
3. Group theory

3.1. The basic isomorphism theorems. If f : X → Y is any map,
then x ∼ x′ if and only if f(x) = f(x′) defines an equivalence relation
on X. Recall that the quotient X = X/ ∼ was defined as the set of
equivalence classes X = {x : x ∈ X}, x = {y ∈ X : y ∼ x}. We can
now factor the map f by going through X: we have that f = f ◦ q,
where q : X → X is the natural map q(x) = x, and f(x) = f(x).

Exercise 3.1. Check that f is well defined and injective, and q is sur-
jective.

This is really an extremely simple construction: we first lump to-
gether those points of X that get sent to the same image by f , and
then we apply f . It sometimes helps the intuition to represent this
diagrammatically, as follows:

(3.1) X

q
��

f
// Y

X
f

??

We say that a diagram commutes to express the fact that no matter
how you follow arrows to get from A to B, the resulting map will be
the same. Diagram (3.1) is commutative: the only journey where we
have a choice is the one from X to Y , so this says that f = f ◦q, which
we observed above.

One can pack even more information into these diagrams by using
special arrows for specific types of maps. Then the above diagram
becomes

X

q
����

f
// Y

X
?? f

??
.

This indicates that q is surjective and f is injective. Another property
of this diagram (and the original construction) is that (of course) f is
the only map between X and Y that will give us the identity f = f ◦ q
or, equivalently, that will make the diagram commute. One can use a
dashed arrow to emphasize that there exists a unique map:

X

q
��

f
// Y

X
f

??
.
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Of course, we can do the same thing for a homomorphism ϕ : G→ G′

between groups. In this case, the maps q, f will then be homomor-
phisms themselves.

Theorem 3.1. Let ϕ : G → G′ be a homomorphism. Then K =
ker(ϕ) is a normal subgroup of G, the quotient map q : G → G/K,
q(a) = aK is a surjective homomorphism, and there exists a unique
map ϕ : G/K → G′ that makes the following diagram commute:

G

q

��

ϕ
// G′

G/K
ϕ

<<
.

This map ϕ is an injective homomorphism, and ϕ(G) ∼= G/K.

This is sometimes and somewhat grandiosely called the fundamental
theorem of homomorphisms.

Proof. We know most of this already, and the remaining statements
are established by checking them against the definitions. K E G by
Proposition 2.24, and we also saw earlier (show it again perhaps) that
the natural map q : G → G/K, q(a) = aK, is a surjective homo-
morphism. Next, observe that q(a) = q(b) precisely if ϕ(a) = ϕ(b)
(show that too more explicitly if you are not sure), so we are running
the same construction as above, only for groups and homomorphisms
rather than general sets and maps. We obtain a unique, injective map
ϕ : G/K → G′ that makes the diagram commutative; it is given by
ϕ(aK) = ϕ(a). So

ϕ(aKbK) = ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aK)ϕ(bK),

and this says that ϕ is a homomorphism, as claimed. The image of ϕ
is ϕ(G), so since ϕ is injective, it is an isomorphism between G/K and
this group. �

Exercise 3.2. Formulate and prove a version of Theorem 3.1 for monoids.
Remember that there is no analog of the correspondence between con-
gruences and normal subgroups, so you will have to work with congru-
ences here.

Corollary 3.2. A group G′ is a homomorphic image of the group G
precisely if G′ ∼= G/K for some K E G.

Proof. If G′ = ϕ(G), then G′ ∼= G/K is part of what Theorem 3.1
gives. Conversely, if ϕ maps G/K isomorphically onto G′, then ϕ ◦ q,
with q : G → G/K being the quotient map, is a homomorphism from
G onto G′. �
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Exercise 3.3. The last part of this argument uses the fact that a compo-
sition of homomorphisms is a homomorphism itself. Prove this please.

Exercise 3.4. Let G be a finite group, and let ϕ : G → G′ be a homo-
morphism. Show that |ϕ(G)| divides |G|.
Exercise 3.5. (a) Find a non-trivial (that is, ϕ(a) 6= 1 for some a)
homomorphism ϕ : S3 → Z2 (there is exactly one such ϕ, and we
discussed it earlier, in slightly different form).
(b) Show that there is no non-trivial homomorphism ϕ : S3 → Z3.

A somewhat more general form of Theorem 3.1 is sometimes useful,
for example in the proof of the first isomorphism theorem below.

Theorem 3.3. Let K E G, and let ϕ : G → G′ be a homomorphism
with ker(ϕ) ⊇ K. Then there exists a unique map ϕ such that the
following diagram commutes:

G

q

��

ϕ
// G′

G/K
ϕ

<<

This map is a homomorphism with ker(ϕ) = ker(ϕ)/K = {aK : a ∈
ker(ϕ)}.

Theorem 3.1 is the special case K = ker(ϕ); note that in this case,

ker(ϕ) = ker(ϕ)/K = K/K = {K} = {1} ⊆ G/K,

so ϕ is now injective, as already observed above.

Exercise 3.6. Prove Theorem 3.3 in the same style as above, by checking
directly the various claims. Pay special attention to the role of the
assumption that K ⊆ ker(ϕ); what goes wrong if we don’t have this?

Theorem 3.4 (First isomorphism theorem). Let K E G. Then the
subgroups H of G with H ⊇ K are in one-to-one correspondence with
the subgroups of G = G/K via H 7→ H/K = {hK : h ∈ H} =: H.

Moreover, for such a subgroup K ⊆ H ⊆ G, we have that H E G if
and only if H E G. In this case, G/H ∼= G/H, and an isomorphism
ϕ may be obtained from the diagram

G
q
//

p

��

G/K

r
��{{

G/H G/H
ϕ
oo

;

here p, q, r are the natural quotient maps.
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It is tempting to view this isomorphism as the result of a cancella-
tion (G/K)/(H/K) ∼= G/H, but one must be very careful with such
formal manipulations (for starters, multiplication is not commutative
in groups), and we will see in a moment that, for example, HK/K is
not isomorphic to H in general.

Proof. Clearly, if H ⊇ K is any subgroup of G, then K is normal in
H since it was normal in the larger group G. So we can form the
quotient group H/K, and this is a subgroup of G/K. To show that
this map H 7→ H/K is injective, suppose that H1/K = H2/K and take
any h1 ∈ H1. Then h1K ∈ H1/K = H2/K, so h1K = h2K for some
h2 ∈ H2 and thus h−12 h1 ∈ K. Since K ⊆ H2, this shows that h1 ∈ H2,
so we have shown that H1 ⊆ H2. Thus H1 = H2, by symmetry.

To show that the map H 7→ H/K is surjective onto the subgroups of
G/K, let L ⊆ G/K be such a subgroup. So L is a collection of certain
cosets aK, and let’s now define H ⊆ G as the set of those h ∈ G for
which hK ∈ L. Then clearly K ⊆ H ⊆ G, and I claim that H is a
subgroup of G. Indeed, let a, b ∈ H. Then aK, bK ∈ L, so ab−1K ∈ L
as well, and thus ab−1 ∈ H, as desired. By construction, H/K = L.

Notice that H/K E G/K precisely if (aK)(hK)(aK)−1 ∈ H/K for
all h ∈ H, a ∈ G, but this is the same as asking that aha−1K ∈ H/K,
and this happens if and only if aha−1 ∈ H. Here, we use the description
of H that was obtained in the preceding paragraph: H is the collection
of all b ∈ G with bK ∈ H/K. It now follows that H is normal in G
precisely if H is normal in G.

It remains to show that G/H ∼= G/H if indeed H E G. This will
pretty much just fall into place, by making use of the obvious maps
between the various quotients. Basically, we can do this by staring at
the diagram long enough. We first observe that Theorem 3.3 applies
to the upper left half of the diagram, with the quotient map p taking
the role of ϕ from Theorem 3.3. Indeed, since ker(p) = H ⊇ K,
we can factor p through q and we obtain an induced map along the
dotted diagonal. This map (let’s call it θ) is a homomorphism with
ker(θ) = ker(p)/K = H/K = H. Next, we apply Theorem 3.3 to
the lower right half of the diagram, with θ taking the role of ϕ. This
time, the kernel of this map θ is exactly what we are dividing out, so
we are actually back in the situation of Theorem 3.1. In particular, it
follows that the induced map along the bottom arrow is an injective
homomorphism. Since θ was surjective, it is surjective also, so it is
the required isomorphism. Uniqueness is also clear because at each of
these two steps, there was only one way to fill up the diagram. �
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Theorem 3.5 (Second isomorphism theorem). Suppose that K E G,
and H is a subgroup of G. Then HK and H ∩K are subgroups of G,
K E HK, H ∩K E H and HK/K ∼= H/(H ∩K).

More specifically, an isomorphism can be obtained from

H
q
//

ι

�� ''

H/(H ∩K)

ϕ

��

HK p
// HK/K

;

here, p, q are the natural quotient maps, and ι is the inclusion ι(a) = a,
a ∈ H.

Exercise 3.7. Prove this in the same style as Theorem 3.4. More ex-
plicitly, proceed as follows: (a) Show that HK is a subgroup and that
K E HK, H ∩ K E H, by direct verification; (b) construct an iso-
morphism between H/(H ∩K) and HK/K by working out what the
diagram delivers; in a first step, obtain a (unique) map along the dotted
diagonal by composing.

Exercise 3.8. Let H,K be two (not necessarily normal) subgroups of a
group G. Show that HK need not be a subgroup.

It is instructive to take another look at cyclic groups from the more
abstract point of view suggested by the material of this section. (I’ll
just sketch the relevant steps.) So let G = 〈a〉 be a cyclic group. Then,
as we saw, ϕ : Z → G, ϕ(n) = an defines a surjective homomorphism.
Thus G ∼= Z/K, where K = ker(ϕ) is a normal subgroup of Z. Since
Z is abelian, all subgroups are normal. We also saw earlier that these
subgroups are given by K = kZ = {kn : n ∈ Z}. Thus, up to iso-
morphism, the complete list of cyclic groups is given by Z and Z/kZ,
k ≥ 1, and of course Z/kZ ∼= Zk, so we have recovered Theorem 2.10.

