
12. The formalism of quantum mechanics

In this chapter, we discuss some mathematical issues of the theory of
quantum mechanics. The starting point will be an axiomatic descrip-
tion of the formal structure of the theory. Before we look at this, let’s
discuss the structure of (Hamiltonian) classical mechanics in similar
style, as a warm-up.

If the system consists of a single particle, then the possible states
of this system are (p, q) ∈ P = R6, where q ∈ R3 is the position
of the particle and p ∈ R3 is its momentum (= mass × velocity).
The traditional name for P would be phase space, but I want to use
the slightly more descriptive term state space instead. Note that the
state refers to a fixed moment in time, not the evolving system. An
observable is a continuous function F : P → R on the state space. For
example, the components of the position Fj(p, q) = ej ·q or the angular
momentum Fj(p, q) = ej ·(p×q) are observables. The time evolution of
the state is governed by a system of ODEs, called Hamilton’s equations:
if H(p, q) is the observable energy, then ṗ = −∂H/∂q, q̇ = ∂H/∂p.
Finally, a composite system, consisting of subsystems with state spaces
P1 and P2, respectively, has state space P = P1 × P2.

Now let’s give a similarly structured description of quantum mechan-
ics. We impose the following axioms, which we’ll label S (states), O
(observables), C (conditioning), and D (dynamics).

(S) The state space of a quantum mechanical system is PH, the space
of one-dimensional subspaces of a Hilbert space H. We usually do not
take this distinction between states and vectors ψ ∈ H very seriously
and simply use normalized vectors (‖ψ‖ = 1) to represent states.

(O) An observable is a self-adjoint operator on H. To actually observe
the value of an observable, the observer must perform a measurement.
The outcome of a measurement is random. If the system is in the state
ψ ∈ H, ‖ψ‖ = 1, at the time of the measurement of the observable
A = A∗, then the probability to observe a value in M ⊆ R is given by

PA(M) = ‖EA(M)ψ‖2,

where EA denotes the spectral resolution of A: A =
∫
R t dEA(t)

(C) When a measurement has been performed and a value in M of the
observable A was observed, then the state must be updated according
to

ψnew =
EA(M)ψ

‖EA(M)ψ‖
.
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(D) If no measurement is carried out, then the state evolves according
to a group of unitary operators:

ψ(t) = U(t)ψ(0),

U(s+ t) = U(s)U(t), U(t)∗U(t) = U(t)U(t)∗ = 1

We also demand that ψ(t) is a continuous function of t for any choice
of ψ(0).

This is an exceedingly strange and philosophically challenging theory.
Let’s for now ignore (D), which describes the time evolution of our
system, and focus on (S), (O), (C), which describe the system at a
fixed point in time. The first surprise is the use of a Hilbert space
to describe states. This can perhaps be given some plausibility, with
the benefit of hindsight at least, if we also take into account that (O)
introduces probabilities and randomness. If x ∈ H, ‖x‖ = 1, and {en}
is an ONB of H, then we can expand x =

∑
anen, with coefficients

an = 〈en, x〉. These will satisfy
∑
|an|2 = ‖x‖2 = 1, so could in

principle serve as probabilities. This can be done for a given x for any
ONB, so a Hilbert space could be viewed as a powerful book-keeping
machine that can store many different probability measures in just one
vector x ∈ H.

Exercise 12.1. In fact, any x ∈ H, ‖x‖ = 1, stores all such probability
measures on N if H is infinite-dimensional. Prove the following precise
version of this statement: let x ∈ `2, ‖x‖ = 1, and let numbers pn ≥ 0
with

∑
pn = 1 be given. Then there is an ONB {en} of `2 such that

|〈en, x〉|2 = pn.
(Recall also that H ∼= `2 for any separable H with dimH = ∞, so

choosing this space is no restriction.)

Now let’s take a closer look at (O), (C). The easiest type of measure-
ment involves observables A = P that are projections. Note that in
general, only values t ∈ σ(A) are possible outcomes of a measurement
of A (because EA is supported by this set).

Exercise 12.2. Let P ∈ B(H) be a projection, P 6= 0, 1. Show that
σ(P ) = {0, 1}, and the spectral resolution of P is given by E({1}) = P ,
E({0}) = 1− P .

So a measurement of P has only two possible outcomes; we can think
of it as a yes/no question. One could in fact argue that such measure-
ments are sufficient in general since any question can in principle be
broken up into a series of yes/no questions. If the system is in state
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x ∈ H, ‖x‖ = 1, and P is measured, then the probabilities for 0 and 1
are ‖(1− P )x‖2 and ‖Px‖2, respectively.

All this is quite different from what a state (p, q) does for us in
classical mechanics. There, it can be observed directly, as is clear to
us without any theory, but is also confirmed by the formalism since
(the components of) p, q are observables themselves. In quantum me-
chanics, the state can not be accessed directly; only observables can
be measured, and the state provides information about measurement
outcomes only in an indirect way.

We can now also get a better understanding of (C): if let’s say 1 was
obtained as the result of the measurement of P , then (C) instructs us to
update the state x to y = Px/‖Px‖. This makes sure (since (1−P )y =
0 now) that if the measurement of P is repeated, immediately following
the first measurement, then the second measurement will with certainty
reproduce the outcome of the first measurement. This would of course
not have happened if we had left x untouched; in that case, we would
just have to use the original probabilities one more time.

