
8. Commutative Banach algebras

In this chapter, we analyze commutative Banach algebras in greater
detail. So we always assume that xy = yx for all x, y ∈ A here.

Definition 8.1. Let A be a (commutative) Banach algebra. A subset
I ⊆ A is called an ideal if I is a (linear) subspace and xy ∈ I whenever
x ∈ I, y ∈ A. An ideal I 6= A is called maximal if the only ideals J ⊇ I
are J = I and J = A.

Ideals are important for several reasons. First of all, we can take
quotients with respect to ideals, and we again obtain a Banach algebra.

Theorem 8.2. Let I 6= A be a closed ideal. Then A/I is a Banach
algebra.

This needs some clarification. The quotient A/I consists of the equi-
valence classes (x) = x+I = {x+y : y ∈ I}, and we define the algebraic
operations on A/I by working with representatives; the fact that I is
an ideal makes sure that everything is well defined (independent of the
choice of representative). Since I is in particular a closed subspace, we
also have the quotient norm available, and we know from Theorem 2.18
that A/I is a Banach space with this norm. Recall that this norm was
defined as

‖(x)‖ = inf
y∈I
‖x+ y‖.

Proof. From the above remarks, we already know that A/I is a Banach
space and a commutative algebra with unit (e). We need to discuss
conditions (3), (4) from Definition 7.1. To prove (4), let x1, x2 ∈ A,
and let ε > 0. We can then find y1, y2 ∈ I with ‖xj + yj‖ < ‖(xj)‖+ ε.
It follows that

‖(x1)(x2)‖ = ‖(x1x2)‖ ≤ ‖[x1 + y1][x2 + y2]‖
≤ ‖x1 + y1‖ ‖x2 + y2‖ ≤ (‖(x1)‖+ ε) (‖(x2)‖+ ε) .

Since ε > 0 is arbitrary here, this shows that ‖(x1)(x2)‖ ≤ ‖(x1)‖ ‖(x2)‖,
as required.

Next, notice that ‖(e)‖ ≤ ‖e‖ = 1. On the other hand, for all x ∈ A,
we have ‖(x)‖ = ‖(x)(e)‖ ≤ ‖(x)‖ ‖(e)‖, so ‖(e)‖ ≥ 1. �

Theorem 8.3. (a) If I 6= A is an ideal, then I ∩G(A) = ∅.
(b) The closure of an ideal is an ideal.
(c) Every maximal ideal is closed.
(d) Every ideal I 6= A is contained in some maximal ideal J ⊇ I.

Proof. (a) If x ∈ I ∩ G(A), then y = x(x−1y) ∈ I for all y ∈ A, so
I = A.
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(b) The closure of a subspace is a subspace, and if x ∈ I, y ∈ A,
then there are xn ∈ I, xn → x. Thus xny ∈ I and xny → xy by the
continuity of the multiplication, so xy ∈ I, as required.

(c) Let I be a maximal ideal. Then, by (b), I is another ideal that
contains I. Since I ∩G(A) = ∅, by (a), and since G(A) is open, I still
doesn’t intersect G(A). In particular, I 6= A, so I = I because I was
maximal.

(d) This follows in the usual way from Zorn’s Lemma. Also as usual,
we don’t want to discuss the details of this argument here. �

Definition 8.4. The spectrum or maximal ideal space ∆ of a commu-
tative Banach algebra A is defined as

∆ = {φ : A→ C : φ complex homomorphism}.
The term maximal ideal space is justified by parts (a) and (b) of

the following result, which set up a one-to-one correspondence between
complex homomorphisms and maximal ideals.

Theorem 8.5. (a) If I is a maximal ideal, then there exists a unique
φ ∈ ∆ with N(φ) = I.
(b) Conversely, if φ ∈ ∆, then N(φ) is a maximal ideal.
(c) x ∈ G(A) ⇐⇒ φ(x) 6= 0 for all φ ∈ ∆.
(d) x ∈ G(A) ⇐⇒ x does not belong to any ideal I 6= A.
(e) z ∈ σ(x) ⇐⇒ φ(x) = z for some φ ∈ ∆.

