims of Lemma 3.3 for SAS−1. We then
obtain them for A itself by transforming back and referring to Lemma
2.1 to make sure that the basic properties of the individual factors are
preserved.

Finally, the treatment of the other case, when An is not diagonaliz-
able, is completely analogous. As in the proof of Theorem 1.1, I again
leave the details of this case to the reader. �
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