We now also find the subgroups of cyclic groups from the first isomor-
phism theorem: the subgroups of G = Zk = Z/kZ are in one-to-one
correspondence to those subgroups of Z that contain kZ. These are
given by mZ with m|k, say k = rm, and the corresponding subgroup
of G is mZ/kZ ∼= Zr, so we also recover the result that there is exactly
one subgroup for each divisor of k.

3.2. Free groups. We saw in the previous section that not any group
G′ can be a homomorphic image G′ = ϕ(G) of a given group G. Of
course, there is the obvious restriction that G′ must not be too large set
theoretically (you won’t be able to map a group with 5 elements, say,
onto a group with 5353 elements), but there is more to it than that:
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all identities that hold in G will be preserved by ϕ, so must hold in
G′ as well. As a concrete very simple illustration, consider for example
an abelian group G: this cannot be mapped homomorphically onto a
non-abelian group G′ because ab = ba in G, and these identities (or
relations, as we will call them in this context) carry over to the image,
so we also must have that xy = yx for any two elements x = ϕ(a),
y = ϕ(b) of ϕ(G).

Indeed, we found that the possible homomorphic images of G, up to
isomorphism, are exactly the quotient groups G/K, which is consistent
with the interpretation just suggested that a possible image is a group
that has at least the same relations as G, and maybe additional ones.

It is therefore interesting to try to build groups with as few relations
as possible. We would then expect these to have the property that they
can be mapped onto anything that isn’t simply too large. To make this
more precise, we fix a set X of prospective generators, and we would
like to construct a group G = 〈X〉 that does not have any unnecessary
relations.

As a warm-up, let’s discuss the easier monoid version of this question.
The monoid M = FM(X) we are looking for should contain X, so
whenever x1, . . . , xn ∈ X, then the product x1x2 · · ·xn, whatever it
will turn out to be equal to, must also be in FM(X). We also want
FM(X) to be generated by X, as a monoid, so these products of
generators should actually be all of FM(X). Finally, since we don’t
want relations, we will treat any two such products as distinct unless
they are identical. We can make these straightforward but somewhat
informal remarks precise as follows:

Definition 3.6. Let X be a set. The free monoid generated by X is
given by the set of words in letters drawn from X,

FM(X) = {x1x2 . . . xn : n ≥ 0, xj ∈ X},

with concatenation as the monoid operation and the empty word as
the neutral element.

It is straightforward to check (do it please) that FM(X) is indeed
a monoid that is generated by X. Moreover, by our introductory re-
marks, we expect to be able to map FM(X) onto any monoid that
isn’t too large. This works; here is a slightly more general version of
this property:

Theorem 3.7. Let X be a set and let M be a monoid. Then, given any
map f : X → M , there exists a unique homomorphism ϕ : FM(X)→
M such that f = ϕ ◦ id, where id(x) = x (interpreted as a one letter
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word).

X
id
//

f
&&

FM(X)

ϕ

��

M

Please don’t get confused by the dashed arrow ϕ: the claim is that
there exists a unique homomorphism that makes the diagram commute
(not an arbitrary map).

Proof. Any such ϕ must clearly satisfy ϕ(x) = f(x) for x ∈ X. This
already establishes uniqueness, by Proposition 3.8 below. For general
y = x1 . . . xn ∈ M , since we want a homomorphism, we are forced to
define ϕ(y) = ϕ(x1) . . . ϕ(xn), and if n = 0, then we are dealing with
the neutral element, so ϕ must send this to 1 ∈ M . Having done this,
it is now clear that it works. �

Proposition 3.8. Let M,M ′ be monoids, and suppose that M is gen-
erated by X. If ϕj : M → M ′, j = 1, 2 are homomorphisms with
ϕ1(x) = ϕ2(x) for all x ∈ X, then ϕ1(y) = ϕ2(y) for all y ∈M .

An analogous result holds for groups.

Proof. Let M0 = {y ∈ M : ϕ1(y) = ϕ2(y)} and observe that M0 is
a submonoid of M that contains X, hence M0 = M . The proof for
groups is identical. �

We can’t make any claims about ϕ mapping onto M in the generality
of Theorem 3.7, so we must specialize this if we want a statement of the
type announced above. So suppose now that the monoidM is generated
by X ⊆M ; then we can take f as the inclusion map f(x) = x, and we
obtain a unique homomorphism ϕ : FM(X) → M with ϕ(x) = x for
x ∈ X. This time, ϕ will be surjective (why?), so M = ϕ(FM(X)).
The free monoid with generator set X can be mapped homomorphically
onto any monoid generated by X, as promised.

Exercise 3.9. Show that FM(X) is actually characterized by these
properties, up to isomorphism. More precisely, let j : X → F be a
mapping from a set X to a monoid F , and suppose that if f : X →M
is any map from X to an arbitrary monoid M , then there exists a
unique homomorphism ϕ so that the following diagram commutes:

X
j

//

f
$$

F

ϕ
��

M
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Show that then F ∼= FM(X).

After this warm-up, back to the group case. We want to implement
the same strategy. In groups, we can also take inverses, so the free
group should now contain words in the generators and their inverses.
This is best handled by temporarily making those inverses independent
generators. So given a set X, we introduce the new symbols X ′ = {x′ :
x ∈ X}, and we then form words

a = a1a2 . . . an, n ≥ 0, aj ∈ X ∪X ′

with letters taken from X∪X ′. Our intention is to eventually recognize
the x′ ∈ X ′ as the inverses x′ = x−1, x ∈ X. In particular, this time
we will have to introduce some relations on our words: whenever an
x ∈ X is immediately followed by the corresponding symbol x′ ∈ X ′ or
vice versa, we may remove both symbols from our word. (It may seem
silly to have put these letters xx′ there in the first place, but recall
that we multiply words by concatenating them, so such pairs can arise
unintentionally, at the gluing point.) This is called a basic reduction;

we write a
1−→ b if b is obtained from a by one such reduction step.

More formally, a
1−→ b means that b = a1a2 . . . ak−1ak+2 . . . an for some

0 ≤ k ≤ n− 1 and ak+1 = a′k or ak = a′k+1.
A word a is called reduced if no reduction is possible, that is, there

is no word b with a
1−→ b. We will then define FG(X) as the set

of all reduced words, with concatenation plus reduction as the group
operation. It is intuitively clear that this is the right thing to do and
will work, but we’ll give a careful formal treatment, too.

We write a
n−→ b if b can be obtained from a by precisely n reduction

steps, and a→ b means that a
n−→ b for some n ≥ 0; here, we of course

interpret a
0−→ b as a = b.

Exercise 3.10. In this exercise, we will identify binary relations R on a
set X with the corresponding subsets {(x, y) : x, y ∈ X, xRy} of X×X.
(a) Given a binary relation R on a set X, show that there is a smallest
(as a subset of X×X) reflexive relation R0 with R0 ⊇ R. (This should
be easy; give a direct definition of R0.)
(b) Next, show that there is a smallest transitive relation Rt with Rt ⊇
R0. This is called the transitive closure of R0. (This isn’t very difficult
either, but perhaps an abstract argument will work best.)

(c) Show that → is the transitive closure of the reflexive version (
1−→)0

of
1−→.

It is clear that any word a can be reduced to a reduced word, that is,
there exists a reduced word b with a→ b. Indeed, all we need to do is
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reduce a as long as this is still possible; since each individual reduction
step decreases the length of a by 2 digits, the process must stop after
finitely many steps. However, when reducing a given word a in this
way, we may have to make choices, so the reduction process itself is
certainly not uniquely determined by a. For example, if a = xx′xy′y,

then there are three possible reductions a
1−→ b in the first step already.

The following property of reductions will be crucial in the construc-
tion of the free group:

Lemma 3.9. For every word a ∈ FM(X ∪ X ′), there is a unique
reduced word b such that a→ b.

So while the journey from a to b is not unique, the final destination is.
This is sometimes expressed by saying that reduction → is a confluent
relation.

If you try some examples (such as the word a = xx′xy′y from above),
you will quickly become convinced that Lemma 3.9 is true. A clean
formal proof still requires some care, though. Let’s first look at a very
basic case.

Lemma 3.10. If a
1−→ b and a

1−→ c and c 6= b, then b
1−→ d, c

1−→ d for
some d.

Proof. Let’s say we get from a to b by deleting akak+1 (so ak+1 = a′k
or the other way around), and we obtain c by deleting ajaj+1 from a.
Now if these pairs don’t overlap, then the claim is clear: we simply
delete ajaj+1 from b and akak+1 from c to get to d.

But this is actually the general case: we certainly can’t have k = j
because this would give b = c, contrary to our assumption. If j = k+1,
say, then we still arrive at the same conclusion b = c: this time, a
contains a piece of the form xx′x (or x′xx′), and whether we delete xx′

or x′x, the net effect is the same. �

We are now ready for the

Proof of Lemma 3.9. We will show that if a→ b, a→ c, then there is
a d such that b → d, c → d. This will give the Lemma because it in
particular says that if b, c are reduced words here, then only the trivial
reduction to d = b = c is possible, so b = c.

We are, more specifically, assuming that a
j−→ b, a

k−→ c, and we will
prove our claim by a double induction on j, k. Everything becomes
trivial if j = 0 or k = 0. So let’s for now focus on the case k = 1. As
announced, we will proceed by induction on j. If j = 1 (= basis of
the induction), then we’re back in the situation of Lemma 3.10. Now
let (= inductive step) j ≥ 2 and suppose that what we’re currently
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trying to show holds for j − 1. In other words, if a
j−1−−→ b, a

1−→ c,
then b, c can both be reduced to a common word d. Now suppose that

a
j−→ b and a

1−→ c. We can split off the first step in the first reduction,

say a
1−→ u

j−1−−→ b. If u = c here, then we can take d = b and we’re
done (with this part). If not, then Lemma 3.10 applies to the one-step

reductions a
1−→ u, a

1−→ c, and we obtain a word v with u
1−→ v, c

1−→ v.

Now the induction hypothesis, applied to u
j−1−−→ b, u

1−→ v, produces a
d with b → d, v → d, and this d is then also a common reduction of
b, c, as required. We have established the claim for k = 1 and arbitrary
j.

