
10. The Spectral Theorem

The big moment has arrived, and we are now ready to prove se-
veral versions of the spectral theorem for normal operators in Hilbert
spaces. Throughout this chapter, it should be helpful to compare our
results with the more familiar special case when the Hilbert space is
finite-dimensional. In this setting, the spectral theorem says that every
normal matrix T ∈ Cn×n can be diagonalized by a unitary transfor-
mation. This can be rephrased as follows: There are numbers zj ∈ C
(the eigenvalues) and orthogonal projections Pj ∈ B(Cn) such that
T =

∑m
j=1 zjPj. The subspaces R(Pj) are orthogonal to each other.

From this representation of T , it is then also clear that Pj is the pro-
jection onto the eigenspace belonging to zj.

In fact, we have already proved one version of the (general) spec-
tral theorem: The Gelfand theory of the commutative C∗-algebra A ⊆
B(H) that is generated by a normal operator T ∈ B(H) provides a
functional calculus: We can define f(T ), for f ∈ C(σ(T )) in such a way
that the map C(σ(T )) → A, f 7→ f(T ) is an isometric ∗-isomorphism
between C∗-algebras, and this is the spectral theorem in one of its ma-
ny disguises! See Theorem 9.13 and the discussion that follows. As a
warm-up, let us use this material to give a quick proof of the result
about normal matrices T ∈ Cn×n that was stated above.

Consider the C∗-algebra A ⊆ Cn×n that is generated by T . Since
T is normal, A is commutative. By Theorem 9.13, A ∼= C(σ(T )) =
C({z1, . . . , zm}), where z1, . . . , zm are the eigenvalues of T . We also use
the fact that by Theorem 9.16, σA(T ) = σB(H)(T ).

All subsets of the discrete space {z1, . . . , zm} are open, and thus all
functions f : {z1, . . . , zm} → C are continuous. We will make use of
the functional calculus notation: f(T ) ∈ A will denote the operator
that corresponds to the function f under the isometric ∗-isomorphism
that sends the identity function id(z) = z to T ∈ A. Write fj = χ{zj}
and let Pj = fj(T ). Since fj = fj and f 2

j = fj, we also have P ∗j = Pj
and P 2

j = Pj, so each Pj is an orthogonal projection by Theorem 6.5.
Furthermore, fjfk = 0 if j 6= k, so PjPk = 0, and thus

〈Pjx, Pky〉 = 〈x, PjPky〉 = 0

for all x, y ∈ H if j 6= k. This says that R(Pj) ⊥ R(Pk) for j 6= k. Also,
P1 + . . . + Pm = 1 because we have the same identity for the fj’s. It
follows that

⊕m
j=1 R(Pj) = H = Cn. Finally, since id =

∑m
j=1 zjfj, we

obtain the representation T =
∑m

j=1 zjPj, as asserted.
On infinite-dimensional Hilbert spaces, we have a continuous analog

of this representation: every normal T ∈ B(H) can be written as T =
105
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z dP (z). We first need to address the question of how such an integral

can be meaningfully defined. We will also switch to the more common
symbol E (rather than P ) for these “measures” (if that’s what they
are).

Definition 10.1. Let M be a σ-algebra on a set Ω, and let H be a
Hilbert space. A resolution of the identity (or spectral resolution) on
(Ω,M) is a map E :M→ B(H) with the following properties:
(1) Each E(ω) (ω ∈M) is a projection;
(2) E(∅) = 0, E(Ω) = 1;
(3) E(ω1 ∩ ω2) = E(ω1)E(ω2) (ω1, ω2 ∈M);
(4) For all x, y ∈ H, the set function µx,y(ω) = 〈x,E(ω)y〉 is a complex
measure on (Ω,M). If Ω is a locally compact Hausdorff space and
M = B is the Borel σ-algebra, then we also demand that every µx,y is
a regular (Borel) measure.

We can think of E as a projection valued measure (of sorts) on
(Ω,M): the “measure” E(ω) of a set ω ∈M is a projection. The E(ω)
are also called spectral projections.

Let’s start out with some quick observations. For every x ∈ H, we
have

µx,x(ω) = 〈x,E(ω)x〉 = 〈x,E(ω)2x〉 = 〈E(ω)x,E(ω)x〉 = ‖E(ω)x‖2,

so µx,x is a finite positive measure with µx,x(Ω) = ‖x‖2. Property (3)
implies that any two spectral projections E(ω1), E(ω2) commute. Mo-
reover, if ω1 ⊆ ω2, then R(E(ω1)) ⊆ R(E(ω2)). If ω1 ∩ ω2 = ∅, then
R(E(ω1)) ⊥ R(E(ω1)), as the following calculation shows:

〈E(ω1)x,E(ω2)y〉 = 〈x,E(ω1)E(ω2)y〉 = 〈x,E(ω1 ∩ ω2)y〉 = 0

for arbitrary x, y ∈ H.
E is finitely additive: If ω1, . . . , ωn ∈ M are disjoint sets, then

E
(⋃n

j=1 ωj

)
=
∑n

j=1 E(ωj). To prove this, notice that (4) implies that

〈x,E

(
n⋃
j=1

ωj

)
y〉 = µx,y

(
n⋃
j=1

ωj

)
=

n∑
j=1

µx,y(ωj)

=
n∑
j=1

〈x,E(ωj)y〉 = 〈x,
n∑
j=1

E(ωj)y〉

for arbitrary x, y ∈ H, and this gives the claim.
Is E also σ-additive (as it ought to be, if we are serious about inter-

preting E as a new sort of measure)? In other words, if ωn ∈ M are
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disjoint sets, does it follow that

(10.1) E

(⋃
n∈N

ωn

)
=
∞∑
n=1

E(ωn).

The answer to this question depends on how one defines the right-
hand side of (10.1). We observe that if E(ωn) 6= 0 for infinitely many
n, then this series can never be convergent in operator norm. Indeed,
‖E(ωn)‖ = 1 if E(ωn) 6= 0, and thus the partial sums do not form
a Cauchy sequence. However, (10.1) will hold if we are satisfied with
strong operator convergence: We say that Tn ∈ B(H) converges strongly

to T ∈ B(H) (notation: Tn
s−→ T ) if Tnx→ Tx for all x ∈ H.