This also explains the name conditioning for this postulate: you up-
date your probabilities after new information has been obtained (in
quantum mechanics, you actually update the state, but since this en-
codes probabilities, the net effect is the same). This kind of thing
happens all the time in your daily life: for example, if tomorrow’s fore-
cast predicts 40% rain, 60% sunshine, then this is what you use for
now. However, when you look out of the window the next morning and
see sunshine, you instantaneously update to 0% rain, 100% sunshine.

I should also add that conditioning is in fact not the most common
name for (C) though it is quite descriptive. Usually, (C) is referred to
as the reduction or, rather more dramatically, the collapse of the wave
function, and here wave function is just another name for the state
ψ ∈ H. What collapses here are potentialities: for typical states ψ,
any t ∈ σ(A) is a possible outcome of the measurement of A, but after
measuring and observing a specific value t, an immediately following
re-measurement will confirm t, with the uncertainty gone or collapsed.

If discussed in this way, then (C) seems rather mundane, and the
continuity property of the results of consecutive measurements that
(C) expresses seems desirable or even indispensable. However, as a
side effect, one is then more or less forced to view the state ψ ∈ H
correspondingly as knowledge or information about the system and
nothing else. Such an interpretation is possible and is in fact close in
spirit to what can probably be called the mainstream interpretation of
quantum mechanics, the Copenhagen interpretation.
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Other physicists and philosophers consider this approach to be un-
satisfactory and too unkind towards the straightforward realistic world
view that works reasonably well in classical physics, and they would
prefer a more realistic interpretation of ψ also. Then (C) becomes
potentially more troublesome since it introduces discontinuous instan-
taneous changes in ψ.

Another related issue that just refuses to go away is the measure-
ment problem. This is not really a well defined question, and it means
different things to different people. The common denominator is the
felt need for a deeper understanding of what exactly is going on during
a measurement. For instance one can imagine treating the system plus
the measurement device as one big quantum mechanical system, which
then presumably should evolve continuously according to (D). It is then
not clear how (C) could ever come about. More precisely, it is clear
that it can’t; this version of the measurement problem is unsolvable.

Or try the following thought experiment, which in this version is due
to Everett, but really just combines the two classics Schrödinger’s cat
and Wigner’s friend. Physicist A performs a measurement of a quan-
tum system S in a lab L. He also records the outcome by writing it
down on a piece of paper. Physicist B is outside the lab L, which is
completely isolated from its environment and forms a closed system.
B describes the whole arrangement (A+S+L) quantum mechanically
(using (D) throughout, obviously, as B does not conduct any measure-
ments). Now A clearly performed a reduction of the state ψS of S,
according to (C), at the time of the measurement, and he even has
proof of this in the form of his note. From B’s point of view, however,
nothing special ever happened, and no reduction occurred. B uses a
state ψA+S+L that contains a mixture of all the notes that A conceiv-
ably could have written. Finally, to make things even more confusing,
B can ask A afterwards to confirm that for A, the reduction of ψS oc-
curred when the measurement of S was performed and a unique note
was written, not a surreal superposition of all possible notes. Despite
all this convincing testimony, for B, no reduction can occur before the
inspection of L and the interaction with A.

This is just some food for thought. I don’t want to attempt a dis-
cussion of these issues here. Let me just say in closing that almost 100
years after the initial formulation of quantum mechanics, none of these
very basic philosophical questions have received answers that have led
to anything like a consensus on any aspect of them.

In classical mechanics, one can of course observe any number of ob-
servables simultaneously. It suffices to determine the state (p, q), and
then one can in principle determine the values of all observables F (p, q).
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Quantum mechanics does not admit even the possibility of measuring
more than one observable at the same time, if the axioms are taken
at face value. However, one can get around this to some extent, as
follows:

Definition 12.1. Let S, T be self-adjoint operators on H. We say
that S, T are simultaneously measurable if there is a third observable
X = X∗ ∈ B(H) such that S = f(X), T = g(X) for certain (Borel)
functions f, g on R.

In this situation, it indeed makes sense to interpret a measurement
of X as a measurement of S, T also since one could in principle find
these observables from X. This interpretation also works well when
done carefully within the formalism.

Exercise 12.3. Let S, T,X be as in Definition 12.1. Suppose that a
measurement of X gave a result in M ⊆ R. Show that an immediately
following measurement of S (in other words, update the state according
to (C)) will then produce a value in f(M), with probability 1, and
similarly for T .

Even more ambitiously, could do both, measure S and then imme-
diately afterwards T , following the measurement of X, and you would
still be guaranteed results in f(M) and g(M), respectively.

Remark: This will probably require a substitution rule of sorts for∫
h dE, to recover the spectral resolutions of S, T from that of X.

Compare Exercise 11.20(a).

The question of what observables are simultaneously measurable is
then clarified by the following result:

Theorem 12.2 (von Neumann). Let S, T ∈ B(H) be self-adjoint
operators. Then S, T are simultaneously measurable if and only if
[S, T ] ≡ ST − TS = 0.

Sketch of proof. In more technical language, the result says that S, T
are both functions of a third self-adjoint operator if and only if they
commute. One direction is obvious since any two functions f(X), g(X)
of the same operator commute.