Now we finish with a final induction on k. We just discussed the
case k = 1. Let k ≥ 2, and assume the claim for k − 1. Suppose that

a
j−→ b and a

1−→ u
k−1−−→ c. Since we can now handle the k = 1 case, we

obtain that b → v, u → v for some v. Now the induction hypothesis

can be applied to u
n−→ v, u

k−1−−→ c, and we find that v, c reduce to a
common word d, and thus b→ d, c→ d as well. �

We are now ready to give a preliminary definition of the free group
with generator set X. Notice that given a word a ∈ FM(X ∪ X ′),
Lemma 3.9 allows us to unambiguously define red(a), the reduction
of a, as the unique reduced word with a → red(a). We then define
FG(X) as the set of reduced words in X ∪X ′ and the group operation
as a · b := red(ab), where the multiplication on the right-hand side is
performed in the monoid FM(X∪X ′); in other words, we concatenate.
(I’ll drop the dot to denote the product in FG(X) very soon, but it is
convenient for the purposes of the following discussion.)

To see that this operation is associative, just keep track of how
(a · b) · c, say, is obtained: we concatenate ab, then reduce this word,
then tack on c on the right, and then reduce the whole word until the
process stops. Now this first set of reduction steps, on ab, could have
been performed after attaching c on the right; c then simply acts as a
spectator during this first stage. When we’re done with this, we then
perform our reduction steps on the whole word, as before. It follows
that (a · b) · c is a reduction of (ab)c = abc, but so is a · (b · c), by the
same argument. Now Lemma 3.9 shows that (a · b) · c = a · (b · c).

It is clear that the empty word (is reduced and) still functions as
the neutral element. Moreover, every a = a1 . . . an ∈ FG(X) has an
inverse, which is given by a−1 = a′n . . . a

′
1 (and here we must interpret

(x′)′ as x). In particular, a = x has inverse x′ if x ∈ X.
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We have shown that FG(X) is a group, and it is also clear that
this group is generated (as a group, not as a monoid!) by X. We can
now abandon the prime notation and describe FG(X) as the set of all
reduced words in x, x−1, x ∈ X, where a single reduction step consists
of striking out a two-letter subword xx−1 or x−1x. The group operation
is concatenation plus reduction. For example,

(xyxy−1z)(z−1yxy) = xyxxy.

I hope these somewhat lengthy considerations didn’t make you too
dizzy. Let me emphasize one more time that the whole construction
is completely straightforward and obvious: if you want x ∈ X to gen-
erate a group with no unnecessary relations, well, just multiply the
generators and their inverses formally and declare all these words to be
distinct (= no relations!), except of course for occurrences of xx−1 or
x−1x, which you must be allowed to cancel. This is really all we did;
it’s just the proper formal set-up that becomes mildly tedious.

As expected and intended, the analog of Theorem 3.7 holds:

Theorem 3.11. Let X be a set and let G be a group. Then, given any
map f : X → G, there exists a unique homomorphism ϕ : FG(X)→ G
such that f = ϕ◦ id, where id(x) = x (interpreted as a one letter word).

X
id
//

f
%%

FG(X)

ϕ

��

G

Proof. This is the same proof as in the monoid case. Since we must
define ϕ(x) = f(x) for x ∈ X, just to make the diagram commutative,
we obtain from Proposition 3.8 that ϕ is unique as a homomorphism.
More explicitly, if a = a1 . . . an with aj ∈ X or a−1j ∈ X, we must set

ϕ(x) = f(a1) · · · f(an), where we have extended f to X ∪ X−1 in the
obvious way, by setting f(x−1) = f(x)−1 for x ∈ X. Again, it is now
easy to check that this ϕ works: write a = a1 . . . am, b = b1 . . . bn. Then

(3.2) ϕ(a)ϕ(b) = f(a1) . . . f(am)f(b1) . . . f(bn),

and we obtain ϕ(ab) by reducing ab, which amounts to deleting some
of the a’s and b’s, and then we form a similar product of factors f(aj),
f(bj). It now suffices to observe that each individual reduction step
removes two factors whose counterparts on the right-hand side of (3.2)
produce a 1 when multiplied together. In other words, this right-hand
side is unaffected by the reduction, and thus ϕ(ab) = ϕ(a)ϕ(b), as
required. �
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Corollary 3.12. Let G be a group with a set of generators X ⊆ G.
Then there is a surjective homomorphism ϕ : FG(X) → G, and G ∼=
FG(X)/K for some K E FG(X).

Proof. Take f(x) = x in Theorem 3.11. (Why is ϕ surjective?) �

In this form, it almost looks as if each group G with generating set X
came with its own private free group FG(X) that can be mapped onto
it, but of course this is not the case because it is completely irrelevant
what names exactly we give to the generators of a free group. More
precisely, FG(X) ∼= FG(Y ) if (and only if, but we won’t discuss this
here) there is a bijection f : X → Y .

Exercise 3.11. Show this.

In particular, for each integer n ≥ 1, there is a unique, up to isomor-
phism, free group FGn = FG(x1, . . . , xn) with this many generators.
Any group whatsoever that is generated by n of its elements is a ho-
momorphic image of FGn.

Exercise 3.12. Show that FG(X) is again characterized by the mapping
property from Theorem 3.11. More precisely, suppose that j : X → F
is a map into a group F such that if f : X → G is any map into a
group G, then there exists a unique homomorphism ϕ : F → G with
ϕ ◦ j = f . Prove that then F ∼= FG(X).

3.3. Generators, relations, and presentations. Let G be a group
that is generated by X ⊆ G. Then, as we saw in Proposition 2.9,
the general element a ∈ G is a product (“word”) in the generators and
their inverses, say a = a1a2 · · · an, with aj ∈ X∪X−1. In general, there
is no reason to assume that two such products will represent distinct
elements of G even if they are distinct as elements of FG(X). Rather,
there will be relations a = b between distinct words.

Maybe we can conveniently describe groups in this way, by giving
generators and relations. In principle, this is certainly possible: if all
else fails, we can just take the whole group X = G as the generating
set and list all evaluations ab = c, a, b ∈ G, as relations. Of course,
this is silly; we are really trying to keep both the set of generators and
the set of relations small and manageable.

Let’s make this more formal. Let X be a set. We now define a
relation on X simply as a pair (x, y) ∈ FG(X)×FG(X); the intended
interpretation is the identity x = y, and in fact we will usually write
relations in this way. Now given a set X and relations, can we build
a group that is generated by X and satisfies the relations we imposed,
but no unnecessary additional relations? This is in fact quite easy to
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do for us now because we have the free group FG(X) as a convenient
starting point; we can think of this as a group with no relations. The
new group we are trying to construct will also be generated by X, so it
will be FG(X)/K for suitable K E FG(X). For each relation (x, y),
we must certainly insist that x = y in FG(X)/K, or, equivalently, that
xy−1 ∈ K; otherwise we are not satisfying this relation. This suggests
to define K as the smallest normal subgroup of FG(X) with xy−1 ∈ K
for all relations (x, y).

Exercise 3.13. Show that this definition makes sense. More generally,
show that if A is a subset of a group G, then there exists a smallest nor-
mal subgroup K with K ⊇ A. (Perhaps read the first few paragraphs
of Section 2.3 again if you don’t have the right idea.)

Definition 3.13. Let X be a set and let R be a set of relations on X.
Then we define 〈X|R〉 = FG(X)/K, where K is the smallest normal
subgroup of FG(X) that contains xy−1 for all (x, y) ∈ R.

This is a group that is generated by X, or it would be more correct
to say that G = 〈X|R〉 is generated by {xK : x ∈ X} (X is, strictly
speaking, not even a subset of G). Moreover, all relations (x, y) ∈ R
hold in G in the sense that xK = yK. Finally, just like the free
group itself, G does not have unnecessary relations, by which we mean
relations other than the ones in R and those implied by those in R (of
course, what is or isn’t implied by R may be far from obvious in a given
concrete case).

This last property found its expression in universal mapping proper-
ties in the case of the free group, so it’s reasonable to expect something
similar for G.

Theorem 3.14 (Dyck). Let R be a set of relations on X, and let f :
X → G be a map to a group G that preserves all relations: f(x) = f(y)
for all (x, y) ∈ R. Let ι : X → 〈X|R〉 be the inclusion map ι(x) = xK.
Then there exists a unique homomorphism ϕ such that the following
diagram commutes:

X
ι
//

f
%%

〈X|R〉
ϕ

��

G

The proof is straightforward, but I want to skip it here. (Do it if
you are interested: first map the free group FG(X) into G, then factor
through FG(X)/K.)

As before, the most interesting application of the theorem is the
special case X ⊆ G, G = 〈X〉, f(x) = x. Then Dyck’s Theorem says



44 Christian Remling

that 〈X|R〉 can be mapped homomorphically onto any group that is
generated by X and satisfies all relations in R.

This way of writing a group G = 〈X|R〉 in terms of generators
and relations is called a presentation of G (don’t confuse this with
representations of groups, which are something else entirely). Presen-
tations are useful tools. Also recall that every group has a presentation;
in fact, it has (infinitely) many. For example, you can gratuitously add
unneeded generators and then impose relations saying that these are
really equal to some other generators. We are of course mainly inter-
ested in economic presentations that make do with few generators and
relations.

Example 3.1. Let’s start out with the case of just one generator, let’s
say a. So we are now dealing with cyclic groups. Reduced words in
a, a−1 must consist of only a’s or only a−1’s (why?), and from this you
can deduce quickly that FG(a) ∼= Z, and the isomorphism can send
a to 1 ∈ Z (do it please). So Z itself has the presentation Z ∼= 〈a| 〉
(one generator, no relations). As for the other cyclic groups, recall that
Zk ∼= Z/kZ and kZ is generated by k, so Zk ∼= 〈a|ak = 1〉, as could
have been guessed right away.

Example 3.2. Let’s now take n generators a1, . . . , an, and let’s make
the group abelian by imposing the relations ajak = akaj, j 6= k. What
is this group G = 〈a1, . . . , an|ajak = akaj〉? Thanks to these relations,
I can freely rearrange the aj in any word, so an arbitrary element of

G can be represented by a word of the form aN1
1 . . . aNn

n , with Nj ∈ Z.
This gives an isomorphism G ∼= Zn; the group operation on Zn is of
course componentwise addition.

Exercise 3.14. Provide more details please. In particular, explain why
this group is really abelian; why can I also move inverses of generators
anywhere in a word?