To prove that (10.1) holds in this interpretation, fix x ∈ H and
use the fact that the E(ωn)x form an orthogonal system (because the
ranges of the projections are orthogonal subspaces for disjoint sets).

We normalize the non-zero vectors: let yn = E(ωn)x
‖E(ωn)x‖ if E(ωn)x 6= 0.

Then the yn form an ONS, and thus, by Theorem 5.15, the series∑
〈yn, x〉yn =

∑
E(ωn)x converges. Now if y ∈ H is arbitrary, then

the continuity of the scalar product and the fact that µx,y is a complex
measure show that

〈y,
∞∑
n=1

E(ωn)x〉 =
∞∑
n=1

〈y, E(ωn)x〉 = 〈y, E

(⋃
n∈N

ωn

)
x〉.

Since this holds for every y ∈ H, it follows that
∑∞

n=1 E(ωn)x =
E
(⋃

n∈N ωn
)
x, and this is (10.1), with the series interpreted as a strong

operator limit.

Definition 10.2. A set N ∈ M with E(N) = 0 is called an E-null
set. We define L∞(Ω, E) as the set of equivalence classes of measurable,
essentially bounded functions f : Ω→ C. Here, f ∼ g if f and g agree
off an E-null set. Also, as usual, we say that f is essentially bounded if
|f(x)| ≤M (x ∈ Ω \N) for some M ≥ 0 and some E-null set N ⊆ Ω.

Exercise 10.1. Prove that a countable union of E-null sets is an E-null
set.

Recall that for an arbitrary positive measure µ on X, the space
L∞(X,µ) only depends on what the µ-null sets are and not on the
specific choice of the measure µ. For this reason and because of Exercise
10.1, we can also, and in fact without any difficulty, introduce L∞

spaces that are based on resolutions of the identity. These spaces have
the same basic properties: L∞(Ω, E) with the essential supremum of

|f | as the norm and the involution f ∗(x) = f(x) is a commutative
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C∗-algebra. The spectrum of a function f ∈ L∞(Ω, E) is its essential
range.

Exercise 10.2. Write down precise definitions of the essential supremum
and the essential range of a function f ∈ L∞(Ω, E).

We would like to define an integral
∫

Ω
f(t) dE(t) for f ∈ L∞(Ω, E).

This integral should be an operator from B(H), and it also seems
reasonable to demand that

〈x,
(∫

Ω

f(t) dE(t)

)
y〉 =

∫
Ω

f(t) dµx,y(t)

for all x, y ∈ H. It is clear that this condition already suffices to un-
iquely determine

∫
Ω
f(t) dE(t), should such an operator indeed exist.

As for existence, we have the following result; it will actually turn out
that the integral with respect to a resolution of the identity has many
other desirable properties, too.

Theorem 10.3. Let E be a resolution of the identity. Then there exists
a unique map Ψ : L∞(Ω, E)→ A onto a C∗-subalgebra A ⊆ B(H), such
that

(10.2) 〈x,Ψ(f)y〉 =

∫
Ω

f(t) dµx,y(t)

for all f ∈ L∞(Ω, E), x, y ∈ H. Moreover, Ψ is an isometric ∗-
isomorphism from L∞(Ω, E) onto A, and

(10.3) ‖Ψ(f)x‖2 =

∫
Ω

|f(t)|2 dµx,x(t).

So we can (and will) define
∫

Ω
f(t) dE(t) := Ψ(f). Let us list the

properties of the integral that are guaranteed by Theorem 10.3 one
more time, using this new notation:∫

(f + g) dE =

∫
f dE +

∫
g dE,

∫
(cf) dE = c

∫
f dE,∫

fg dE =

∫
f dE

∫
g dE,(∫

f dE

)∗
=

∫
f dE,

∥∥∥∥∫ f dE

∥∥∥∥ = ‖f‖∞

The multiplicativity of the integral (see the second line) may seem a
bit strange at first, but it becomes plausible again if we recall that all
E(ω) are projections.



The Spectral Theorem 109

Exercise 10.3. Show that
∑m

j=1 fjPj
∑m

j=1 gjPj =
∑m

j=1 fjgjPj if the
Pj are projections with orthogonal ranges, as at the beginning of this
chapter, and fj, gj ∈ C.

Proof. This is not a particularly short proof, but it follows a standard
pattern. First of all, we certainly know how we want to define

∫
f dE

for simple functions f ∈ L∞(Ω, E), that is, functions of the form f =∑n
j=1 cjχωj

with cj ∈ C and ωj ∈ M. For such an f , put Ψ(f) =∑n
j=1 cjE(ωj). For x, y ∈ H, we then have

〈x,Ψ(f)y〉 =
n∑
j=1

cj〈x,E(ωj)y〉 =
n∑
j=1

cjµx,y(ωj) =

∫
Ω

f(t) dµx,y(t);

this is (10.2) for simple functions f , and this identity also confirms that
Ψ(f) was indeed well defined (Ψ(f) is determined by the function f ,
and it is independent of the particular representation of f that was
chosen to form Ψ(f)).

We also have Ψ(f)∗ =
∑
cjE(ωj) = Ψ(f), and if g =

∑m
k=1 dkχω′k is

a second simple function, then

Ψ(f)Ψ(g) =
∑
j,k

cjdkE(ωj)E(ω′k) =
∑
j,k

cjdkE(ωj ∩ ω′k) = Ψ(fg).

For the last equality, we use the fact that fg is another simple function,
with representation fg =

∑
j,k cjdkχωj∩ω′k . Similar arguments show that

Ψ is linear (on simple functions). Finally, (10.3) (for simple functions)
follows from the identity Ψ(f)∗Ψ(f) = Ψ(f)Ψ(f) = Ψ(|f |2):

‖Ψ(f)x‖2 = 〈x,Ψ(f)∗Ψ(f)x〉 = 〈x,Ψ(|f |2)x〉 =

∫
Ω

|f(t)|2 dµx,x(t)

This also implies that ‖Ψ(f)x‖2 ≤ ‖f‖2
∞‖x‖2, so ‖Ψ(f)‖ ≤ ‖f‖. On

the other hand, the sets ωj in the representation f =
∑
cjχωj

can be
taken to be disjoint (just take ωj = f−1({cj})). Now if E(ωj) 6= 0,
then there exists x ∈ R(E(ωj)), x 6= 0. Clearly, Ψ(f)x = cjx, and
since ‖f‖∞ = maxj:E(ωj)6=0 |cj|, we now see that ‖Ψ(f)‖ = ‖f‖. So Ψ is
isometric (on simple functions).