So assume now that [S, T ] = 0. The version of the Spectral Theorem
that we established in Theorem 10.4(a) is close to what we want. This

result shows that if S, T commute, then S =
∫

∆
Ŝ dE, T =

∫
∆
T̂ dE for

some common (to S and T ) spectral resolution E. The only problem
is that ∆ is just an abstract space, which may be too big for our
purposes. If we had ∆ ⊆ R, then we could let X =

∫
t dE and would
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obtain S = f(X), T = g(X), as desired, with the functions f, g being
the Gelfand transforms of S and T , respectively.

This can be remedied as follows. We apply Theorem 10.4(a) to specif-
ically the C∗-subalgebra A = C∗(S, T ) of B(H) that is generated by
S, T . Then ∆ will be the maximal ideal space of A. We can now see in
the same way as in the proof of Theorem 9.12 that ∆ is homeomorphic
to a compact subset K of R2; a homeomorphism is given by mapping

φ 7→ (φ(S), φ(T )) = (Ŝ(φ), T̂ (φ)). Now we use the fact that there will
be a Borel isomorphism B0 : K → [0, 1] onto a subset of [0, 1]. By this
I mean a bijective map with the property that both B0 and B−1

0 are
Borel functions. Results of this type hold in great generality; I don’t
want to discuss them further here.

We can then also compose with the homeomorphism between ∆ and
K to obtain such a Borel isomorphism B : ∆ → [0, 1]. Now use B to
move everything over to [0, 1]; then S =

∫
[0,1]

f dF , T =
∫

[0,1]
g dF , with

F (M) = E(B−1(M)), and from a substitution rule for these integrals

we also know that f = Ŝ ◦ B−1, g = T̂ ◦ B−1 (which we don’t need
here). We can take X =

∫
[0,1]

t dF (t). �

Exercise 12.4. Let T ∈ B(H) be self-adjoint, and let f, g : R → R be
bounded Borel functions. Show that f(g(T )) = (f ◦ g)(T ).

Exercise 12.5. Give an elementary proof, from scratch, of Theorem
12.2 in the special case H = Cn. Suggestion: Show that H has an
ONB of simultaneous eigenvectors of S, T . Then define X by removing
possible degeneracies (so if S, say, has simple spectrum, then X = S
would work).

Since typically operators don’t commute, Theorem 12.2 puts strong
restrictions on what simultaneous measurements are possible. A fa-
mous pair of non-commuting observables is given by the position op-
erator q = Mx (multiplication by x) and the momentum operator
p = −i d/dx on H = L2(R). (I am stretching our results somewhat
here since q, p are not bounded, so Theorem 12.2 as stated doesn’t ap-
ply.) If we ignore domains and proceed formally, then [q, p] = i 6= 0.

(Comp) The state space H of a composite quantum system, con-
sisting of two subsystems with state spaces H1 and H2, is the tensor
product H = H1 ⊗H2.

This looks similar typographically to the prescription P = P1 × P2

for composite classical systems, but of course the tensor product is not
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the easiest way to construct a new Hilbert space out of H1, H2. That
probably would have been H1 ⊕ H2, but in fact there are immediate
objections against this choice. For example (ψ, 0) ∈ H1 ⊕H2 does not
associate a state to the second system; but if we rule out such vectors,
then the state space of our system is no longer PH, contradicting (S).
A related problem is that there is no good way to make measurements
on one subsystem exclusively depend only on the state this part of the
system is in. The tensor product, on the other hand, handles these
issues gracefully. As we will see, its use has striking consequences.

Let’s first discuss the notion of the tensor product V ⊗ W of two
vector spaces. This is easy to describe intuitively, but any precise
definition will inevitably get a bit clumsy. We want V ⊗W to contain
vectors that we will write as v ⊗w, with v ∈ V , w ∈ W . Since V ⊗W
is supposed to be a vector space, we must also put (formal, at this
point) linear combinations

∑n
j=1 cjvj ⊗wj into V ⊗W . Finally, as the

notation suggests, we want ⊗ to behave like a product. More precisely,
we want (au + bv) ⊗ w = a(u ⊗ w) + b(v ⊗ w), and similarly in the
second factor.

This completes a slightly informal description of V ⊗W that is in
fact good enough for many purposes when combined with an important
general fact that is formulated as Exercise 12.6 below. This will also
show that dimV ⊗W = dimV dimW .

A more rigorous definition can be given as follows. For any set S, we
define the free vector space F (S) over S as the set of finitely supported
functions f : S → C, with its obvious vector space structure. You
could also view the elements of F (S) as formal (!) linear combinations∑n

j=1 cjsj; the connection to the first version is obtained by viewing

f(s) as the coefficient of s. But here we must be careful to not mis-
interpret this as an actual linear combination, especially if S happens
to have a natural vector space structure already, as in our intended
application. In either version, F (S) is simply a construction of a vec-
tor space with basis S (after identifying s with the function fs(s) = 1,
fs(t) = 0 for t 6= s in the first version, and with 1s in the second one).

Definition 12.3. The (algebraic) tensor product of the vector spaces
V,W is V ⊗W := F (V ×W )/R, where R is the subspace of F (V ×W )
spanned by all vectors of the form

(u+ v, w)− (u,w)− (v, w), (cv, w)− c(v, w),

(v, w + x)− (v, w)− (v, x), (v, cw)− c(v, w),

with u, v ∈ V,w, x ∈ W, c ∈ C.
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We then return to the original notation and write the element of
V ⊗W that is represented by (v, w) as v⊗w. The elements of V ⊗W
are also referred to as tensors, and such vectors x = v ⊗ w are called
pure (or simple) tensors. The condition really is that x can be written
in this form, so for example u⊗ w + v ⊗ w is a pure tensor.