When dealing with presentations, it is convenient to not overload
the notation by writing elements of G = 〈X|R〉 also as words in the
generators and their inverses (strictly speaking, they are elements of a
quotient FG(X)/K), and we have done this here already. You could
also think of the presented group in terms of words that are subjected
to a rewriting mechanism, somewhat reminiscent of how we obtained
the free group as words plus a reduction process. In fact, the analogy
is complete: you can view the free group FG(X) as the free monoid
FM(X ∪ X ′) with the relations xx′ = x′x = 1. However, recognizing
whether or not two words represent the same element of a group 〈X|R〉
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can be arbitrarily difficult, whereas the reduction in the construction
of FG(X) is straightforward and algorithmic.

Example 3.3. Now let’s try to find a presentation of the symmetric
group S3. We know from Exercise 2.63(b) that S3 is generated by a =
(123) and b = (12). Clearly these satisfy a3 = b2 = 1. Also, ab = (13),
so (ab)2 = 1, and this can be rewritten as a2b = ba. I now claim that
these three relations suffice: S3

∼= 〈a, b|a3 = b2 = 1, a2b = ba〉.
Let G be this group. I claim that every element of G can be written

as anb or an, with n = 0, 1, 2. To see this, first notice that we don’t
need inverses of generators in our words because a−1 = a2, b−1 = b. I
can then use the last relation to move all b’s in a word to the right:
start with the rightmost b (also, since b2 = 1, we never need two or
more consecutive b’s), move this past its right neighbor a, and repeat
this step to eventually arrive at anb or an, as claimed.

This list has only 6 entries, so |G| ≤ 6. We might now actually get
worried that G might be even smaller due to other consequences of
our relations that we haven’t discovered yet, but that is not the case
because S3 is a group that satisfies our relations. In fact, that is how
we got them in the first place. Now |S3| = 6, and this means that G
cannot be smaller than this or we would run into a contradiction to
the mapping property from Dyck’s Theorem. In fact, we also obtain
a homomorphism ϕ : G → S3 by mapping, as expected, a 7→ (123),
b 7→ (12). This is surjective because the image contains the generators
of S3, and it is injective because G only has 6 elements which must be
mapped to the 6 elements of S3. So G ∼= S3, as claimed.

Alternatively, you could just reconstruct the multiplication table, as
follows: aman = am+n, and here you are expected to reduce m + n
modulo 3. Similarly, am(anb) = am+nb. Next, (amb)an = aNb, where
you find N from the process of moving b through to the right that was
described above. Similarly, (amb)(anb) = aN , with an N that you can
in principle find from m,n. You now have the 6 words 1, a, a2, b, ab, a2b
and a binary operation on this set, and it is now easy in principle, if
incredibly tedious, to check that this is a group that will then also turn
out to be isomorphic to S3.

This last example cautions us that the structure of a group may not
be obvious at all from its presentation because the relations could have
consequences that are not immediately obvious. As a trivial illustra-
tion, consider the group G = 〈a|a10 = 1, a63 = 1〉. We know that an = 1
precisely if n is a multiple of o(a). Since 10 and 63 are relatively prime,
it follows that o(a) = 1, so G = {1}. This was easy to see through, but
of course these things can get arbitrarily complicated, and in fact it
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has been shown that many groups have an algorithmically unsolvable
word problem: this means, roughly speaking, that you cannot write a
computer program that accepts two words in the generators as input
and outputs the correct yes/no-answer to the question do the two words
represent the same group element? after a terminating computation.

Exercise 3.15. Use arguments similar to the ones from Example 3.3 to
determine the structure of the group G = 〈a, b|a3 = b2 = 1, ab = ba〉.

Exercise 3.16. Analyze G = 〈a, b|ab = b2a, ba = a2b〉.

The dihedral group Dn is defined as the group of symmetries of the
regular n-gon. More formally, we can view Dn as the finite subgroup
of GL(2,R) with the elements

Rj =

(
cos 2πj/n − sin 2πj/n
sin 2πj/n cos 2πj/n

)
, j = 0, 1, . . . , n− 1

(“rotations”) and

Sj =

(
cos 2πj/n sin 2πj/n
sin 2πj/n − cos 2πj/n

)
, j = 0, 1, . . . , n− 1

(“reflections”).

Exercise 3.17. (a) Confirm that Dn is indeed a group.
(b) Show that Dn

∼= 〈a, b|an = b2 = 1, ab = ba−1〉.

3.4. Group actions. Recall that given a set X, we defined S(X) as
the group of all bijections on X. An action of a group G on a set X can
be defined as a homomorphism ϕ : G→ S(X). It is also possible (and
more common) to give a slightly more explicit definition by taking this
apart, as follows: Notice, first of all, that from an action of G on X,
we obtain a map from A : G ×X → X, by setting A(g, x) = ϕ(g)(x).
Then, since ϕ is a homomorphism, we obtain that A(1, x) = x and
A(gh, x) = A(g, A(h, x)).

Conversely, if a map A : G × X → X has these two properties,
then we obtain a homomorphism ϕ : G→ S(X) by defining ϕ(g)(x) =
A(g, x).

Exercise 3.18. Prove this.

These remarks lead to the following reformulation of our original
definition. We now drop A in the notation.

Definition 3.15. We say that a group G acts on a set X if there is a
map G×X → X, (g, x) 7→ gx such that

1x = x, (gh)x = g(hx) (g, h ∈ G, x ∈ X).
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Exercise 3.19. Prove directly from this definition that x 7→ gx is a
bijection on X for arbitrary fixed g ∈ G.

Group actions are ubiquitous and often arise very naturally. For
example, matrices really “want” to act on vectors, so it’s natural to
try to let G = GL(2,R), say, act on X = R2 by simply multiplying
g ∈ G and x ∈ X as matrices. This is a group action: the neutral
element of G is the identity matrix 1 = diag(1, 1), which does have the
property that 1x = x for x ∈ R2, and (gh)x = g(hx) follows from the
associativity of the matrix product.

Similarly, the dihedral groupDn acts on the n verticesX = {1, . . . , n}
(for convenience labeled by integers here) of a regular n-gon in a natural
way, and the symmetric group Sn acts on {1, 2, . . . , n}.
Example 3.4. A group G acts on itself in various ways: by left multipli-
cation (g, x) 7→ gx, g, x ∈ G or by right multiplication (g, x) 7→ xg−1,
or by conjugation (g, x) 7→ gxg−1. We used the action by left multipli-
cation in our proof of Cayley’s Theorem.

Exercise 3.20. Show that these are indeed group actions.

The set Gx = {gx : g ∈ G} is called the orbit of x ∈ X. A group
action is called transitive if Gx = X for all orbits.

Exercise 3.21. Show that this will hold as soon as Gx = X for some
orbit.

Exercise 3.22. Show that GL(2,R) acts transitively on R2\{0}, and the
action of a group G on itself by left or right multiplication is transitive,
while the action of G on itself by conjugation is never transitive, unless
G = {1}.

The stabilizer of a point x ∈ X is defined as

Stab(x) = {g ∈ G : gx = x}.
Theorem 3.16. Stab(x) is a subgroup of G, and

|Gx| = [G : Stab(x)].

The second statement will be most interesting for finite orbits and
finite index stabilizers, but it holds in general.

Proof. Notice, first of all, that if gx = y, then g−1y = x (just let g−1

act on both sides). So, if g, h ∈ Stab(x), then also h−1 ∈ Stab(x) and
(gh−1)x = g(h−1x) = gx = x, so gh−1 ∈ Stab(x) as well. This shows
that Stab(x) is a subgroup.

To prove the second claim, fix x ∈ X, and consider the map g 7→ gx.
Let’s also abbreviate S = Stab(x). Notice that gx = hx precisely if
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h−1g ∈ S, and this happens precisely if g, h are in the same (left) coset
of S. Thus we obtain an induced injective map gS 7→ gx from the
coset space G/S to Gx.

G //

��

Gx

G/S

<<

Note that we are not claiming that S is a normal subgroup of G, and
indeed this is false in general. However, we can consider the coset
space G/S = {aS : a ∈ G} also for an arbitrary subgroup, and this
still comes with a natural surjection G → G/S, g 7→ gS, though we
don’t have a group structure on G/S if S isn’t normal.

Since the original map g 7→ gx was surjective onto the orbit, it follows
that the induced map is a bijection between G/S and Gx. �

Exercise 3.23. (a) Provide an example of a non-normal stabilizer.
(b) Show that g Stab(x)g−1 = Stab(gx).

Next, we observe that a group action partitions the set acted on into
orbits. Put differently, two orbits Gx,Gy are either equal or disjoint.
(Obviously, since x ∈ Gx, every point of X is in some orbit.) Indeed,
if z ∈ Gx ∩ Gy, say z = gx = hy, then x = g−1hy ∈ Gy, so Gx ⊆ Gy
and similarly Gy ⊆ Gx, so Gx = Gy. When combined with Theorem
3.16, this gives the following useful counting formula. We now focus
on actions on finite sets.

Theorem 3.17. Let the group G act on a finite set X, and pick one
point xj from each orbit. Then

(3.3) |X| =
∑

[G : Stab(xj)].

Proof. As we just observed, we have the partition X = Gx1∪ . . .∪Gxn.
Now use Theorem 3.16. �

These ideas are reminiscent of our proof of Lagrange’s Theorem, and
indeed we could view this as a special case of Theorem 3.17. To do this,
let H be a subgroup of a finite group G, and let H act on X = G by left
multiplication. The orbit of an x ∈ G is the corresponding right coset
Hx, so the number of orbits equals the index [G : H]. Furthermore,
Stab(x) = {1}, so [H : Stab(x)] = |H|, and now Theorem 3.17 gives
that |G| = [G : H]|H|.

A particularly interesting application of Theorem 3.17 is obtained
by considering the conjugation action of a finite group G on itself. So
we send (g, x) 7→ gxg−1. In this case, the orbit {gxg−1 : g ∈ G} of an
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x ∈ G is also called the conjugacy class of x. What is the stabilizer
of an x ∈ G? We have that gxg−1 = x precisely if gx = xg, that is,
precisely if g and x commute. This motivates:

Definition 3.18. The centralizer of x ∈ G is defined as the collection
of those g ∈ G that commute with x:

C(x) = {g ∈ G : gx = xg}
Similarly, the center C = C(G) of a group G is defined as

C = {g ∈ G : gx = xg for all x ∈ G} =
⋂
x∈G

C(x).