We now want to extend these results to arbitrary functions f ∈
L∞(Ω, E) by using an approximation procedure.

Exercise 10.4. Let f ∈ L∞(Ω, E). Show that there exists a sequence of
simple functions fn ∈ L∞(Ω, E) with ‖fn − f‖ → 0.

Let f ∈ L∞(Ω, E) and pick an approximating sequence fn of simple
functions, as in Exercise 10.4. Notice that Ψ(fn) converges in B(H):
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indeed,

‖Ψ(fm)−Ψ(fn)‖ = ‖Ψ(fm − fn)‖ = ‖fm − fn‖,

so this is a Cauchy sequence. The same argument shows that the limit
is independent of the specific choice of the approximating sequence, so
we can define Ψ(f) := lim Ψ(fn). The continuity of the scalar product
gives

〈x,Ψ(f)y〉 = lim
n→∞
〈x,Ψ(fn)y〉 = lim

n→∞

∫
Ω

fn(t) dµx,y(t).

Every E-null set is a |µx,y|-null set, so fn converges µx,y-almost ever-
ywhere to f . Moreover, |fn| ≤ ‖fn‖∞ ≤ C off an E-null set, so again
µx,y-almost everywhere. The constant function C lies in L1(Ω, d|µx,y|)
because |µx,y| is a finite measure. We have just verified the hypotheses of
the Dominated Convergence Theorem. It follows that limn→∞

∫
Ω
fn dµx,y =∫

Ω
f dµ, and we obtain (10.2) (for arbitrary f ∈ L∞(Ω, E)).

Exercise 10.5. Establish (10.3) in a similar way.

The remaining properties follow easily by passing to limits. For ex-
ample, if f, g ∈ L∞, pick approximating simple functions fn, gn and use
the continuity of the multiplication to deduce that

Ψ(f)Ψ(g) = lim Ψ(fn) lim Ψ(gn) = lim Ψ(fn)Ψ(gn)

= lim Ψ(fngn) = Ψ(fg).

In the last step, we use the fact that fngn is a sequence of simple
functions that converges to fg in the norm of L∞(Ω, E).

Exercise 10.6. Prove at least two more properties of Ψ (Ψ linear, iso-
metric, Ψ(f)∗ = Ψ(f)) in this way.

Finally, since Ψ is an isometry, its image A = Ψ(L∞(Ω, E)) is closed
(compare the proof of Proposition 4.3), and it is also a subalgebra that
is closed under the involution ∗ because Ψ is a ∗-homomorphism. �

We now have the tools to prove the next version of the Spectral
Theorem (the first version being the existence of a functional calculus
for normal operators). We actually obtain a more abstract version for
a whole algebra of operators from our machinery; we discuss this first
and then specialize to a single operator later on, in Theorem 10.5.

Theorem 10.4. Suppose A ⊆ B(H) is a commutative C∗-subalgebra
of B(H). Let ∆ be its maximal ideal space.
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(a) There exists a unique resolution of the identity on the Borel sets of
∆ (with its Gelfand topology) such that

(10.4) T =

∫
∆

T̂ (t) dE(t)

for all T ∈ A.
Moreover, E has the following additional properties:

(b) B = {
∫

∆
f(t) dE(t) : f ∈ L∞(Ω, E)} is a commutative C∗-algebra

satisfying A ⊆ B ⊆ B(H).
(c) The finite linear combinations of the E(ω), ω ∈M are dense in B.
(d) If ω ⊆ ∆ is a non-empty open set, then E(ω) 6= 0.

Proof. By the Gelfand-Naimark Theorem, A ∼= C(∆). We will now
use the Riesz Representation Theorem: C(∆)∗ = M(∆), the space
of regular complex Borel measures on ∆. See Example 4.2. The uni-
queness of E follows immediately from this: If E satisfies (10.4), then∫

∆
T̂ (t) dµx,y(t) = 〈x, Ty〉, and every continuous function on ∆ is of the

form T̂ for some T ∈ A, so the functionals (on C(∆)) associated with
the measures µx,y and thus also the measures themselves are already
determined by (10.4). Since x, y ∈ H are arbitrary here, E itself is
determined by (10.4).

To prove existence of E, we fix x, y ∈ H and consider the map

C(∆) → C, T̂ 7→ 〈x, Ty〉. Since the inverse of the Gelfand transform,

T̂ 7→ T , is linear, this map is linear, too, and also bounded, as we see
from

|〈x, Ty〉| ≤ ‖x‖ ‖Ty‖ ≤ ‖x‖ ‖T‖ ‖y‖ = ‖x‖ ‖y‖ ‖T̂‖∞.

By the Riesz Representation Theorem, there is a regular complex Borel
measure on ∆ (call it µx,y) such that

(10.5) 〈x, Ty〉 =

∫
∆

T̂ (t) dµx,y(t)

for all T ∈ A. Our goal is to construct a resolution of the identity E
for which 〈x,E(ω)y〉 = µx,y(ω). That will finish the proof of part (a).

As a function of x, y, 〈x, Ty〉 is sesquilinear. From this, it follows
that that (x, y) 7→ µx,y is sesquilinear, too. This means that µx+y,z =
µx,z + µy,z, µcx,y = cµx,y, and µx,y is linear in y.

Exercise 10.7. Prove this claim.

If now f : ∆ → C is a bounded measurable function, then (x, y) 7→∫
∆
f(t) dµx,y(t) defines another sesquilinear form. In fact, this form is
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bounded in the sense that∣∣∣∣∫
∆

f(t) dµx,y(t)

∣∣∣∣ ≤ (sup
t∈∆
|f(t)|

)
|µx,y|(∆) ≤

(
sup
t∈∆
|f(t)|

)
‖x‖ ‖y‖.