Exercise 12.6. Let {eα : α ∈ A} and {fβ : β ∈ B} be bases of V and
W , respectively. Show that then {eα ⊗ fβ : α ∈ A, β ∈ B} is a basis
of V ⊗ W . Suggestion: This is not as trivial as one might think it
should be. To prove linear independence, construct linear functionals
Fγδ ∈ (V ⊗W )∗ that satisfy Fγδ(eα ⊗ fβ) = δαγδβδ.

Exercise 12.7. (a) Show that every x ∈ V ⊗W can be written as a sum
of pure tensors x =

∑n
j=1 vj ⊗ wj.

(b) Show that 0 ⊗ w = v ⊗ 0 = 0 for any v, w, with the last zero
denoting the zero vector of V ⊗W , of course.
(c) If none of the individual vectors is the zero vector, show that v⊗w =
x⊗ y if and only if v = cx, y = cw for some c ∈ C.

Exercise 12.8. Let V = C2. For two linearly independent vectors e, f ∈
V , define

v(e, f) = e⊗ f − f ⊗ e ∈ V ⊗ V.
Now apply a matrix S ∈ C2×2 to e, f . Show that then

v(Se, Sf) = (detS)v(e, f).

(This remarkable invariance of v(e, f) will play a key role in our dis-
cussion of the Einstein-Podolsky-Rosen paradox.) Also, show that v is
not a pure tensor.

We have a natural map ϕ : V ×W → V ⊗W , ϕ(v, w) = v⊗w. This
map is bilinear (= linear in each argument separately). One can base
an alternative definition of V ⊗W on this and the following universal
property: any bilinear map B : (V,W )→ Z to a third vector space Z
factors through V ⊗W in a unique fashion: there is a unique linear
map L : V ⊗W → Z such that B = L◦ϕ. This is a bit too abstract for
our purposes, but it does draw attention to the fact that this bilinear
map (v, w) 7→ v ⊗ w is a crucial part of the whole construction. Since
a vector space doesn’t have any structure other than its dimension, it
would otherwise have been perfectly pointless to go to these lengths to
construct Cm ⊗Cn, say, when we have the much more straightforward
isomorphic space Cmn available. Or, to say essentially the same thing in
more down-to-earth fashion, on a tensor product, I can not only point
to Exercise 12.6 and say that the general vector is a linear combination
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of the basis vectors (this I can do in any vector space), I also gave
meaning to v ⊗ w for arbitrary v, w.

If we now have two Hilbert spaces H1, H2, then H1⊗H2 can also be
given a scalar product, as follows: for pure tensors, we define

(12.1) 〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉 〈x2, y2〉 ,
and then we extend to general tensors by making 〈·, ·〉 sesquilinear, as
we must. Since different representations of tensors such as (x+y)⊗z =
x ⊗ z + y ⊗ z lead to different options of evaluating scalar products,
it must be checked that this is well defined. (In fact, a first small
issue concerns (12.1) itself because u, v are not uniquely determined by
u⊗ v. Rather, non-zero factors can be moved around at will; compare
Exercise 12.7(c). It is clear, of course, that this at least is harmless.)

We can address these issues by taking seriously the set-up from Def-
inition 12.3: (12.1) does define a map on B × B, with B = H1 × H2,
and then also a unique sesquilinear map S : F (B)× F (B)→ C. More
explicitly,

S
(∑

aj(x
(1)
j , x

(2)
j ),

∑
bk(y

(1)
k , y

(2)
k )
)

=
∑

ajbk

〈
x

(1)
j , y

(1)
k

〉〈
x

(2)
j , y

(2)
k

〉
.

We need a sesquilinear map on H ×H, with H = H1 ⊗H2, and since
H = F (B)/R, what we must check is that S(v, w) = 0 if v ∈ R or
w ∈ R. By (anti-)linearity, it suffices to check this on the spanning set
of R from Definition 12.3, and this is straightforward.

Let’s also verify that 〈t, t〉 ≥ 0 for any tensor t ∈ H1 ⊗ H2, with
equality precisely when t = 0. Any tensor is a sum of pure tensors: t =∑
xj ⊗ yj. Fix ONBs {ej}, {fk} of the (finite-dimensional) subspaces

that are spanned by the xj and the yj, respectively, and expand each
xj and yj in terms of these. After multiplying out, we then obtain a
representation of the form

t =
∑
j,k

cjkej ⊗ fk,

with coefficients cjk ∈ C. Now plug this into 〈t, t〉 and again multiply
out. This will leave us with a sum of many terms, but now all scalar
products are among the vectors ej ⊗ fk. We clearly have

〈ej ⊗ fk, em ⊗ fn〉 =

{
1 j = m, k = n

0 otherwise
.

This finally leads to 〈t, t〉 =
∑

j,k |cjk|
2. We conclude that indeed

〈t, t〉 ≥ 0 and = 0 if and only if cjk = 0 for all j, k, which is equivalent
to t = 0 since the ej ⊗ fk are linearly independent.
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Exercise 12.9. Give a more explicit version of this argument. Also, if
desired, provide a careful complete proof that 〈·, ·〉 is a scalar product
on H1 ⊗H2.