Proof. (a) A maximal ideal is closed by Theorem 8.3(c), so the quotient
A/I is a Banach algebra by Theorem 8.2. Let x ∈ A, x /∈ I, and put
J = {ax + y : a ∈ A, y ∈ I}. It’s easy to check that J is an ideal,
and J ⊇ I, because we can take a = 0. Moreover, x = ex+ 0 ∈ J , but
x /∈ I, so, since I is maximal, we must have J = A. In particular, e ∈ J ,
so there are a ∈ A, y ∈ I such that ax + y = e. Thus (a)(x) = (e)
in A/I. Since x ∈ A was an arbitrary vector with x /∈ I, we have
shown that every (x) ∈ A/I, (x) 6= 0 is invertible. By the Gelfand-
Mazur Theorem, A/I ∼= C. More precisely, there exists an isometric
homomorphism f : A/I → C. The map A → A/I, x 7→ (x) also is
a homomorphism (the algebraic structure on A/I is defined in such
a way that this would be true), so the composition φ(x) := f((x)) is
another homomorphism: φ ∈ ∆. Since f is injective, its kernel consists
of exactly those x ∈ A that are sent to zero by the first homomorphism,
that is, N(φ) = I.

It remains to establish uniqueness. If N(φ) = N(ψ), then x−ψ(x)e ∈
N(φ) for all x ∈ A, so 0 = φ(x)− ψ(x).

(b) Homomorphisms are continuous, so N(φ) is a closed linear sub-
space. If x ∈ N(φ), y ∈ A, then φ(xy) = φ(x)φ(y) = 0, so xy ∈ N(φ)
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also, and N(φ) is an ideal. Since φ : A → C is a linear map to the
one-dimensional space C, we have codim N(φ) = 1, so N(φ) is already
maximal as a subspace (the only strictly bigger subspace is A).

(c) =⇒: This was proved earlier, in Proposition 7.3.
⇐=: Suppose that x /∈ G(A). Then I0 = {ax : a ∈ A} is an ideal with

I0 6= A (because e /∈ I0). By Theorem 8.3(d), there exists a maximal
ideal I ⊇ I0. By part (a), there is a φ ∈ ∆ with N(φ) = I. In particular,
φ(x) = 0.

(d) This follows immediately from what we have shown already, plus
Theorem 8.3(d) again.

(e) We have z ∈ σ(x) if and only if x− ze /∈ G(A), and by part (c),
this holds if and only if φ(x− ze) = φ(x)− z = 0 for some φ ∈ ∆. �

In particular, this says that a commutative Banach algebra always
admits complex homomorphisms, that is, we always have ∆ 6= ∅. In-
deed, notice that Theorem 8.3(d) with I = {0} shows that there are
maximal ideals, so we obtain the claim from Theorem 8.5(a). Alterna-
tively, we could use Theorem 8.5(e) together with the fact that spectra
are always non-empty (Theorem 7.8(a)). The situation can be quite
different on non-commutative algebras:

Exercise 8.1. Consider the algebra C2×2 = B(C2) of 2×2-matrices (this
becomes a Banach algebra if we fix an arbitrary norm on C2 and use
the corresponding operator norm; however, as this is a purely algebraic
exercise, the norm plays no role here). Show that there are no complex
homomorphisms φ 6≡ 0 on this algebra.

Here is a rather spectacular application of the ideas developed in
Theorem 8.5:

Example 8.1. Consider the Banach algebra of absolutely convergent
trigonometric series:

A =

{
f(eix) =

∞∑
n=−∞

ane
inx : a ∈ `1(Z)

}
We have written f(eix) rather than f(x) because it will be convenient
to think of f as a function on the unit circle S = {z ∈ C : |z| = 1} =
{eix : x ∈ R}. Notice that the series converges uniformly, so A ⊆ C(S).

Exercise 8.2. Show that if f ≡ 0, then an = 0 for all n ∈ Z.
Suggestion: Recall that {einx} is an ONB of L2((−π, π), dx/(2π)). Use
this fact to derive a formula that recovers the an’s from f .

The algebraic operations on A are defined pointwise; for example,
(f + g)(z) := f(z) + g(z). It is not entirely clear that the product of
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two functions from A will be in A again, but this issue will be addressed
in a moment.