By Exercise 6.10, there is a unique operator Φ(f) ∈ B(H), such that

〈x,Φ(f)y〉 =

∫
∆

f(t) dµx,y(t)

for all x, y ∈ H. If f ∈ C(∆) here, then a comparison with (10.5) shows

that Φ(f) = T , where T ∈ A is the unique operator with T̂ = f . Now∫
∆

T̂ dµx,y = 〈x, Ty〉 = 〈y, T ∗x〉 =

∫
∆

T̂ ∗ dµy,x =

∫
∆

T̂ dµy,x,

and this holds for all functions T̂ ∈ C(∆), so we conclude that µx,y =

µy,x, where, as expected, the measure ν is defined by ν(ω) = ν(ω). But
then we can use this for integrals of arbitrary bounded Borel functions
f :

〈x,Φ(f)y〉 =

∫
∆

f dµx,y =

∫
∆

f dµy,x = 〈y,Φ(f)x〉 = 〈Φ(f)x, y〉,

so Φ(f)∗ = Φ(f). Next, for S, T ∈ A, we have∫
∆

ŜT̂ dµx,y =

∫
∆

(ST ) d̂µx,y = 〈x, STy〉 =

∫
∆

Ŝ dµx,Ty,

so T̂ dµx,y = dµx,Ty. Again, we can apply this to integrals of arbitrary

bounded Borel functions f :
∫
fT̂ dµx,y =

∫
f dµx,Ty, and this implies

that ∫
∆

fT̂ dµx,y = 〈x,Φ(f)Ty〉 = 〈Φ(f)∗x, Ty〉 =

∫
∆

T̂ dµΦ(f)∗x,y.

Since T̂ ∈ C(∆) is arbitrary here, this says that f dµx,y = dµΦ(f)∗x,y,
so
∫
fg dµx,y =

∫
g dµΦ(f)∗x,y for all bounded Borel functions g. Now∫

fg dµx,y = 〈x,Φ(fg)y〉 and∫
∆

g dµΦ(f)∗x,y = 〈Φ(f)∗x,Φ(g)y〉 = 〈x,Φ(f)Φ(g)y〉,

so we finally obtain the desired conclusion that Φ(fg) = Φ(f)Φ(g).
We can now define E(ω) = Φ(χω). I claim that E is a resolution of

the identity. Clearly, by construction,

〈x,E(ω)y〉 = 〈x,Φ(χω)y〉 =

∫
∆

χω dµx,y = µx,y(ω),
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as required. This also verifies (4) from Definition 10.1. It remains to
check the conditions (1)–(3).

Notice that E(ω)∗ = Φ(χω)∗ = Φ(χω) = Φ(χω) = E(ω), so E(ω) is
self-adjoint. Similarly, E(ω)2 = Φ(χω)2 = Φ(χ2

ω) = Φ(χω) = E(ω). By
Theorem 6.5, E(ω) is a projection, so (1) holds. A similar computation
lets us verify (3). Finally, moving on to (2), it is clear that E(∅) =
Φ(0) = 0, and E(∆) = Φ(1). Now the constant function 1 is continuous,
so, as observed above, Φ(1) is the operator whose Gelfand transform is
identically equal to one, but this is the identity operator 1 ∈ A ⊆ B(H)
(the multiplicative unit of A and B(H)). So E(1) = 1, as desired.

(b) We know from Theorem 10.3 that B is a C∗-subalgebra of B(H),
and since continuous functions are in L∞(∆, E), we clearly have B ⊇ A.

(c) This is immediate from the way the integral
∫
f dE was construc-

ted, in the proof of Theorem 10.3.
(d) Let ω ⊆ ∆ be a non-empty open set. Pick t0 ∈ ω and use

Urysohn’s Lemma to find a continuous function f with f(t0) = 1,

f = 0 on ωc. Then f = T̂ for some T ∈ A, and if we had E(ω) = 0,

then T =
∫

∆
T̂ dE = 0, but this is impossible because T̂ = f is not the

zero function. �

We now specialize to (algebras generated by) a single normal opera-
tor.

Theorem 10.5 (The Spectral Theorem for normal operators). Let
T ∈ B(H) be a normal operator. Then there exists a unique resolution
of the identity E on the Borel sets of σ(T ) such that

(10.6) T =

∫
σ(T )

z dE(z).

Proof. Consider, as usual, the commutative C∗-algebra A ⊆ B(H) that
is generated by T . Existence of E now follows from Theorem 10.4(a)
because we can make the following identifications: By Theorems 9.12
and 9.13, ∆A is homeomorphic to σ(T ), and A ∼= C(σ(T )). Here we
may interpret σ(T ) as σB(H)(T ) because σA(T ) is the same set by Theo-
rem 9.16. From a formal point of view, perhaps the most satisfactory
argument runs as follows: Reexamine the proof of Theorem 10.4 to
confirm that we obtain the representation T =

∫
K
f dE as soon as we

have an isometric ∗-isomorphism between A and C(K) that sends T
to f (it is not essential that this isomorphism is specifically the Gel-
fand transform). In the case at hand, A ∼= C(σ(T )), by Theorem 9.13,
and the corresponding isomorphism sends T to id(z) = z, so we ob-
tain (10.6). For later use, we also record that, by the same argument,
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f(T ) =
∫
σ(T )

f(z) dE(z) for all f ∈ C(σ(T )), where f(T ) ∈ A is defined

as in Chapter 9; see especially the discussion following Theorem 9.13.
Let us now prove uniqueness of E. By Theorem 10.3, if (10.6) holds,

then also p(T, T ∗) =
∫
σ(T )

p(z, z) dE(z) for all polynomials p in two

variables. When viewed as functions of z only, this set

{f : σ(T )→ C : f(z) = p(z, z), p polynomial in two variables}

satisfies the hypotheses of the Stone-Weierstraß Theorem. Therefore, if
f ∈ C(σ(T )) is arbitrary, there are polynomials pn such that ‖f(z) −
pn(z, z)‖∞ → 0. Alternatively, this conclusion can also be obtained
from the fact that T generates A, so {p(T, T ∗)} is dense in A, and we
can then move things over to C(σ(T )).