Example 12.1. Let’s now try out all of this forH1 = H2 = H = `2(Z). If
we just run through the above constructions for these data, we won’t get
any additional insight, so let’s right away bring into play a natural map
T : H ⊗H → `2(Z2) that is available here. On pure tensors, we define
it as T (x ⊗ y)(m,n) = x(m)y(n), and then I want to extend linearly.
This runs into an issue similar to the one above, when we introduced
a scalar product on H1 ⊗ H2: there are linear relations among pure
tensors, so the map is already overdetermined. For example, we have
several competing options how to evaluate T ((x+y)⊗z), and we should
check that these are consistent. This can be done in pretty much the
same way as above, and I don’t want to say more on it here.

Notice then that T preserves scalar products among pure tensors:

〈T (u⊗ v), T (x⊗ y)〉 =
∑
m,n∈Z

u(m)v(n)x(m)y(n)

=
∑
m∈Z

u(m)x(m)
∑
n∈Z

v(n)y(n)

= 〈u, x〉 〈v, y〉 = 〈u⊗ v, x⊗ y〉
To carefully justify passing to the second line, note that the double
series converges absolutely, by the Cauchy-Schwarz inequality. Since
pure tensors span the tensor product, it follows that T is an isometry
on H ⊗ H. Moreover, if x = δm, y = δn, then T (x ⊗ y) = δ(m,n), and
these latter vectors form an ONB of `2(Z2). So T (H ⊗H) is dense in
`2(Z2). However, T is not onto:

Exercise 12.10. Prove that (for example)

u(m,n) =

{
2−|n| m = n

0 otherwise

is not in T (H ⊗H).

As a consequence, H ⊗H is not complete. This is a slight setback,
and it forces us to modify the definition in the Hilbert space setting.

Definition 12.4. Let H1, H2 be Hilbert spaces. The (Hilbert space)
tensor product H1 ⊗ H2 is the completion of the (algebraic) tensor
product of H1, H2, endowed with the scalar product (12.1).

The notation has now become somewhat overloaded since the sym-
bol ⊗ could stand for the algebraic or the Hilbert space tensor product.
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This is harmless, though, as we will always use the Hilbert space tensor
product for Hilbert spaces. On top of this, our main application will
involve finite-dimensional spaces only, and then the distinction disap-
pears.

We can now also finish the discussion of Example 12.1. We have
`2(Z)⊗ `2(Z) ∼= `2(Z2) (Hilbert space tensor product, obviously), with
a natural unitary map between these spaces, which maps pure tensors
x⊗ y 7→ x(m)y(n).

Similarly, one can show that L2(X,µ)⊗L2(Y, ν) ∼= L2(X×Y, µ⊗ν),
by sending f ⊗ g 7→ f(x)g(y) (and µ ⊗ ν is the product measure, of
course, not a tensor product).

Exercise 12.11. Define

`2(N;Cd) =

{
x : N→ Cd :

∞∑
n=1

x(n)∗x(n) <∞

}
(“square summable sequences taking values in Cd”). This becomes a
Hilbert space with the scalar product 〈x, y〉 =

∑
x(n)∗y(n). (You can

just assume this plausible fact, or try to prove it if you want to.) Show
that `2(N)⊗Cd ∼= `2(N;Cd), with a natural unitary map between these
spaces (find this map!).

Exercise 12.12. Let H be an arbitrary Hilbert space. Show that

U(x1, x2, . . . , xn) =
n∑
j=1

xj ⊗ ej

defines a unitary map U : H ⊕ H ⊕ . . . ⊕ H → H ⊗ Cn. Conclude
that the algebraic tensor product H⊗Cn agrees with the Hilbert space
tensor product in this case.

Exercise 12.13. Let {ej} and {fn} be ONBs of H1 and H2, respectively.
Show that {ej ⊗ fk} is an ONB of H1 ⊗H2.

As our final general topic related to tensor products, I want to intro-
duce the tensor product of two operators. Suppose that Aj ∈ B(Hj).
For pure tensors, we then define T (x1 ⊗ x2) = A1x1 ⊗ A2x2. We next
want to extend this linearly to the algebraic tensor product H1⊗H2 in
a first step. Here we encounter for the third time the technical prob-
lem that a given v ∈ H1 ⊗H2 can be written in many ways as a linear
combination of pure tensors, and we must check the consistency of our
intended definition. We discussed the analogous issue for the scalar
product more explicitly, and I want to leave it at that.
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Proposition 12.5. This operator T on the algebraic tensor product is
bounded, with operator norm ‖T‖ = ‖A1‖ ‖A2‖.

This implies that T has a unique continuous extension to all of H1⊗
H2 (Hilbert space tensor product now), and this operator we will denote
by A1 ⊗ A2. It still satisfies ‖A1 ⊗ A2‖ = ‖A1‖ ‖A2‖.