Consider the map ϕ : `1 → A, ϕ(a) =
∑
ane

inx. It is clear that ϕ
is linear and surjective. Moreover, Exercise 8.2 makes sure that ϕ is
injective. Therefore, we can define a norm on A by ‖ϕ(a)‖ = ‖a‖1.
This makes A isometrically isomorphic to `1(Z) as a Banach space. In
fact, these spaces are isometrically isomorphic as Banach algebras, if
we again endow `1 with the convolution product, as in Example 7.5:

(a ∗ b)n =
∞∑

j=−∞

ajbn−j

Exercise 8.3. Show that ϕ is a homomorphism. Since we already know
that ϕ is linear, you must show that ϕ(a ∗ b) = ϕ(a)ϕ(b).

In particular, this does confirm that fg ∈ A if f, g ∈ A (the se-
quence corresponding to fg is a ∗ b if a and b correspond to f and g,
respectively). Since `1(Z) is a Banach algebra, A is a Banach algebra
also, or perhaps it would be more appropriate to say that A is another
realization of the same Banach algebra.

Proposition 8.6. Every φ ∈ ∆ on this Banach algebra is an evalua-
tion: There exists a z ∈ S such that φ(f) = f(z). Conversely, this
formula defines a complex homomorphism for every z = eit ∈ S.

Exercise 8.4. Prove Proposition 8.6, by using the following strategy:
Let φ ∈ ∆. What can you say about |φ(eix)| and |φ(e−ix)|? Conclude
that |φ(eix)| = 1, say φ(eix) = eit. Now use the continuity of φ to prove
that for an arbitrary f ∈ A, we have φ(f) = f(eit).

The converse is much easier, of course.

This material leads to an amazingly elegant proof of the following
result:

Theorem 8.7 (Wiener). Consider an absolutely convergent trigonome-
tric series: f(eix) =

∑∞
n=−∞ ane

inx, a ∈ `1(Z). Suppose that f(z) 6= 0
for all z ∈ S. Then 1/f also has an absolutely convergent trigonometric
expansion: There exists b ∈ `1(Z) such that 1/f(eix) =

∑∞
n=−∞ bne

inx.

This result is interesting because it is usually very hard to tell whe-
ther the expansion coefficients (“Fourier coefficients”) of a given func-
tion lie in `1.

Proof. By Proposition 8.6, the hypothesis says that φ(f) 6= 0 for all
φ ∈ ∆. By Theorem 8.5(c), f ∈ G(A). Clearly, the inverse is given by
the function 1/f . �
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We now come to the most important topic of this chapter. With each
x ∈ A, we can associate a function x̂ : ∆ → C, x̂(φ) = φ(x). We have
encountered this type of construction before (see Proposition 4.3); it
will work especially well in this new context. We call x̂ the Gelfand
transform of x. The Gelfand topology on ∆ ⊆ A∗ is defined as the
relative topology that is induced by the weak-∗ topology on A∗. By
Exercise 4.10, this is also the weak topology that is generated by the

maps {x̂ : A→ C : x ∈ A}. We also write Â for this collection of maps.
Here are the fundamental properties of the Gelfand transform.

Theorem 8.8. (a) ∆ with the Gelfand topology is a compact Hausdorff
space.

(b) Â ⊆ C(∆) and the Gelfand transform ̂ : A → C(∆) is a unital
homomorphism between Banach algebras.
(c) σ(x) = x̂(∆) = {x̂(φ) : φ ∈ ∆}; in particular, ‖x̂‖∞ = r(x) ≤ ‖x‖.

Note that we use the term Gelfand transform for the function x̂ ∈
C(∆), but also for the homomorphism ̂ : A → C(∆) that sends x
to x̂. Recall from Proposition 7.9 that in the Banach algebra C(∆),
σ(x̂) = x̂(∆), so part (c) of the Theorem really says that the Gelfand
transform preserves spectra: σ(x̂) = σ(x). It also preserves the algebraic
structure (by part (b)) and is continuous (by part (c) again).