The Dominated Convergence Theorem shows that∫
σ(T )

f(z) dµx,y(z) = lim
n→∞

∫
σ(T )

pn(z, z) dµx,y(z) = lim
n→∞
〈x, pn(T, T ∗)y〉.

So the measures µx,y and thus also E itself are uniquely determined. �

This proof has also established the following fact, which we state
again because it will prove useful in the sequel:

Proposition 10.6. If E is the spectral resolution of a normal operator
T ∈ B(H), as in the Spectral Theorem, then E(U ∩ σ(T )) 6= 0 for all
open sets U ⊆ C with U ∩ σ(T ) 6= ∅.

This follows from Theorem 10.4(d) and our identification of ∆A with
σ(T ).

We introduce some new notation. It will occasionally be convenient
to write d〈x,E(z)y〉 for the measure dµx,y(z). Similarly, d〈x,E(z)x〉
and d‖E(z)x‖2 both refer to the measure dµx,x(z). This notation is
reasonable because 〈x,E(ω)x〉 = ‖E(ω)x‖2.

We can now also extend the functional calculus from Chapter 9.
More precisely, for a normal T ∈ B(H) and f ∈ L∞(σ(T ), E), where
E is the resolution of the identity of T , as in the Spectral Theorem, let

(10.7) f(T ) :=

∫
σ(T )

f(z) dE(z).

As observed above, in the proof of Theorem 10.5, this is consistent with
our earlier definition of f(T ) for f ∈ C(σ(T )) from Chapter 9.

By Theorem 10.3, the functional calculus f 7→ f(T ) is an isometric
∗-isomorphism between L∞(σ(T ), E) and a subalgebra of B(H). Note
also that if p(z) is a polynomial, p(z) =

∑n
j=0 cjz

j, then p(T ) could

have been defined directly as p(T ) =
∑n

j=0 cjT
j, and the functional
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calculus gives the same result. A similar remark applies to functions of
the form p(z, z).

We state the basic properties of the functional calculus one more
time:

(cf + dg)(T ) = cf(T ) + dg(T ), (fg)(T ) = f(T )g(T ) = g(T )f(T )

f(T )∗ = f(T ), ‖f(T )‖ = ‖f‖∞, ‖f(T )x‖2 =

∫
σ(T )

|f(z)|2 d‖E(z)x‖2

Moreover, if f is continuous, then we have the spectral mapping theo-
rem: σ(f(T )) = f(σ(T )). This was discussed in Exercise 9.16.

We want to prove still another version of the Spectral Theorem. This
last version will be an analog of the statement: a normal matrix can
be diagonalized by a unitary transformation. We will needs sums of
Hilbert spaces to formulate this result, so we discuss this topic first.
If H1, . . . , Hn are Hilbert spaces, then we can construct a new Hilbert
space H =

⊕n
j=1Hj, as follows: As a vector space, H is the sum of the

vector spaces Hj, and if x, y ∈ H, say x = (x1, . . . , xn), y = (y1, . . . , yn),
then we define 〈x, y〉 =

∑n
j=1〈xj, yj〉Hj

.

Exercise 10.8. Verify that this defines a scalar product on H and that
H is complete with respect to the corresponding norm.

Note that each Hj can be naturally identified with a closed subspace
of H, by sending xj ∈ Hj to x = (0, . . . , 0, xj, 0, . . . 0). In fact, the
Hj, viewed in this way as subspaces of H, are pairwise orthogonal.
Conversely, if H is a Hilbert space and the Hj are orthogonal subspaces
of H, then

⊕
Hj can be naturally identified with a subspace of H (by

mapping (xj) to
∑
xj).

An analogous construction works for infinitely many summands Hα,
α ∈ I. We now define H to be the set of vectors x = (xα)α∈I (xα ∈ Hα)
that satisfy

∑
α∈I ‖xα‖2 < ∞. If I is uncountable, then, as usual, this

means that xα 6= 0 for only countably many α and the corresponding se-
ries is required to converge. We can again define 〈x, y〉 =

∑
α∈I〈xα, yα〉;

the convergence of this series follows from the definition on H and the
Cauchy-Schwarz inequality for both the individual scalar products and
then also the sum over α ∈ I.

Exercise 10.9. Again, prove that this defines a scalar product and that
H is a Hilbert space.

Theorem 10.7 (Spectral representation of normal operators). Let T ∈
B(H) be a normal operator. Then there exist a collection {ρα : α ∈ I}
of finite positive Borel measures on σ(T ) and a unitary map U : H →
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α∈I L

2(σ(T ), dρα) such that

UTU−1 = Mz, (Mzf)α(z) = zfα(z).

The minimal cardinality of such a set I is called the spectral multi-
plicity of T ; if H is separable (as almost all Hilbert spaces that occur
in practice are), then I can always taken to be a countable set (say
I = N). Sometimes, a finite I will suffice or even an I consisting of
just one element, so that T would then be unitarily equivalent to a
multiplication operator by the variable on a single L2(ρ) space.

Exercise 10.10. Let T ∈ Cn×n be a normal matrix, with eigenvalues
σ(T ) = {z1, . . . , zm}. Prove the existence of a spectral representation
directly, by providing the details in the following sketch: Choose the
ρα as counting measures on (subsets of) σ(T ), and to define U , send
a vector x ∈ Cn to its expansion coefficients with respect to an ONB
consisting of eigenvectors of T .

Exercise 10.11. Use the discussion of the previous Exercise to show that
for a normal T ∈ Cn×n, the spectral multiplicity (as defined above) is
the maximal degeneracy of an eigenvalue, or, put differently, it is equal
to maxz∈σ(T ) dimN(T − z).

The measures ρα from Theorem 10.7 are called spectral measures.
They are not uniquely determined by the operator T ; Exercise 10.17
below will shed some additional light on this issue.