We know that C(x), being a stabilizer of the conjugation action of
G on itself, is a subgroup. This makes C =

⋂
C(x) a subgroup as well;

of course, it’s also easy to check this directly. More can be said:

Exercise 3.24. Show that C E G. Is C(x) also normal?

With these preparations out of the way, we can now rephrase Theo-
rem 3.17 for the special case of the conjugation action as follows:

Theorem 3.19 (The class equation). Let G be a finite group with
center C. Pick one representative xj from each conjugacy class with
more than one element. Then

|G| = |C|+
∑

[G : C(xj)].

Proof. Notice that the conjugacy class of an x ∈ G consists of x only
precisely if x ∈ C. Each such conjugacy class contributes a 1 to the
sum from (3.3), and there are |C| of these. Since Stab(x) = C(x) for
the conjugation action, it is now clear that our identity is (3.3), slightly
rewritten. �

Corollary 3.20. Let p be a prime, and suppose that |G| = pn, n ≥ 1.
Then G has a non-trivial center C 6= {1}.
Exercise 3.25. Show that G = Sn, n ≥ 3, has center C = {1}.
Proof. Consider the class equation for G. For each C(x) occuring in the
sum (which, incidentally, could be empty, but then G = C and we’re
done), we have that C(x) 6= G (why?). This implies that p divides
[G : C(x)]. Since also p||G|, it follows that |C| must also be divisible
by p, and thus |C| ≥ p, as claimed. �

Exercise 3.26. (a) Let G be a group with center C. Show that if G/C
is cyclic, then G is an abelian group.
(b) Let p be a prime, and suppose that |G| = p2. Show that G is
abelian. Suggestion: Consider the center C of G and G/C.
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Exercise 3.27. Give an example of a non-abelian group G that has a
normal subgroup K, such that both K and G/K are abelian.

Exercise 3.28. Show that there are non-abelian groups of order p3, p a
prime. Suggestion: Try to find a non-abelian group of order 8 among
our examples.

Exercise 3.29. Suppose that |G| = pn, p a prime, and HEG, H 6= {1}.
Show that then H ∩ C 6= {1}. Suggestion: Try to adapt the proof of
Corollary 3.20 (the Corollary is the special case H = G of this exercise).

Exercise 3.30. Let H be a subgroup of G with [G : H] = n. Show
that there is a normal subgroup K EG, K ⊆ H, such that [G : K]|n!.
Suggestion: Let G act on the (left) coset space G/H by left multi-
plication (g, aH) 7→ gaH, and consider the kernel of the associated
homomorphism ϕ : G→ S(G/H).

Exercise 3.31. Let p be the smallest prime divisor of |G|. Show that a
subgroup of index p is normal. Suggestion: Apply the result from the
previous Exercise.

Exercise 3.32. Decompose a permutation π ∈ Sn into disjoint cycles,
such that every integer 1 ≤ j ≤ n is in exactly one cycle. Denote
the lengths of these cycles by `1 ≥ `2 ≥ . . . ≥ `k, in decreasing order.
Now prove that two permutations π, π′ are in the same conjugacy class
precisely if they have the same cycle structure in the sense that k = k′,
`j = `′j, j = 1, 2, . . . , k.

Given a general group G, one might hope to analyze its structure
by breaking it into smaller pieces and studying those pieces separately.
More specifically, this could be done by finding a normal subgroup K,
and this gives us the smaller groups K and G/K. The basic building
blocks in this process would then be groups with no normal subgroups
at all, other than K = {1} and K = G. Such groups are called simple
groups.

The classification of the finite simple groups has indeed been com-
pleted. It was one of the largest (it’s probably safe to say: the largest)
projects of 20th century mathematics. That still leaves us with the
second step of reassembling G from its pieces. More specifically, if K
and G/K are known, up to isomorphism, can we reconstruct G, also up
to isomorphism, from this information? For other algebraic structures
(for example, vector spaces), this works, but in the case of groups, the
answer is a very loud no.

This is in fact clear from very basic examples. The direct product of
two groups G,H is defined in the expected way as G × H, endowed
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with the group operation (g1, h1)(g2, h2) = (g1g2, h1h2). Now consider
G1 = Z2 × Z2 and G2 = Z4.

Exercise 3.33. Show that both groups Gj have normal subgroups Kj E
Gj such that Kj

∼= Z2, Gj/Kj
∼= Z2. However, G1 6∼= G2.

The notion of a semidirect product of groups will shed some more
light on this issue, and it is of independent interest. An automorphism
of a group G is a bijective homomorphism of G onto itself. Equiva-
lently, an automorphism is a map ϕ ∈ S(G) that is a homomorphism.
I mention in passing that the automorphisms of G form a subgroup
Aut(G) of S(G). We say that a group H acts on the group G by au-
tomorphisms if H acts on G and, moreover, for each h ∈ H, the map
g 7→ hg is an automorphism of G (it is automatically a bijection, com-
ing from a group action, so the extra requirement is that g 7→ hg is a
homomorphism of G).

Definition 3.21. Let H act on G by automorphisms. Then the semidi-
rect product GoH of G and H is defined as the set G×H, endowed
with the group operation

(g1, h1)(g2, h2) = (g1(h1g2), h1h2).

Here, we are of course not multiplying h1g2, which wouldn’t make
sense since h1 ∈ H, g2 ∈ G come from different groups; rather, h1 acts
on g2 to produce another element of G, which is then multiplied by
g1 ∈ G.

Notice that the semidirect product depends on three data: the two
groups G and H, plus the action of H on G.

Exercise 3.34. Verify that this operation is associative, (1, 1) is a neu-
tral element, and each (g, h) ∈ GoH has an inverse, which is given by
(h−1g−1, h−1). (In other words, GoH is indeed a group.) Also, show
that if H acts trivially, that is, hg = g, then GoH ∼= G×H.

So direct products are special semidirect products, with the trivial
action hg = g, but there are other examples.

Example 3.5. Let Z2 act on Zn by mapping (1, k) 7→ −k, k ∈ Zn (and
of couse (0, k) 7→ k). Since −(k+j) = (−j)+(−k) in Zn (or any group,
for that matter), this is an action by automorphisms. So we can form
the semidirect product G = ZnoZ2 based on this action. I claim that
G ∼= Dn, the dihedral group. We saw earlier that

Dn
∼= 〈a, b|an = b2 = 1, bab = a−1〉.

Both Dn and G have 2n elements, so to show that G ∼= Dn it suffices
to find two generators of G that satisfy the same relations.
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Exercise 3.35. Think about this more carefully please. Why is this
indeed enough? (Refer to Dyck’s Theorem perhaps for a formal argu-
ment.)

It’s natural to try a = (1, 0), b = (0, 1). These two elements do
generate the semidirect product. The first two relations are obvious,
and ba = (0 + 1 · 1, 1 + 0) = (−1, 1), so (ba)b = (−1 + 1 · 0, 1 + 1) =
(−1, 0) = −a, as required; here, the dot product h·g denotes the action
of Z2 on Zn.

In particular, with this action, ZnoZ2 6∼= Zn×Z2 (this latter group is
abelian), so semidirect products are more general than direct products,
and the resulting group will, in general, depend on the action.

Theorem 3.22. Let G o H be a semidirect product (the indefinite
article is appropriate because of the dependence on the action). Then
G0 = {(g, 1) : g ∈ G} is a normal subgroup of G o H. We have that
G0
∼= G and (GoH)/G0

∼= H.

We conclude that if for a group G, a normal subgroup K and G/K
are known, up to isomorphism, then G could still be any semidirect
product of K and G/K. In fact, the notion of a semidirect product is
not wide enough for this reconstruction; in general, one needs so-called
group extensions.

Exercise 3.36. Show that any semidirect product Z2oZ2 is isomorphic
to the direct product. (So Z4 6∼= Z2 oZ2, even though Z4 has a normal
subgroup K ∼= Z2, G/K ∼= Z2.)

Proof. It is obvious that G0 is a subgroup. To see that G0 is nor-
mal, recall that (a, h)−1 = (. . . , h−1). It is now also immediate that
(a, h)(g, 1)(a, h)−1 ∈ G0, simply because in the second component, we
are multiplying h1h−1 = 1, as required.

Clearly, G0
∼= G, via the obvious isomorphism (g, 1) 7→ g. Finally,

(g, h)G0 = (g′, h′)G0 precisely if (g, h)(g′, h′)−1 ∈ G0, and this happens
precisely if h = h′. This observation gives an isomorphism H → (Go
H)/G0, by mapping h 7→ (1, h)G0. �

Exercise 3.37. Show that GoH always has a subgroup isomorphic to
H. However, show that there need not be a normal subgroup ∼= H.
Suggestion: Work with the dihedral group for a counterexample.

3.5. The Sylow Theorems. Throughout this section, all groups will
be assumed finite. We know from Lagrange’s Theorem that the order
of a subgroup H of G divides |G|. Conversely, if n divides |G|, will
there be a subgroup H of G of order n? It turns out that this is not
always the case.
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Theorem 3.23. A4 has no subgroup of order 6.

Recall that An denotes the alternating group, that is, the subgroup
of Sn consisting of the even permutations. Since [Sn : An] = 2, we have
that |An| = |Sn|/2 = n!/2, so in particular |A4| = 12.

Proof. If there were a subgroup H of order 6, then [A4 : H] = |A4|/6 =
2, so H would be normal in A4, and the quotient group A4/H has
order 2. So for any π ∈ A4, it would follow that (πH)2 = 1 or, equiv-
alently, π2 ∈ H. This implies that for any 3 cycle π = (jkm), we
have that π = π4 = (π2)2 ∈ H. However, there are 8 distinct 3 cycles
(123), (213), (124), . . ., so |H| ≥ 8, and we have reached a contradic-
tion. �

However, if a divisor of |G| has only one prime factor, then there will
always be a subgroup of this order.

Theorem 3.24 (Sylow I). Let p be a prime, and suppose that pk||G|.
Then G has a subgroup of order pk.

The proof will be based on the following

Lemma 3.25. Let G be an abelian group with p||G|, p a prime. Then
G has an element of order p.