Proof. We have T (A1, A2) = T (A1, 1)T (1, A2), so to prove that the
original T is bounded, it suffices to show that these factors are bounded.
We consider T = T (A, 1). Let u =

∑n
j=1 xj⊗yj be a tensor. As we saw

earlier, in our discussion of the scalar product, we can expand each xj
and yj in terms of an ONB. Put differently, we may assume that both
{xj} and {yj} are orthogonal systems. Then

‖Tu‖2 =

〈
n∑
j=1

Axj ⊗ yj,
n∑
k=1

Axk ⊗ yk

〉
=

n∑
j=1

‖Axj‖2‖yj‖2

≤ ‖A‖2

n∑
j=1

‖xj‖2‖yj‖2 = ‖A‖2‖u‖2;

the last equality follows by evaluating ‖u‖2 = 〈u, u〉 by a similar cal-
culation.

Using this and the analogous bound ‖T (1, B)‖ ≤ ‖B‖, we see that
T = T (A1, A2) is indeed bounded, and ‖T‖ ≤ ‖A1‖ ‖A2‖. To prove the
opposite inequality, let ε > 0 be given. Pick xj ∈ Hj, ‖xj‖ = 1, such
that ‖Ajxj‖ > ‖Aj‖− ε. Then also ‖x1⊗x2‖ = 1, and ‖T (x1⊗x2)‖ ≥
(‖A1 − ε)(‖A2‖ − ε). �

We can now also add some precision to (Comp). Of course, from
a very abstract point of view, any Hilbert space is as good as any
other of the same dimension since they are all isomorphic. What we
really mean when we say that the tensor product should be used to
describe composite systems is that the individual factors still refer to
the corresponding subsystems. In particular, if A1 is an observable for
the first system, then this measurement can still be carried out on the
composite system, and the corresponding observable is A1 ⊗ 1.

Exercise 12.14. Suppose that Aj ∈ B(Hj), Aj 6= 0. Prove that A1⊗A2

is self-adjoint if and only if both A1 and A2 are.

Exercise 12.15. Let A1 ∈ B(H1) be self-adjoint, with spectral resolu-
tion E1. Show that the spectral resolution of A = A1 ⊗ 1 is E1 ⊗ 1.
Conclude that σ(A) = σ(A1).
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After these somewhat lengthy preparations, we are now finally ready
for a discussion of Bohm’s version of the famous EPR paradox (af-
ter A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical de-
scription of physical reality be considered complete?, Phys. Review 47
(1935), 777–780). This is a thought experiment. We imagine a physi-
cal system consisting of two subsystems, each described by the Hilbert
space H = C2. By (Comp), the Hilbert space of the full system is
the four-dimensional space H ⊗H. Let e = (1, 0)t, f = (0, 1)t be the
standard ONB of H, and form the EPR state

(12.2) v =
1√
2

(e⊗ f − f ⊗ e) .

Compare Exercise 12.8; the additional factor 1/
√

2 makes sure that
‖v‖ = 1.

We now perform the measurement corresponding to the projection P
onto L(e) on the first space. More precisely, we measure the observable
P ⊗ 1. This is a projection itself, projecting onto the subspace {e⊗ v :
v ∈ H}. Thus the probability for the outcome 1 is given by

‖(P ⊗ 1)v‖2 =
1

2
‖e⊗ f − 0⊗ e‖2 =

1

2
.

If that indeed is the outcome of the measurement, then, according to
(C), the updated state will be

w(1) =
w0(1)

‖w0(1)‖
, w0(1) = (P ⊗ 1)v =

1√
2
e⊗ f,

so w(1) = e⊗ f .
Now suppose we immediately follow up with the same measurement,

but on the second subsystem. The corresponding observable is 1⊗ P .
Since Pf = 0, so (1⊗P )w(1) = 0, the outcome of this measurement is
0, with certainty. Similarly, if the first measurement gives the answer
0, then the updated state is the normalized version of (1 − P ⊗ 1)v,
which is w(0) = −f ⊗ e. In this case, the second measurement (of
1⊗ P ) will now produce the answer 1, again with certainty.

This is already quite remarkable since the subsystems could be well
separated spatially. Imagine two electrons, call them a and b, moving
in opposite directions, and wait until the distance between a and b is 10
light years, say. The two-dimensional Hilbert space C2 is appropriate to
model the spin of an electron. In more physical terms, our calculations
can thus be rephrased as follows: physicist A measures the spin of
electron a. The outcome of this measurement is genuinely random, and
the two possible outcomes, which in physical units would actually be
±~/2 (but, being mathematicians, let us call this ±1, for convenience),
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have probability 1/2 each. Let’s say A measures spin +1. Now B
performs the same measurement at electron b, one nanosecond after
A’s measurement (as A,B have agreed on in advance). As we showed,
the outcome of this measurement is no longer random; rather, B will
obtain the opposite of A’s result with certainty, which in our example
is spin −1.

Moreover, the two factor Hilbert spaces play symmetric roles. Thus
we can also let B start and then A follow up immediately with the
same measurement. This time, B’s measurement result is random,
with probability 1/2 assigned to each outcome, while A’s result can
then be predicted with certainty: it will be the opposite of what B
obtained.

A good summary of the whole situation is to say that there seems to
be a conservation law at work: the total spin of both electrons together
is always 0.

All this has already some shock value, especially if viewed against
the background of Einstein’s own theory of relativity, which predicts
that no signal can be transmitted faster than the speed of light. There
seems to be some instantaneous non-local interaction between electrons
a, b, or at least quantum mechanics gives the appearance of some such
effect. Even spatially widely separated subsystems must not be viewed
in isolation. They can only be understood as parts of the full system.