Proof. For x ∈ H, x 6= 0, let

Hx = {f(T )x : f ∈ C(σ(T ))}.
We also define an operator Ux : Hx → L2(σ(T ), dµx,x), as follows: For

f ∈ C(σ(T )), put U
(0)
x f(T )x = f . Then

‖U (0)
x f(T )x‖2 =

∫
σ(T )

|f(z)|2 dµx,x(z) = ‖f(T )x‖2,

by Theorem 10.3. By Exercise 2.26, the operator U
(0)
x : {f(T )x} →

L2(µx,x) has a unique continuous extension to Hx (call it Ux). Since the
norm is continuous, Ux will also be isometric. In particular, R(Ux) is clo-
sed, but clearly R(Ux) also contains every continuous function on σ(T ),
and these are dense in L2(σ(T ), dµx,x), so R(Ux) = L2(σ(T ), dµx,x).
Summing up: Ux is a unitary map (a linear bijective isometry) from Hx

onto L2(σ(T ), dµx,x).
Now let f ∈ C(σ(T )) and write zf(z) = g(z). Then

UxTU
−1
x f = UxTf(T )x = Uxg(T )x = g = Mzf,
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whereMz denotes the operator of multiplication by z (here: in L2(σ(T ), dµx,x)).
Since these functions f are dense in L2(σ(T ), dµx,x) and both operators
UxTU

−1
x and Mz are continuous, it follows that UxTU

−1
x = Mz.

We now consider those collections of such spaces {Hx : x ∈ I} for
which the individual spaces are orthogonal: Hx ⊥ Hy if x, y ∈ I, x 6= y.
One can use Zorn’s Lemma to show that there is such collection of Hx

spaces with
⊕

x∈I Hx = H. As always, we don’t want to discuss the
details of this argument. The crucial fact is this: If

⊕
x∈I Hx 6= H, then

there is another space Hy that is orthogonal to all Hx (x ∈ I). This can

be proved as follows: Just pick an arbitrary y ∈
(⊕

x∈I Hx

)⊥
, y 6= 0.

Then 〈y, g(T )x〉 = 0 for all x ∈ I and continuous functions g. But then
it also follows that for all continuous f

〈f(T )y, g(T )x〉 = 〈y, f(T )g(T )x〉 = 0,

because fg is another continuous function. So f(T )y ⊥ Hx and thus
Hy ⊥ Hx by the continuity of the scalar product.

We can now define the unitary map U as U =
⊕

x∈I Ux, where
I is chosen such that

⊕
x∈I Hx = H, as discussed in the preceding

paragraph. More precisely, by this we mean the following:

U : H →
⊕
x∈I

L2(σ(T ), dµx,x),

and if y =
∑

x∈I yx is the unique decomposition of y ∈ H into com-
ponents yx ∈ Hx, then we put (Uy)x = Uxyx. This map has the desired
properties.

Exercise 10.12. Check this in greater detail.

�

We have now discussed three versions of the Spectral Theorem. We
originally obtained the functional calculus for normal operators from
the theory of C∗-algebras, especially the Gelfand-Naimark Theorem.
This was then used to derive the existence of a spectral resolution
E and a spectral representation. Conversely, spectral resolutions can
be used to construct (in fact: an extended version of) the functional
calculus, and it is also easy to recover E, starting from a spectral re-
presentation UTU−1 = Mz (we sometimes write this as T ∼= Mz). We
summarize symbolically:

functional calculus ⇐⇒ T =
∫
σ(T )

z dE(z) ⇐⇒ T ∼= Mz
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Every version has its merits, and it’s good to have all three state-
ments available. Note, however, that the original functional calculus
(obtained from the theory of C∗-algebras) becomes superfluous now
because we obtain more powerful versions from the other statements
(this was already pointed out above).

The spectrum of T will not always be known, and so it is sometimes
more convenient to have statements that do not explicitly involve σ(T ).
This is very easy to do: Given E, we can also get a spectral resolution
on the Borel sets of C by simply declaring E(C \ σ(T )) = 0. Similarly,
in a spectral representation, we can think of the ρα as measures on C
(with ρα(C \ σ(T )) = 0).

In this case, we can recover the spectrum from the measures ρα. We
discuss the case of one space L2(C, dρ) and leave the discussion of the
effect of the orthogonal sum to an exercise. Given a Borel measure ρ
on C, we define its topological support as the smallest closed set A that
supports ρ in the sense that ρ(Ac) = 0. We denote it by A = top supp ρ.

Exercise 10.13. Prove that such a set exists. Suggestion: It is tempting
to try to define (top supp ρ)c =

⋃
U , where the union is over all open

sets U ⊆ C with ρ(U) = 0. This works, but note that the union will be
uncountable, which is a nuisance from a technical point of view because
we want to show that it has ρ measure zero.

Proposition 10.8. If T = Mz on L2(C, dρ), then σ(T ) = top supp ρ.

Proof. Abbreviate S = top supp ρ. We must show that Mz − w is
invertible in B(L2) precisely if w /∈ S. Now if w /∈ S, then |w − z| ≥
ε > 0 for ρ-almost every z ∈ C (by definition of S), and this implies
that M(z−w)−1 is a bounded linear operator. Obviously, it is the inverse
of Mz − w.

Conversely, if w ∈ S, then ρ(Bn) > 0 for all n ∈ N, where Bn =
{z ∈ C : |z − w| < 1/n}. Again, this follows from the definition of
S. This means that ‖χBn‖ > 0 in L2(C, dρ). Let fn = χBn/‖χBn‖, so
‖fn‖ = 1. Then ‖(Mz −w)fn‖ < 1/n, and this shows that (Mz −w) is
not invertible: if it were, then it would follow that

1 = ‖fn‖ = ‖(Mz − w)−1(Mz − w)fn‖ ≤ C‖(Mz − w)fn‖ <
C

n
,

which is absurd. �

As for the orthogonal sum, we have the following result:

Proposition 10.9. Let Hα be Hilbert spaces, and let Tα ∈ B(Hα) be
normal operators, with supα∈I ‖Tα‖ < ∞. Write H =

⊕
α∈I Hα and



The Spectral Theorem 119

define T : H → H as follows: (Tx)α = Tαxα (if x = (xα)α∈I). Then
T ∈ B(H) and

σ(T ) =
⋃
α∈I

σ(Tα).