Proof. We will do this by induction on |G|. Of course, this is trivially
true for |G| = 1 (and = 2, 3). Now assume the claim for all groups of
order < |G|, and suppose that p||G|. Take an arbitrary a ∈ G, a 6= 1. If
p|o(a), let’s say o(a) = pn, then an will work. Otherwise, (p, o(a)) = 1,
and this means that |G/〈a〉| = |G|/o(a) is still divisible by p. Moreover,
since a 6= 1, this group has smaller order than G, so by the induction
hypothesis, we can find an element b〈a〉, b ∈ G, of order p. Let’s write
n = o(b) for the order of b in G. Then (b〈a〉)n = bn〈a〉 = 〈a〉 = 1 ∈
G/〈a〉, so p|o(b), and we’re back in the case we already discussed. �

Proof of Theorem 3.24. We again proceed by induction on |G|. So as-
sume the claim for all groups of order < |G|. Consider the class equa-
tion

|G| = |C|+
∑

[G : C(xj)].

If p - |C|, then also p - [G : C(xj)] for at least one of the summands,
but this means that pk||C(xj)|. Now the induction hypothesis lets us
find a subgroup H ⊆ C(xj) of order pk, and we are done in this case.
(Why is C(xj) a group of smaller order than G?)

If p||C|, then we apply the lemma to C to find a c ∈ C, o(c) = p.
Since 〈c〉 ⊆ C, the subgroup 〈c〉 is normal, and we can form the quo-
tient G/〈c〉. This is a group of order |G|/p, so the induction hypothesis
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produces a subgroup H ⊆ G/〈c〉 of order pk−1. By the first isomor-
phism theorem, this subgroup is of the form H = H/〈c〉, for some
subgroup 〈c〉 ⊆ H ⊆ G. Now observe that

|H| = [H : 〈c〉]|〈c〉| = |H|p = pk−1p = pk,

so H is a subgroup of the type we are looking for. �

A subgroup of this type, with k maximal, is called a Sylow p-subgroup.
We denote the collection of Sylow p-subgroups by Sylp(G); we may drop
G here if the underlying group is clear from context or irrelevant. So
if |G| = pnm with (p,m) = 1, then H ∈ Sylp(G) precisely if H is a
subgroup of order pn. Sylow’s first theorem says that there always is
such a subgroup.

Theorem 3.26 (Sylow II). (a) Any two Sylow p-subgroups are conju-
gate: if P1, P2 ∈ Sylp(G), then P2 = aP1a

−1 for some a ∈ G.
(b) Write N = |Sylp(G)| and |G| = pnm, (p,m) = 1. Then N |m

and N ≡ 1 mod p.
(c) Any subgroup of order pk is contained in a Sylow p-subgroup.

The key idea will be to let G act on Sylp by conjugation: (g, P ) 7→
gPg−1.

Exercise 3.38. Check that indeed gPg−1 ∈ Sylp again and that this
defines an action.

The stabilizer of a P ∈ Sylp is given by {g ∈ G : gPg−1 = P}.
This is called the normalizer of P and denoted by N(P ). Observe that
N(P ) is a subgroup (being a stabilizer), and that P E N(P ).

Lemma 3.27. Let P ∈ Sylp(G), and suppose that H ⊆ N(P ) is a

subgroup of order pk, k ≥ 0. Then H ⊆ P .

Proof. As we just observed, P E N(P ). Now the second isomorphism
theorem gives that HP/P ∼= H/(H ∩ P ). This in particular shows
that HP/P has order pj, so |HP | = pj|P |. Since the order of P is the
highest possible power of p of a subgroup of G, it follows that j = 0,
so HP = P and thus H ⊆ P , as claimed. �

We are now ready for the

Proof of Theorem 3.26. As planned, we let G act on Sylp by conjuga-
tion. Let S ⊆ Sylp be one of the orbits of this action. For any subgroup
P ⊆ G we then also obtain an action of P on S, simply by restricting.
If we take a P ∈ S, then {P} is an orbit of this restricted action. More-
over, this is the only orbit consisting of a single point: if {P ′}, P ′ ∈ S,
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is an orbit under the P action, then P ⊆ N(P ′), and now Lemma 3.27
implies that P = P ′.

By Theorem 3.16, the cardinality of any such orbit, not consisting
of a single point, is divisible by p. Thus the counting technique from
Theorem 3.17 shows that |S| ≡ 1 mod p.

On the other hand, if we pick a Sylow p-subgroup P /∈ S, then the
same argument shows that |S| ≡ 0 mod p. This contradiction can
only be avoided if there are no such P /∈ S. We have shown that
S = Sylp. In other words, the action of G on Sylp by conjugation is
transitive, and this is what part (a) claims. We also just proved that
N ≡ 1 mod p. Moreover, by Theorem 3.17 again, N = [G : N(P )],
and since N(P ) ⊇ P , this is a divisor of m, as claimed.

It remains to establish part (c). So let H be a subgroup of G of order
pk. Let H act on Sylp by conjugation. The cardinality of an orbit is
[H : T ], where T ⊆ H is a stabilizer. So the cardinality of an arbitrary
orbit is a power of p. Since N ≡ 1 mod p, there must be at least one
orbit of cardinality 1. In other words, H ⊆ N(P ) for some P ∈ Sylp.
Now Lemma 3.27 shows that H ⊆ P . �

Exercise 3.39. Suppose that a group G has exactly one element x of
order 2. Show that x ∈ C(G).

The Sylow theorems sometimes impose strong restrictions on the
structure of finite groups. Here are some typical applications:

Example 3.6. There is no simple group of order pq, p, q both primes. To
show this, consider Sylp and N = |Sylp|; for convenience, let’s assume
that p is the larger of the two primes. (In fact, since any P ∈ Sylp
has index [G : P ] = q, which is the smallest prime divisor of |G|, the
claim already follows from Exercise 3.31; here we give an independent
argument.) Theorem 3.26(b) says that N |q and N ≡ 1 mod p. Since q
is a prime, the first condition really says that N = 1 or N = q, but only
N = 1 is consistent with the second condition. This unique P ∈ Sylp
must be invariant under conjugation and thus normal.

Exercise 3.40. This discussion implicitly assumed that p 6= q. Show
that no group of order pn, p a prime, n ≥ 2, is simple.

Example 3.7. For a somewhat more elaborate example of the same
technique, I now want to show that there is no simple group of order
80. Notice that 80 = 24 · 5, and consider again Syl5 and N = |Syl5|.
As in the previous example, we have that N |16, N ≡ 1 mod 5. The
values of N consistent with these conditions are N = 1, N = 16. In
the first case, we are done because then the unique Sylow 5-subgroup
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is normal. In the second case, notice that P ∩ P ′ = {1} for any two
distinct Sylow 5-subgroups. This follows because a group of order 5 is
cyclic, and it is generated by any non-identity element, so if two such
subgroups have a non-identity element in common, then they are the
same subgroup. It now follows that

⋃
P , with the union taken over

P ∈ Syl5, has 65 elements: the P \ {1} are pairwise disjoint and thus
contribute 16 · 4 = 64 elements, and then there’s 1 for one additional
element. Now a Sylow 2-subgroup Q can not contain any non-identity
element from

⋃
P because these all have order 5 which does not divide

|Q| = 16. So the elements of Q are exactly those 15 not in
⋃
P , plus

the identity. In particular, there is only one Sylow 2-subgroup, which
then must be normal.

Another satisfying application of the tools we have developed is the
classification of finite groups of small order. Let me give two sample
results here. First of all, recall that a group of order p, p a prime, is
cyclic. So we know the groups of order 2, 3, 5, 7, 11, . . .. Let’s now fill
a few of the gaps.

Exercise 3.41. Suppose that |G| = 4. Show that G ∼= Z4 or G ∼=
Z2 × Z2.

Next would be groups of order 6. We can show a more general result
right away.

Theorem 3.28. Suppose that |G| = 2p, p a prime. Then G ∼= Z2p or
G ∼= Dp.

Recall that the dihedral group has the presentation

Dp = 〈a, b|ap = b2 = 1, bab = a−1〉.
Proof. The case p = 2 was just dealt with in an exercise (provided that
you also show that D2

∼= Z2×Z2; please do it). So we can assume that
p ≥ 3. Pick a Sylow p-subgroup A and a Sylow 2-subgroup B. Since
these have prime orders, they are cyclic, and we can pick generators
a ∈ A, b ∈ B. So o(a) = p, o(b) = 2. Since [G : A] = 2 and b /∈ A, we
have that G = A∪ bA, so a, b together generate G. It also follows that
A is normal. This implies that bab = bab−1 = ak for some 0 ≤ k < p.
We deduce from this that

a = bbabb = bakb = (bab)k = ak
2

,

or, equivalently, ak
2−1 = 1. So o(a) = p must divide k2 − 1 = (k −

1)(k + 1), and since p is prime, it divides either k − 1 or k + 1. If
p|k− 1, then ak = a, so bab = a or ab = ba. To summarize: in this first
case, our group G of order 2p is generated by a, b, and these generators
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satisfy the relations ap = b2 = 1, ab = ba. It’s now easy to see that:
(1) 〈a, b|ap = b2 = 1, ab = ba〉 ∼= Z2p; (2) G is isomorphic to this group.

Exercise 3.42. Provide the details please.

In the other case, p|k+ 1, it follows that ak = a−1, so bab = a−1, and
in addition to this, we have the two relations ap = b2 = 1. In other
words, we have exactly the defining relations of the dihedral group, and
our group G not only satisfies the relations of Dp but it also has the
same number of elements of Dp. This implies that G ∼= Dp in this case
(again, provide the details perhaps). �

Exercise 3.43. Well, isn’t Zp o Z2 a group of order 2p for an arbitrary
action of Z2 on Zp by automorphisms? Or how about Z2oZp? Explain
why this is compatible with Theorem 3.28.

Exercise 3.44. Explain how Theorem 3.28 implies that S3
∼= D3, and

then prove this result directly.

Exercise 3.45. Suppose that every element a ∈ G, a 6= 1, has order 2.
Show that G is abelian.

Exercise 3.46. Show that if G is an abelian group of order 8, then
G ∼= Z8, Z4 × Z2, or Z2 × Z2 × Z2.