But it gets even better (or worse, depending on your preferences).
We can replace e, f by the rotated vectors e′ = Ue, f ′ = Uf for a
U ∈ SU(2) (a unitary matrix with detU = 1). By Exercise 12.8, the
corresponding state

v =
1√
2

(e′ ⊗ f ′ − f ′ ⊗ e′)

is still the original EPR state from (12.2), for any U ∈ SU(2). So
the whole story can be retold with measurements corresponding to the
projection onto e′ rather than e. Physically, these still correspond to
the electron spin, but in a different direction in physical space R3.
(The full spin, being an internal angular momentum of sorts, is really
a vector and thus has three components; what we measured above was
one fixed component of it.) Now these distinct spin components, as
observables, will not commute. This is clear because commuting self-
adjoint matrices have the same eigenvectors, but the eigenvectors of
the projection P ′ = UPU∗ onto L(e′) are e′, f ′. In particular, it is not
possible to measure the full spin vector in quantum mechanics since
the components don’t commute. See again Theorem 12.2.



156 Christian Remling

So now the situation is as follows: A can decide, spur of the moment,
which of infinitely many non-commuting observables to measure. Im-
mediately following this measurement, B measures a spin component of
electron b. There is now one component (the one that A just measured
for electron a) that will with certainty give a result that A can predict;
the other components will give random outcomes. So A’s measurement
decides which of the possible measurements that B can perform will
have a sharp value and this is the case even though there is no quantum
mechanical state that will give such a sharp value to more than one
spin component.

It appears that one can no longer pretend that electron spins ac-
tually have values that are just read off by the measurement process;
rather, the measurement itself produces these values. Moreover, it
substantially disturbs the whole system, as predicted by (C), including
(quite shockingly) parts that are very far away from the location of the
measurement.

If one wants to avoid such conclusions but still admits that quantum
mechanically computed probabilities make correct predictions, then
one can hope that quantum mechanics is an incomplete theory in about
the same way as statistical mechanics. That is, one postulates that
there are hidden variables (this is the technical term) that we haven’t
discovered yet. In this picture, the electrons really have definite spins,
in all directions and at all times, and I could tell what they are if I
knew the values of those hidden variables. Or, to make things simpler,
we can just say that those spin components are the hidden variables of
this system. The quantum mechanical probabilities work because they
correctly model my ignorance of these variables, in much the same as
assigning probability 1/2 to the event heads for the toss of a fair coin
correctly models my (only practical) inability to give a complete phys-
ical description of the in principle deterministic process of the throw of
the coin.

These assumptions can be tested mathematically. Let’s do this for
the EPR system. I want to focus on three spin components, in three
distinct but not necessarily orthogonal directions in physical space R3.
I’ll describe these by points on the unit sphere, and I use the angles 0 ≤
φ ≤ π, 0 ≤ θ < 2π from the spherical coordinates. I’ll write ω = (φ, θ),
and Se(ω), e = a, b, will denote the spin of electron e in direction
ω. My hidden variables are then the six quantities Se(ω), for three
directions ω = α, β, γ and the two electrons e = a, b. Since the possible
values of each Se(ω) are ±1, the system has 26 states. If the hidden
variable theory plus an ignorance assumption about the true values of
the hidden variables is supposed to produce the quantum mechanical
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probabilities, then we must rule out most of these states (or rather
assign them probability zero): we saw above that two consecutive spin
measurements along the same direction for both electrons always give
opposite results. In other words, Sb(ω) = −Sa(ω) for any direction ω.
We are thus left with only 23 states.

Theorem 12.6 (Bell inequality). Define

p(α, β) = P (Sa(α) = Sb(β) = 1).

Then for any three directions α, β, γ and any probability distribution of
the hidden variables, we have

(12.3) p(α, γ) ≤ p(α, β) + p(β, γ).

More precisely, this is one of many versions of the famous Bell in-
equalities. As we’ll see, it is trivial mathematically; it is of great interest
nevertheless because of its relevance in our current discussion.

Proof. Let (s, t, u) denote the state with Sa(α) = s, Sa(β) = t, Sa(γ) =
u. Then the event from the left-hand side of Bell’s inequality is A =
{(1, 1,−1), (1,−1,−1)} while those on the right-hand side are B =
{(1,−1, 1), (1,−1,−1)}, C = {(1, 1,−1), (−1, 1,−1)}. Obviously, A ⊆
B ∪ C, so P (A) ≤ P (B ∪ C) ≤ P (B) + P (C). �

Now let’s compare this with the situation in quantum mechanics.
We will now need more precise information on what observables ex-
actly correspond to a given spin direction ω in physical space. As we
discussed above, we can use a projection P on C2, and the precise con-
nection is as follows: The direction ω corresponds to the projection
P (ω) onto L(e(ω)), with

(12.4) e(ω) =

(
cos(φ/2)
eiθ sin(φ/2)

)
.