It is customary to write this operator as T =
⊕

α∈I Tα, and actually
we already briefly mentioned this notation in the proof of Theorem
10.7. If I is finite, then no closure is necessary in the statement of
Proposition 10.9.

The situation of Theorem 10.7 is as discussed in the Proposition,
with Tα = Mz for all α. So we can now say that the spectrum of Mz

on
⊕

L2(C, dρα) is the closure of the union of the topological supports
of the ρα.

Exercise 10.14. Prove Proposition 10.9.

The following basic facts are very useful when dealing with spectral
representations. They provide further insight into the functional calcu-
lus and also a very convenient way of performing these operations once
a spectral representation has been found.

Proposition 10.10. Let f : C → C be a bounded Borel function.
Then:
(a) f(Mz) = Mf(z);
(b) Let U : H1 → H2 be a unitary map and let T ∈ B(H1) be a normal
operator. Then

f(UTU−1) = Uf(T )U−1.

Sketch of proof. We argue as in the second part of the proof of Theo-
rem 10.5. First of all, the assertions hold for functions of the type
f(z) = p(z, z), with a polynomial p, because for such functions we ha-
ve an alternative direct description of f(T ), which lets us verify (a),
(b) directly. Again, by the Stone-Weierstraß Theorem, these functions
are dense in C(K) for compact subsets K ⊆ C. Since fn(T )→ f(T ) in
B(H) if ‖fn − f‖∞ → 0, this gives the claim for continuous functions.
Now ‖(f(T )−g(T ))x‖2 =

∫
|f −g|2 dµx,x and continuous functions are

dense in L2 spaces. From this, we obtain the statements for arbitrary
bounded Borel functions. �

Exercise 10.15. Give a detailed proof by filling in the details.

If T is of the form Mz on L2(C, dρ), as in a spectral representation
(where we assume, for simplicity, that there is just one L2 space), what
is the spectral resolution E of this operator? In general, we can recover
E from T as E(A) = χA(T ), so Proposition 10.10 shows that E(A) =
MχA

if A ⊆ C is a Borel set.
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Exercise 10.16. Verify directly that this defines a resolution of the iden-
tity on the Borel sets of C (and the Hilbert space L2(C, dρ)).

We observed earlier that the spectral measures ρα are (in fact: highly)
non-unique. The following Exercise helps to clarify the situation. We
call two operators Tj ∈ B(Hj) unitarily equivalent if T2 = UT1U

−1 for
some unitary map U : H1 → H2. So, if we use this terminology, then
Theorem 10.7 says that every normal operator is unitarily equivalent
to the operator of multiplication by the variable in a sum of spaces
L2(C, ρα).

Exercise 10.17. Consider the multiplication operators T1 = M
(µ)
z and

T2 = M
(ν)
z on L2(µ) and L2(ν), respectively, where µ, ν are finite Borel

measures on C. Show that T1, T2 are unitarily equivalent if and only if
µ and ν are equivalent measures (that is, they have the same null sets).
Suggestion: For one direction, use the fact that µ and ν are equivalent
if and only if dµ = f dν, with f ∈ L1(ν) and f > 0 almost everywhere
with respect to µ (or ν).

Example 10.1. Let us now discuss the operator (Tx)n = xn+1 on `2(Z).
By Exercise 6.7(a), T is unitary, so the Spectral Theorem applies. It is
easiest to start out with a spectral representation because this can be
guessed directly. Consider the operator

F : L2(S, dx/(2π))→ `2(Z), (Ff)n =
1

2π

∫ 2π

0

f(eix)einx dx

(F as in Fourier transform). Here, S = {z ∈ C : |z| = 1} denotes again
the unit circle; when convenient, we also use x ∈ [0, 2π) to parametrize
S by writing z = eix. Note that (Ff)n = 〈en, f〉, with en(z) = z−n.
Since these functions form an ONB (compare Exercise 5.15), Theorem
5.14 shows that F is unitary.

Observe that the function g(z) = zf(z) has Fourier coefficients
(Fg)n = (Ff)n+1. In other words, F−1TF = Mz, and this is a spectral
representation, with U = F−1. The spectral measure dx/(2π) has the
unit circle as its topological support, so σ(T ) = S. Since only one L2

space is necessary here, the operator T has spectral multiplicity one.
What is the spectral resolution of T? We already identified this spec-

tral resolution on L2(S, dx/(2π)), the space from the spectral represen-
tation, and we can now map things back to the original Hilbert space
`2(Z) by using Proposition 10.10. More specifically,

E(A) = χA(T ) = χA(FMzF
−1) = FχA(Mz)F

−1 = FMχA(z)F
−1.
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We can rewrite this if we recall that (F−1y)(z) =
∑
ynz

−n, so (MχA
F−1y)(z) =∑

ynχA(z)z−n (both series converge in L2(S)), and thus

(E(A)y)n =
∞∑

m=−∞

χ̂A(m− n)ym,

where χ̂A(k) = 1/(2π)
∫ 2π

0
χA(eix)eikx dx. Formally, this follows imme-

diately from the preceding formulae, and for a rigorous argument, we
use the fact that (Ff)n may be interpreted as a scalar product, the
continuity of the scalar product and the L2 convergence of the series
that are involved here.

We now prove some general statements that illustrate how the Spec-
tral Theorem helps to analyze normal operators.

Theorem 10.11. Let T ∈ B(H) be normal. Then:
(a) T is self-adjoint ⇐⇒ σ(T ) ⊆ R;
(b) T is unitary ⇐⇒ σ(T ) ⊆ S = {z ∈ C : |z| = 1}.

The assumption that T is normal is needed here: if, for example,
T =

(
0 1
0 0

)
∈ B(C2), then σ(T ) = {0} ⊆ R, but T is not self-adjoint.

Proof. (a) =⇒: This was established earlier, in Theorem 9.15(a).
⇐=: By the Spectral Theorem and functional calculus,

T ∗ =

∫
σ(T )

z dE(z) =

∫
σ(T )

z dE(z) = T.

(b) ⇐=: This follows as in (a) from

TT ∗ = T ∗T =

∫
σ(T )

zz dE(z) =

∫
σ(T )

dE(z) = 1.