We now take a look at groups of order 8. The abelian groups of this
order have just been dealt with in Exercise 3.46. In the non-abelian
case, a new group makes an appearance here; it has the presentation

Q = 〈a, b|a4 = 1, b2 = a2, bab−1 = a−1〉.
This is called the quaternion group because Q can be realized as a
certain subgroup of the multiplicative group of the quaternions (which
we’ll discuss briefly in the next chapter). In more down-to-earth fash-
ion, we can also realize Q as the subgroup 〈A,B〉 of GL(2,C) that is
generated by the matrices

A =

(
0 i
i 0

)
, B =

(
0 1
−1 0

)
.

Exercise 3.47. Show that |Q| = 8, Q ∼= 〈A,B〉 and that Q 6∼= D4.
Suggestion: Proceed as in our analysis of the presentation of S3 or Dn.

Theorem 3.29. Let G be a non-abelian group of order 8. Then G ∼= D4

or G ∼= Q.

Proof. If G had only elements of order 1 or 2, then G would be abelian
by Exercise 3.45. So we can find an a ∈ G with o(a) = 4. Then
A = 〈a〉 is an index 2 subgroup and thus normal. Pick any b /∈ A.
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Then G = 〈a, b〉. Since |G/A| = 2, we have that (bA)2 = b2A = 1. In
other words, b2 ∈ A, that is, b2 = ak. Here, k = 1, 3 are not possible
because that would imply that o(b) = 8, making G cyclic. So b2 = 1 or
b2 = a2. Moreover, bab−1 ∈ A since A is normal, and this element has
order 4, so must equal a or a3. The relation bab−1 = a would make G
abelian, so this is impossible.

Let’s summarize: G = 〈a, b〉, a4 = 1, bab−1 = a−1, and either b2 = 1
or b2 = a2. These are the relations of D4 (first case) or Q (in the second
case), so one of these groups can be mapped homomorphically onto G.
Since all groups that are involved here have order 8, this map is an
isomorphism, and thus G ∼= D4 or G ∼= Q. �

Exercise 3.48. Give an example of a group G with a normal subgroup
K E G such that G does not have a subgroup isomorphic to G/K.
Suggestion: Try G = Q. You can then either try to find a suitable
K EQ, or you can try to find a surjective homomorphism ϕ : Q→ H,
with H not isomorphic to a subgroup of Q.

3.6. Normal series and composition series.

Definition 3.30. A normal series for a group G is a finite sequence
of descending subgroups, such that

G = G1 BG2 BG3 B . . .BGn = 1.

The notation G B K means that G D K, G 6= K. I also wrote 1
instead of the more accurate, but less pleasing to the eye {1} for the
group with only the neutral element. Note that in a normal series, each
group is a normal subgroup of its immediate predecessor; it does not
necessarily follow that Gj is normal in Gk for k < j − 1.

Example 3.8. Any finite sequence of descending subgroups, ending with
Gn = 1, of an abelian group is a normal series. For any group, G B 1
is always a (trivial) normal series, and if G is simple, then this is the
only normal series. Here are two more interesting examples:

(3.4) S3 B A3 B 1, S4 B A4 BH BK B 1,

where H contains all permutations whose cycle structure consists of
two disjoint 2 cycles (jk)(mn), in addition to the identity, and K =
{1, (12)(34)}.
Exercise 3.49. Convince yourself that H is indeed a subgroup, and that
|H| = 4. Then show that the sequences above are indeed normal series.
Also, show that K is not normal in S4. (Is H E S4?)

Definition 3.31. A group G is called solvable if it has a normal series
whose quotient groups Gk/Gk+1 are all abelian.
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Trivially, an abelian group is solvable, but there are many others. In
fact, the normal series from the previous example show that both S3

and S4 are solvable (later we will see that Sn is not solvable for n ≥ 5).

Exercise 3.50. Show this. More specifically, verify that all quotients
from (3.4) are abelian.

A group of order pn, p a prime, is called a p-group.

Theorem 3.32. Every p-group G is solvable.

Proof. By Corollary 3.20, G has a non-trivial center C E G. If C = G,
then G is abelian and we’re done. If not, let G1 = C and consider the
quotient group G/G1. This is again a p-group, so it has a non-trivial
center C2. By the first isomorphism theorem, C2 = G2/G1, where
G1 ⊂ G2 ⊆ G and G2 E G. If G2 6= G, then we continue in this style
and consider the center of the p-group G/G2 in the next step, which
will produce a G3. Since these groups get larger at each step, we must
eventually arrive at Gn = G. Now

GBGn−1 B . . .BG1 B 1

is a normal series and, by construction, Gk/Gk−1 is the center of some
group and hence abelian. �

In general, suppose we are given some group G and we would like to
know whether G is solvable. It is tempting to try to approach this more
systematically, as follows. Just to get things started, we need to come
up with a normal subgroup K of G, such that G/K is abelian. What
do these K’s look like? This can be answered neatly if we introduce
the commutator

[a, b] = a−1b−1ab

of two elements a, b ∈ G. Notice that ab = ba if and only if [a, b] = 1.
In particular, a group G is abelian precisely if all commutators are
equal to the identity. Moreover, if ϕ : G → H is a homomorphism,
then ϕ([a, b]) = [ϕ(a), ϕ(b)]. If we specialize to H = G/K and the
natural quotient map here, then this implies that G/K will be abelian
precisely if all commutators from G lie in K. In other words, to make
the quotient abelian, we must at least divide out all commutators. This
motivates:

Definition 3.33. Let G be a group. The commutator subgroup or
derived subgroup G′ is defined as the subgroup generated by the com-
mutators [a, b], a, b ∈ G.
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Since [a, b]−1 = [b, a], we can also describe G′ more explicitly as

(3.5) G′ = {[a1, b1][a2, b2] . . . [an, bn] : n ≥ 0, aj, bj ∈ G}.

Similarly, if H ⊆ G is a subgroup, then H ′ ⊆ G is defined as the
subgroup that is generated by the commutators [a, b] with a, b ∈ H.

Proposition 3.34. (a) If K E G, then also K ′ E G. In particular,
G′ EG.
(b) If K EG, then G/K is abelian precisely if K ⊇ G′. In particular,
G/G′ is abelian.

Proof. (a) Observe that g[a, b]g−1 = [gag−1, gbg−1]. (Since a 7→ gag−1

defines an automorphism, this is actually a special case of an obser-
vation made above.) This implies that at least a single commutator
c = [a, b] ∈ K ′, with a, b ∈ K, has the property that gcg−1 ∈ K ′ again,
for arbitrary g ∈ G. But then (3.5) makes sure that every element
c ∈ K ′ has this property. So K ′ is normal, as claimed.

(b) We essentially proved this above: G/K is abelian precisely if all
commutators of G lie in K, and this holds precisely if K ⊇ G′. (The
final claim makes use of the fact that G′EG, which was proved in part
(a).) �

The group G/G′ is also called the abelianization of G; it is what you
obtain when you make G abelian as cheaply as possible (you cannot
do this by dividing out less than G′). All this is still named after the
Norwegian mathematician Niels Henrik Abel (1802–1829); you see that
mathematical fame often goes hand in hand with abuse to your name
by posterity.

Exercise 3.51. Show that a homomorphism ϕ : G → A to an abelian
group A factors through G/G′, and the induced homomorphism ϕ :
G/G′ → A is unique:

G

q

��

ϕ
// A

G/G′
ϕ

<<
.

Exercise 3.52. Can you also show that G/G′ is characterized by the
mapping property from the previous Exercise, in the following sense:
Suppose that p : G→ B is a surjective homomorphism onto an abelian
group B, such that if A is any abelian group and ϕ : G → A is any
homomorphism, then ϕ factors through B; in more concrete terms,



Group theory 61

there is a homomorphism ψ : B → A so that ϕ = ψ ◦ p:

G

p
����

ϕ
// A

B
ψ

??
.

Show that then B ∼= G/G′.

Exercise 3.53. Let H be a subgroup of G with H ⊇ G′. Show that
H EG.

Exercise 3.54. Let G be a finite group of odd order, and form the
product p = g1 . . . gn of all elements of G. Show that p ∈ G′.
Exercise 3.55. Let G be a non-abelian group of order p3, p a prime.
Show that then C = G′, |C| = p, and G/C ∼= Zp×Zp. Hint: Make use
of the result from Exercise 3.29.

Let’s now return to our original project of systematically finding a
normal series that establishes that a given group G is solvable, if this
is actually true. At the start G B G2 of our normal series, we must
choose G2 such that G/G2 is abelian, and by Proposition 3.34(b), this
means that exactly the normal subgroups G2 ⊇ G′ will work here (and
“normal” could be dropped from this sentence, by Exercise 3.53). So
perhaps we just want to give G2 = G′ a try? Next, we need a G3 CG2

such that G2/G3 becomes abelian, and again a natural attempt would
be G3 = G′2 = G′′. We continue in this way; the whole operation will
be a success if at some point we reach G(n) = 1, and if that doesn’t
happen, then maybe G wasn’t solvable to start with? This impression
is correct:

Theorem 3.35. G is solvable if and only if G(n) = 1 for some n ≥ 1.

Proof. As we just argued, if G(n) = 1, then GBG′B . . .BG(n) = 1 is a
normal series with abelian quotient groups (which, by the way, has the
additional property that each G(k) is normal in the large group G). So
G is solvable.

Conversely, assume that G is solvable, and this is witnessed by the
normal series

G = G1 BG2 BG3 B . . .BGn = 1.

Since the quotients Gk/Gk+1 are abelian, Proposition 3.34(b) shows
that Gk+1 ⊇ G′k. By applying this observation repeatedly, we see that

1 = Gn ⊇ G′n−1 ⊇
(
G′n−2

)′
= G′′n−2 ⊇ . . . ⊇ G(n−1),

so G(n−1) = 1, as claimed. �
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Exercise 3.56. Find G′ for the dihedral group G = Dn. Conclude that
Dn is solvable. Can you also determine (that is, find an isomorphic
group) the abelianization G/G′; distinguish the cases n even and n
odd for this.

Exercise 3.57. Find Q′, the abelianization Q/Q′, and the center C(Q).
Does this remind you of an earlier exercise?

Exercise 3.58. Find G(n), n ≥ 1, for G = S4.