This is not nearly as arbitrary as it might look at first. One intriguing
observation is that this is the stereographic projection S2 → C∞ in mild
disguise: more precisely, (12.4) becomes this map if we view e(ω) as a
point in projective space and then identify it with e−iθ cot(φ/2) ∈ C∞.
More importantly, (12.4) implements the SO(3) rotational symmetry of
the physical space R3 in a natural way. One would expect that a change
of coordinate system in R3 by a rotation matrix R ∈ SO(3) should leave
the physics of the system unchanged. The structure preserving maps
on the state space H = C2 are the unitary maps. There is a natural
group isomorphism ϕ : SU(2)/{−1, 1} → SO(3), and a transformation
of e = (1, 0)t by these unitary maps leads to (12.4).
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Exercise 12.16. Notice that S(ω) = 2P (ω)−1 has eigenvectors e(ω), f(ω)
with corresponding eigenvalues 1,−1. So this is the observable that de-
scribes a measurement according to (O) of what we already called S(ω)
above. Use (12.4) to show that

(12.5) S(ω) =

(
cosφ e−iθ sinφ
eiθ sinφ − cosφ

)
.

We can now be slightly more precise about the isomorphism men-
tioned above: transforming such a spin matrix by a U ∈ SU(2), as
follows, S ′ = US(ω)U∗, is the same as rotating x(ω) ∈ R3 by the
rotation matrix R = ϕ(U) ∈ SO(3) that corresponds to U : we have
S ′ = S(ω′), x(ω′) = Rx(ω).

The point x(ω) ∈ S2 ⊆ R3 described by ω is explicitly given by
x(ω) = (sinφ cos θ, sinφ sin θ, cosφ). Introduce the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Then we can rephrase (12.5) as follows: S(ω) = x1σ1 + x2σ2 + x3σ3,
and here we wrote x(ω) = (x1, x2, x3). Or, in more compact notation,
S(ω) = x(ω) · σ.

Exercise 12.17. Compute the commutators [σj, σk]. Conclude again
that no two orthogonal spin components can be measured simultane-
ously.

Exercise 12.18. Show that P (Sa(α) = 1|Sa(β) = 1) = cos2(ϑ/2), where
ϑ denotes the angle between x(α), x(β): cosϑ = x(α) · x(β).

What I wrote as a conditional probability really refers to the prob-
ability of measuring Sa(α) = 1, immediately following a measurement
of Sa(β) that gave the result 1. So you want to work out the quantum
mechanical probability P (S(α) = 1) for a system in state e(β) ∈ C2.

I now want to discuss Bell’s inequality (12.3) quantum mechanically.
First of all, observe that these probabilities also make sense in this
setting because Sa(α), Sb(β) are simultaneously measurable. As we
discussed above, we can use the operator P (α) ⊗ 1 (or S(α) ⊗ 1) to
measure Sa(α) and then similarly 1⊗ P (β) to measure Sb(β). Clearly
these two operators commute. In fact, we don’t really need the gen-
eral theory (Theorem 12.2) here. Since we are only interested in the
outcome Sa(α) = Sb(β) = 1, we can also just observe that the ONB
v⊗w, v = e(α), f(α), w = e(β), f(β) of H⊗H consists of simultaneous
eigenvectors of P (α)⊗ 1 and 1⊗ P (β), and what we are interested in,
namely that both operators have eigenvalue 1, happens precisely on
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the eigenvector e(α)⊗ e(β). This means that we can just measure the
observable P (α)⊗ P (β), which is the projection onto this vector.

Thus, if our system is in state v ∈ H ⊗H, then

p(α, β) = ‖(P (α)⊗ P (β))v‖2.

I mentioned (but did not carefully establish) above that the spin ob-
servables S(ω) reflect the rotational symmetry of R3 that is expressed
by the action of SO(3). We can therefore hope that it is permitted
to simplify the calculation by assuming that α = (0, 0), the z di-
rection in R3. So e(α) = e = (1, 0)t. If now v is the EPR state
(12.2), then (P (α)⊗P (β))v = (1/

√
2)e⊗P (β)f , so if β = (φ, θ), then

p(α, β) = (1/2) sin2(φ/2). Since φ is the angle between α and β, it
seems reasonable to expect the following result in the general case.

Proposition 12.7. If the system is in the EPR state (12.2), then

(12.6) p(α, β) =
1

2
sin2 ϑ

2
.

Here ϑ again denotes the angle in R3 between the directions α, β.

Exercise 12.19. Establish (12.6) by an honest calculation, without mak-
ing the simplifying assumption that α = (0, 0).

For the comparison of this result with Bell’s inequality, let’s choose
all three directions α, β, γ in the xy plane. Let’s take α as the direction
of the positive x axis, and let’s then go counterclockwise to successively
obtain β, γ. More formally, we can say that α = (π/2, 0), β = (π/2, 2θ),
γ = (π/2, 2(θ+ δ)). Using (12.6), we can then rewrite Bell’s inequality
as

sin2(θ + δ) ≤ sin2 θ + sin2 δ.

This is false! It fails for all small θ, δ > 0, or we could take δ = θ,
and then the inequality says that sin2 2θ = 4 sin2 θ cos2 θ ≤ 2 sin2 θ or
cos2 θ ≤ 1/2, which is obviously not always true. A hidden variable
theory of the type envisaged makes predictions that are in conflict
with quantum mechanics. This leads to the unexpected possibility of
subjecting such assumptions to experimental tests.

Exercise 12.20. Show that the EPR state is the only state that obeys
the total spin in any direction equals zero conservation law that was
mentioned above. In more formal language, show that there is a unique
state in H such that a measurement of S(ω) ⊗ 1 + 1 ⊗ S(ω) will give
the result 0 with certainty, for any direction ω, and that this state is
the EPR state.