=⇒: If z ∈ σ(T ), then E(B1/n(z)) 6= 0 for all n ∈ N by Proposition
10.6, so we can pick xn ∈ R(E(B1/n(z))), ‖xn‖ = 1. Then

µxn,xn((B1/n(z))c) = 〈xn, E((B1/n(z))c)xn〉
= 〈xn, E((B1/n(z))c)E(B1/n(z))xn〉 = 0,

so it follows that
(10.8)∣∣‖Txn‖ − |z| ‖xn‖∣∣2 ≤ ‖(T − z)xn‖2 =

∫
σ(T )

|t− z|2 dµxn,xn(t) ≤ 1

n2
.

Since ‖Ty‖ = ‖y‖ for all y ∈ H for a unitary operator, this shows that
|z| = 1, as claimed. �
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Theorem 10.12. If T ∈ B(H) is normal, then

‖T‖ = sup
‖x‖=1

|〈x, Tx〉| .

Proof. Clearly, |〈x, Tx〉| ≤ ‖T‖ ‖x‖2, so the sup is ≤ ‖T‖. On the other
hand, we know from Theorem 9.15(b) that ‖T‖ = r(T ), so there exists
a z ∈ σ(T ) with |z| = ‖T‖. As in the previous proof, if ε > 0 is given,
then E(Bε(z)) 6= 0, so we can find an x ∈ R(E(Bε(z))), ‖x‖ = 1. Then

|〈x, Tx〉 − z| = |〈x, (T − z)x〉| =
∣∣∣∣∫ (t− z) d‖E(t)x‖2

∣∣∣∣ < ε

because (again, as in the previous proof) µx,x((Bε(z))c) = 0 (and
µx,x(C) = ‖x‖2 = 1). So sup |〈x, Tx〉| ≥ ‖T‖ − ε, and ε > 0 is ar-
bitrary here. �

Theorem 10.13. Let T ∈ B(H). Then T ≥ 0 (in the C∗-algebra
B(H); see Definition 9.14) if and only if 〈x, Tx〉 ≥ 0 for all x ∈ H.

Proof. If T ≥ 0, then T is self-adjoint and σ(T ) ⊆ [0,∞), so the
Spectral Theorem shows that

〈x, Tx〉 =

∫
[0,∞)

t dµx,x(t) ≥ 0

for all x ∈ H.
Conversely, if this condition holds, then in particular 〈x, Tx〉 ∈ R for

all x ∈ H, so 〈x, T ∗x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈x, Tx〉. Polarization now
shows that 〈x, T ∗y〉 = 〈x, Ty〉 for all x, y ∈ H, that is, T = T ∗ and T
is self-adjoint.

Now if t > 0, then

t‖x‖2 = 〈x, tx〉 ≤ 〈x, (T + t)x〉 ≤ ‖x‖ ‖(T + t)x‖,
so it follows that

(10.9) ‖(T + t)x‖ ≥ t‖x‖.
This shows, first of all, that N(T + t) = {0}. Moreover, we also see
from (10.9) that R(T + t) is closed: if yn ∈ R(T + t), say yn = (T + t)xn
and yn → y ∈ H, then (10.9) shows that xn is a Cauchy sequence, so
xn → x for some x ∈ H and thus y = (T + t)x ∈ R(T + t) also, by the
continuity of T + t. Finally, we observe that R(T + t)⊥ = N((T + t)∗) =
N(T + t) = {0} (by Theorem 6.2). Putting things together, we see that
R(T + t) = H, so T + t is bijective and thus −t /∈ σ(T ). This holds for
every t > 0, so, since T is self-adjoint, σ(T ) ⊆ [0,∞) and T ≥ 0. �

Theorem 10.14. Let T ∈ B(H), T ≥ 0. Then there exists a unique
S ∈ B(H), S ≥ 0 with S2 = T .
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Proof. Existence is very easy: By the Spectral Theorem, T =
∫

[0,∞)
t dE(t).

The operator S =
∫

[0,∞)
t1/2 dE(t) has the desired properties (here, t1/2

of course denotes the positive square root).
Uniqueness isn’t hard either, but more technical, and we just sketch

this part: If S0 is another operator with S0 ≥ 0, S2
0 = T , write S0 =∫

[0,∞)
s dE0(s), so T =

∫
[0,∞)

s2 dE0(s). Now we can run a “substitution”

s2 = t (of sorts) and rewrite this as T =
∫

[0,∞)
t dẼ0(t), where Ẽ0(M) =

E0({s2 : s ∈ M}) (this part would need a more serious discussion if
a full proof is desired). By the uniqueness of the spectral resolution E

(see Theorem 10.5), Ẽ0 = E, and this will imply that S0 = S. �

Exercise 10.18. Let T ∈ Cn×n be a normal matrix with n distinct, non-
zero eigenvalues. Show that there are precisely 2n normal (!) matrices
S ∈ Cn×n with S2 = T .

Exercise 10.19. Recall that σp(T ) was defined as the set of eigenvalues
of T ; equivalently, z ∈ σp(T ) precisely if N(T − z) 6= {0}. Show that if
T ∈ B(H) is normal, then z ∈ σp(T ) if and only if E({z}) 6= 0 (here,
as usual, E denotes the spectral resolution of T ).

Exercise 10.20. Let T ∈ B(H) be normal. Show that z ∈ σ(T ) if and
only if there exists a sequence xn ∈ H, ‖xn‖ = 1, such that (T−z)xn →
0.

Exercise 10.21. Suppose that T ∈ B(H) is both unitary and self-
adjoint. Show that T is of the form T = 2P − 1, for some orthogonal
projection P . Show also that, conversely, every such operator T is uni-
tary and self-adjoint.
Suggestion: Use the Spectral Theorem and Theorem 10.11 for the first
part.

Exercise 10.22. Let T ∈ B(H). Recall that a closed subspace M ⊆ H
is called invariant if TM ⊆ M , that is, if Tx ∈ M for all x ∈ M . Call
M a reducing subspace if both M and M⊥ are invariant. Show that
if T is normal with spectral resolution E, then R(E(B)) is a reducing
subspace for every Borel set B ⊆ C.
Hint: E(B) = χB(T ); now use the functional calculus.