An interesting general consequence of Theorem 3.35 is:

Theorem 3.36. (a) Any subgroup and any homomorphic image of a
solvable group is solvable.
(b) If K EG and both K,G/K are solvable, then so is G.

Proof. (a) If H ⊆ G is a subgroup, then H(k) ⊆ G(k), so the first
claim is immediate from Theorem 3.35. As we observed earlier, a ho-
momorphism ϕ maps commutators [a, b] to commutators ϕ([a, b]) =
[ϕ(a), ϕ(b)] again. This implies that ϕ(G′) ⊆ (ϕ(G))′. On the other
hand, every commutator [x, y] of elements x, y ∈ ϕ(G) is in ϕ(G′), by
the same formula, so we actually have that ϕ(G′) = (ϕ(G))′. By iterat-
ing this, we obtain that ϕ(G(k)) = (ϕ(G))(k) for arbitrary k ≥ 1. Now
the criterion from Theorem 3.35 gives the claim about homomorphic
images.

(b) Let q : G→ G/K be the quotient map. This is surjective, so by
what we just discussed, we have that q(G(k)) = (G/K)(k). Since G/K
is solvable, (G/K)(n) = 1 for large enough n, so G(n) ⊆ K. Now K is
solvable, too, so K(m) = 1 for suitable m, and thus G(m+n) = 1 as well,
as required. �

Exercise 3.59. Use Theorem 3.36(b) to give a new proof that Dn is
solvable.

Exercise 3.60. Let G,H be solvable groups. Show that any semidirect
product GoH is solvable.

Exercise 3.61. Show that all groups of order ≤ 11 are solvable (or, if
feeling more ambitious, do it for groups of order ≤ 19; in fact, the
smallest non-solvable group is A5, which has order 5!/2 = 60).

Theorem 3.37. An is simple for n ≥ 5.

Recall that a group G is called simple if it has no normal subgroups
other than G, 1.
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Proof. Suppose that K E An, K 6= 1. We will show that K contains a
3 cycle. This will imply the Theorem, as follows: let’s say (123) ∈ K.
Recall that

(3.6) π(123)π−1 = (π(1)π(2)π(3))

(show it again perhaps); note also that if π is an odd permutation here,
then we can replace it by π(45) ∈ An, and the right-hand side of (3.6)
isn’t affected. This shows that as soon as KEAn contains one 3 cycle,
it will contain all 3 cycles. You showed in Exercise 2.64(b) that An is
generated by the 3 cycles, so K = An.

To show that K indeed contains a 3 cycle, fix a prime p that divides
|K|, and then choose a π ∈ K with o(π) = p. Such a π exists because
K has a subgroup of order p by Sylow’s first theorem, which must
be cyclic. Since the order of any permutation is the least common
multiple of its cycle lengths, the cycle decomposition of π must consist
of k ≥ 1 cycles of length p each (and 1 cycles, which we ignore). We
now distinguish various cases:
(1) p = 3, k = 1: this says that π is a 3 cycle and we are done.
(2) p > 3: let’s say π = (12 . . . p) . . .. Let α = (123) ∈ An. Then

παπ−1α−1 = (234)(123)−1 = (142),

by applying (3.6) to the first three factors. Since π, απ−1α−1 ∈ K, it
follows that K contains a 3 cycle.
(3) p = 3, k > 1: let’s say π = (123)(456) . . .. Let α = (124), and
consider again

παπ−1α−1 = (235)(124)−1 = (14352).

This gets us back to case (2).
(4) p = 2, k = 2m ≥ 2, and π fixes some integer: let’s say π =
(12)(34) . . ., and π(5) = 5. Consider

π(125)π−1(125)−1 = (215)(125)−1 = (125),

and again K contains a 3 cycle.
(5) p = 2, k = 2m ≥ 2, and π(j) 6= j for all j: a typical π is π =
(12)(34)(56) . . . (n− 1 n) (this case can only occur if n is even). Then

π(125)π−1(125)−1 = (216)(125)−1 = (15)(26),

and we’re back in case (4). �

Exercise 3.62. Is Sn a simple group, too?

Corollary 3.38. The groups Sn and An are solvable if and only if
n = 1, 2, 3, 4.
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Proof. For n = 1, 2, these groups are abelian and thus trivially solvable.
The cases n = 3, 4 were discussed at the beginning of this section; see
Exercise 3.50.

Now let n ≥ 5. Theorem 3.37 says that the only normal series for
An is An B 1, and since An ∼= An/1 is not abelian, it follows that An
is not solvable. Since An is a subgroup of Sn, Theorem 3.36(a) shows
that Sn cannot be solvable, either. �

Finally, let us take another look at the material of this section from
still another slightly different point of view. We now take an approach
that is, in a sense, opposite to the one from Theorem 3.35. Rather
than dividing out as little as possible, we now make the elements of
the normal series as large as possible.

Definition 3.39. Let G be a group. A composition series for G is a
normal series

(3.7) G = G1 BG2 BG3 B . . .BGn = 1

with simple quotient groups Gk/Gk+1.

By the first isomorphism theorem, the normal subgroups of Gk/Gk+1

are exactly the groups H/Gk+1, with H ⊇ Gk+1 and H normal in Gk.
In other words, Gk/Gk+1 will be simple precisely if there are no such
groups H 6= Gk, Gk+1. Or, to rephrase this one more time, (3.7) is a
composition series precisely if each Gk+1 is maximal normal in Gk in
the sense that if Gk+1 ⊂ H EGk, then H = Gk.

Every finite group G has a composition series: take any normal sub-
group KCG (take K = 1 if all else fails). Either K is already maximal
and can be our G2, or there’s a strictly larger normal subgroup, and
if this isn’t maximal yet, there’s a still larger normal subgroup, and so
on. Since G is finite, this process has to stop, and we will find a G2

eventually. Then repeat the whole procedure to find a maximal normal
subgroup G3 of G2, and continue until Gn = 1.

Composition series and the associated quotient groups are not unique,
even up to isomorphism. For example,

Z6 B {0, 3}B 1, Z6 B {0, 2, 4}B 1

are both composition series for Z6, and the quotients are (isomorphic
to) Z3, Z2, in this order, in the first case, and they are Z2, Z3 in
the second case. So in this example, we do obtain the same quotient
groups always, but the order in which they appear is not determined
in advance. This is in fact the general situation.
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Theorem 3.40 (Jordan-Hölder). Let G be a finite group with the two
composition series

G = G1 BG2 BG3 B . . .BGm = 1,(3.8)

G = H1 BH2 BH3 B . . .BHn = 1.(3.9)

Then m = n, and there is a permutation π ∈ Sn−1 such that Gk/Gk+1
∼=

Hπ(k)/Hπ(k)+1 for k = 1, 2, . . . , n− 1.

Proof. We will prove this by induction on |G|. Everything is of course
clear if |G| = 1 (or = 2, 3, 4, 5, 6, 7, for that matter), so let’s move on
to the induction step. If G2 = H2, then we can apply the induction
hypothesis to the smaller group G2: it follows that m− 1 = n− 1, plus
we can pair off the quotients from G2/G3 and H2/H3 on. Since also
(trivially) G1/G2

∼= H1/H2, we are done in this case.
If G2 6= H2, then we consider G2H2. This is a normal subgroup of G

that contains both G2 and H2 and is distinct from these groups because
G2 6= H2. However, G2, H2 were maximal normal, so G2H2 = G. Now
the second isomorphism theorem shows that G/H2

∼= G2/(G2 ∩ H2)
and, similarly, G/G2

∼= H2/(G2 ∩H2). Since G/G2, G/H2 are simple,
the first isomorphism theorem shows that K3 := G2 ∩ H2 is maximal
normal in both G2 and H2 and thus works as the next group in a
composition series. In other words, if we tack on a composition series
for K3, then we obtain two new composition series of G:

G = G1 BG2 BK3 B . . .BKj = 1,(3.10)

G = H1 BH2 BK3 B . . .BKj = 1(3.11)

We already established the claim for a pair of composition series that
start the same way, so by comparing these with the original composition
series, we obtain that j = m, j = n, so m = n. Moreover, the Gk/Gk+1,
k ≥ 2, are the same groups as G2/K3, together with the Kk/Kk+1,
k ≥ 3, possibly after rearranging. Also, recall that G2/K3

∼= G/H2. So
the Gk/Gk+1, k ≥ 1, are the same groups as those from this list:

(3.12) G/G2, G/H2, K3/K4, K4/K5, . . . , Kn−1/1

So far, we’ve compared the composition series (3.8) with (3.10). If we
now compare (3.9), (3.11) in the same way, we find that the quotient
groups Hk/Hk+1, k ≥ 1, are also the ones from (3.12). �

Theorem 3.41. Let G be a finite group. Then G is solvable if and only
if all quotient groups Gk/Gk+1 from a composition series are cyclic of
prime orders.

By the Jordan-Hölder Theorem, this condition only depends on the
group, not on the specific composition series chosen.
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Proof. Since cyclic groups are abelian, a group G with such a compo-
sition series is certainly solvable. Conversely, if G is solvable, take any
composition series of G. We then know that each quotient Gk/Gk+1,
being a homomorphic image of a subgroup of G, is solvable, too. More-
over, it is simple, and thus also abelian because only abelian simple
groups are solvable. The only simple abelian groups are cyclic groups
of order p, p a prime. �

Exercise 3.63. Find a composition series of S4. What do you know
about the quotient groups even before getting started?

3.7. Further exercises.

Exercise 3.64. (a) Let A be a subset of a finite group G with (strictly)
more than |G|/2 elements. Show that then AA = G.
(b) Show that this can fail in a monoid.

Exercise 3.65. Let H ⊆ G be a subgroup of a finite group G, and let
K EG. Suppose that |K| and [G : H] are relatively prime. Show that
then K ⊆ H.

Exercise 3.66. Prove that a non-abelian group G has an abelian sub-
group A % C(G).

Exercise 3.67. (a) Show that a group G can not be the union of two
proper subgroups (compare Exercise 2.23).
(b) Show that G is a union of three proper subgroups if and only if G
has a normal subgroup K such that G/K ∼= Z2 × Z2.

Exercise 3.68. Find the centralizer C(π), π ∈ Sn, for π = (12) and
π = (123 . . . n). Suggestion: Find |C(π)| first.