Proof. (a) This is very similar to the proof of the Banach-Alaoglu Theo-
rem, so we will just provide a sketch. From that result, we know that
∆ ⊆ B1(0) = {F ∈ A∗ : ‖F‖ ≤ 1} is a subset of the compact Hausdorff
space B1(0) (equipped with the weak-∗ topology), and so it again suf-
fices to show that ∆ is closed in this space. A procedure very similar to
the one used in the original proof works here, too: if ψ ∈ B1(0)\∆, then
either ψ ≡ 0 or there exist x, y ∈ A with ε := |ψ(xy)− ψ(x)ψ(y)| > 0.
Let us indicate how to finish the proof in the second case: Let

U =
{
φ ∈ B1(0) : |φ(xy)− ψ(xy)| < ε

3
, |ψ(x)| |φ(y)− ψ(y)| < ε

3
,

|φ(y)| < |ψ(y)|+ 1, (|ψ(y)|+ 1) |φ(x)− ψ(x)| < ε

3

}
.

Then U is an open set in the weak-∗ topology that contains ψ. Moreo-
ver, if φ ∈ U , then

|φ(xy)− φ(x)φ(y)| ≥ |ψ(xy)− ψ(x)ψ(y)| − |φ(xy)− ψ(xy)|−

|φ(y)| |φ(x)− ψ(x)| − |ψ(x)| |φ(y)− ψ(y)| > ε− ε

3
− ε

3
− ε

3
= 0,

so φ /∈ ∆ either and indeed ∆∩U = ∅. We have shown that B1(0) \∆
is open, as claimed.
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(b) It is clear that Â ⊆ C(∆), from the second description of the

Gelfand topology as the weakest topology that makes all maps x̂ ∈ Â
continuous. To prove that ̂: A → C(∆) is a unital homomorphism
of algebras, we compute

(xy)̂ (φ) = φ(xy) = φ(x)φ(y) = x̂(φ)ŷ(φ) = (x̂ŷ) (φ);

in other words, (xy)̂ = x̂ŷ. Similar arguments show that ̂ is also
linear, and of course ê(φ) = φ(e) = 1, and ê ≡ 1 is the unit of C(∆).

(c) This is an immediate consequence of Theorem 8.5(e). �

Let us summarize this one more time and also explore the limitations
of the Gelfand transform. The maximal ideal space ∆ with the Gelfand
topology is a compact Hausdorff space, and the Gelfand transform
provides a map from the original (commutative) Banach algebra A to
C(∆) that

• preserves the algebraic structure: it is a unital homomorphism;
• preserves spectra: σ(x̂) = σ(x);
• is continuous: ‖x̂‖ ≤ ‖x‖.

However, in general, it

• does not preserve the norm: it need not be isometric; in fact, it
can have a non-trivial null space;

• need not be surjective; worse still, its range Â need not be a
closed subspace of C(∆).

Another remarkable feature of the Gelfand transform is the fact that it
is a purely algebraic construction: it is independent of the norm on A.
Indeed, all we need to do is construct the complex homomorphisms on
A and then evaluate these on x to find x̂. We also let the x̂ generate a
weak topology on ∆, but again, if formulated this way, this procedure
does not involve the norm on A.

We are using the fact that there is some norm on A, though, for
example to make sure that ∆ is a compact space in the Gelfand topo-
logy. However, the Gelfand transform does not change if we switch to
a different norm on A (in many situations, there will be only one norm
that makes A a Banach algebra).

The following examples illustrate the last two properties from the
above list.

Example 8.2. Let A be the set of matrices of the form T =
(
a b
0 a

)
.

This is a commutative Banach algebra if we use matrix multiplication
and an arbitrary operator norm on A; in fact, A is a (commutative)
subalgebra of C2×2 = B(C2).
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Exercise 8.5. Find all complex homomorphisms. Then show that there

are T ∈ A, T 6= 0 with φ(T ) = 0 for all φ ∈ ∆. In other words, T̂ = 0,
so the Gelfand transform on A is not injective.
Remark: To get this started, you could use the fact that homomor-
phisms are in particular linear functionals, and we know what these
are on a finite-dimensional vector space.

Example 8.3. We consider again the Banach algebra of absolutely con-
vergent trigonometric series from Example 8.1. We saw in Proposition
8.6 that as a set, ∆ may be identified with the unit circle S = {z : |z| =
1}. To extract this identification from Proposition 8.6, notice also that
if z, z′ ∈ S, z 6= z′, then there will be an f ∈ A with f(z) 6= f(z′).
Actually, there will be a trigonometric polynomial (that is, an = 0 for
all large |n|) with this property. So if z 6= z′, then the corresponding
homomorphisms are also distinct.

With this identification of ∆ with S, the Gelfand transform f̂ of an
f ∈ A is the function that sends z ∈ S to φz(f) = f(z); in other words,

f̂ is just f itself. The Gelfand topology on S is the weakest topology

that makes all f̂ continuous. Clearly, these functions are continuous if
we use the usual topology on S. Moreover, S with both topologies is
a compact Hausdorff space. Now the following simple but important
lemma shows that the Gelfand topology is just the usual topology on
S.

Lemma 8.9. Let T1 ⊆ T2 be topologies on a common space X. If X is
a compact Hausdorff space with respect to both topologies, then T1 = T2.

Proof. We use the fact that on a compact Hausdorff space, a subset
is compact if and only if it is closed. Now let U ∈ T2. Then U c is
closed in T2, thus compact. But then U c is also compact with respect
to T1, because T1 is a weaker topology (there are fewer open covers to
consider). Thus U c is T1-closed, so U ∈ T1. �

Â = A is dense in C(S) = C(∆) because, by (a suitable version
of) the Weierstraß approximation theorem, every continuous function
on S can be uniformly (that is, with respect to ‖ · ‖∞) approximated
by trigonometric polynomials, and these manifestly are in A. However,
A 6= C(S). This is a well known fact from the theory of Fourier series.
The following Exercise outlines an argument of a functional analytic
flavor.

Exercise 8.6. Suppose that we had Â = C(S). First of all, use Corollary
3.3 to show that then

(8.1) ‖a‖1 ≤ C‖f‖∞
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for all a ∈ `1 and f(x) =
∑
ane

inx, for some C > 0.
However, (8.1) can be refuted by considering approximations fN to

the (discontinuous!) function f(eix) = χ(0,π)(x). More precisely, proceed
as follows: Notice that if f =

∑
ane

inx with a ∈ `1, then the series also
converges in L2(−π, π). Recall that {einx} is an ONS (in fact, an ONB)
in L2((−π, π), dx/(2π)), so it follows that

an = 〈einx, f〉 =
1

2π

∫ π

−π
f(eix)e−inx dx

for all f ∈ C(S). Use this to approximately compute the a
(N)
n for func-

tions fN ∈ C(S) that satisfy 0 ≤ fN ≤ 1, fN(eix) = 1 for 0 < x < π
and fN(eix) = 0 for −π + 1/N < x < −1/N . Show that ‖a(N)‖1 can
be made arbitrarily large by taking N large enough. Since ‖fN‖∞ = 1,
this contradicts (8.1).

Exercise 8.7. (a) Show that c with pointwise multiplication is a Banach
algebra.
(b) Show that `1 ⊆ c is an ideal.
(c) Show that there is a unique maximal ideal I ⊇ `1. Find I and also
the unique φ ∈ ∆ with N(φ) = I.

Exercise 8.8. Consider the Banach algebra `∞. Show that

In = {x ∈ `∞ : xn = 0}
is a maximal ideal for every n ∈ N. Find the corresponding homomor-
phisms φn ∈ ∆ with N(φn) = In. Finally, show that there must be
additional complex homomorphisms (Suggestion: Find another ideal J
that is not contained in any In.)

Exercise 8.9. Let A be a commutative Banach algebra. Show that the
spectral radius satisfies

r(xy) ≤ r(x)r(y), r(x+ y) ≤ r(x) + r(y)

for all x, y ∈ A.

Exercise 8.10. Show that the inequalities from Exercise 8.9 can fail on
non-commutative Banach algebras. More specifically, show that they
fail on A = C2×2.
Remark: Recall that on this Banach algebra, the spectrum of a matrix
is the set of its eigenvalues, so r(T ) is the absolute value of the biggest
eigenvalue of T .


