
9. C∗-algebras

We are especially interested in the Banach algebra B(H), and here
we have an additional structure that we have not taken into account so
far: we can form adjoints T ∗ of operators T ∈ B(H). We now discuss
such an operation in the abstract setting.

Unless stated otherwise, the algebras in this chapter are not assumed
to be commutative.

Definition 9.1. Let A be a Banach algebra. A map ∗ : A → A is
called an involution if it has the following properties:

(x+ y)∗ = x∗ + y∗, (cx)∗ = cx∗, (xy)∗ = y∗x∗, x∗∗ = x

for all x, y ∈ A, c ∈ C.
We call x ∈ A self-adjoint (normal) if x = x∗ (xx∗ = x∗x).

Example 9.1. Parts (a)–(d) of Theorem 6.1 show that the motivating
example “adjoint operator on B(H)” indeed is an involution on B(H)
in the sense of Definition 9.1.

Example 9.2. f ∗(x) := f(x) defines an involution on C(K) and also on
L∞(X,µ). Similarly, (x∗)n := xn defines an involution on `∞.

Theorem 9.2. Let A be a Banach algebra with involution, and let
x ∈ A. Then:
(a) x+ x∗, −i(x− x∗), xx∗ are self-adjoint;
(b) x has a unique representation of the form x = u + iv with u, v
self-adjoint;
(c) e = e∗;
(d) If x ∈ G(A), then also x∗ ∈ G(A) and (x∗)−1 = (x−1)

∗
;

(e) z ∈ σ(x) ⇐⇒ z ∈ σ(x∗).

Proof. (a) can be checked by direct calculation; for example, (x+x∗)∗ =
x∗ + x∗∗ = x∗ + x.

(b) We can write

x =
1

2
(x+ x∗) + i

−i
2

(x− x∗),

and by part (a), this is a representation of the desired form. To prove
uniqueness, assume that x = u+iv = u′+iv′, with self-adjoint elements
u, u′, v, v′. Then both w := u− u′ and iw = i(u− u′) = v − v′ are self-
adjoint, too, so iw = (iw)∗ = −iw and hence w = 0.

(c) e∗ = ee∗, and this is self-adjoint by part (a). So e∗ = e∗∗ = e, and
thus e itself is self-adjoint, too.
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(d) Let x ∈ G(A). Then we can take adjoints in xx−1 = x−1x = e;
by part (c), e∗ = e, so we obtain(

x−1
)∗
x∗ = x∗

(
x−1
)∗

= e,

and this indeed says that x∗ ∈ G(A) and (x∗)−1 = (x−1)
∗
.

(e) If z /∈ σ(x), then x− ze ∈ G(A), so (x− ze)∗ = x∗ − ze ∈ G(A)
by part (d), that is, z /∈ σ(x∗). We have established “⇐=”, and the
converse is the same statement, applied to x∗ in place of x. �

The involution on B(H) has an additional property that does not
follow from the conditions of Definition 9.1: we have ‖TT ∗‖ = ‖T ∗T‖ =
‖T‖2; see Theorem 6.1(f). This innocuous looking identity is so power-
ful and has so many interesting consequences that it deserves a special
name:

Definition 9.3. Let A be a Banach algebra with involution. A is called
a C∗-algebra if ‖xx∗‖ = ‖x‖2 for all x ∈ A (the C∗-property).

From this, we automatically get analogs of the other properties from
Theorem 6.1(f) also; in other words, these could have been included in
the definition.

Proposition 9.4. Let A be a C∗-algebra. Then ‖x‖ = ‖x∗‖ and ‖x∗x‖ =
‖x‖2 for all x ∈ A.

Exercise 9.1. Prove Proposition 9.4.

Example 9.3. B(H), C(K), L∞(X,µ), and `∞ with the involutions
introduced above are C∗-algebras. For B(H) (which again was the mo-
tivating example) this of course follows from Theorem 6.1(f), and on
the other algebras, we obtain the C∗-property from an easy direct ar-
gument. For example, if f ∈ C(K), then

‖ff ∗‖ = max
x∈K
|f(x)f(x)| = max

x∈K
|f(x)|2 =

(
max
x∈K
|f(x)|

)2

= ‖f‖2.

Example 9.4. This really is a non-example. Consider again the Banach
algebra

A =

{
f(eix) =

∞∑
n=−∞

ane
inx : a ∈ `1(Z)

}
of absolutely convergent trigonometric series. Recall that we multiply
functions from A pointwise (equivalently, we take the convolution pro-
duct of the corresponding sequences from `1), and we use the norm
‖f‖ = ‖a‖1.
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It is not very difficult to verify that f ∗(z) := f(z) again defines an
involution on A. The algebraic properties from Definition 9.1 are in
fact obvious, and then we just need to make sure that f ∗ ∈ A again,
but this is easy: if f =

∑
ane

inx, then f ∗ =
∑
bne

inx, with bn = a−n
(or we can rephrase and say that this last formula defines an involution
on `1(Z)).

Exercise 9.2. Show that this involution does not have the C∗-property,
that is, A is not a C∗-algebra.

We can now formulate and prove the central result of this chapter.

Theorem 9.5 (Gelfand-Naimark). Let A be a commutative C∗-algebra.
Then the Gelfand transform ̂ : A → C(∆) is an isometric ∗-iso-
morphism between the C∗-algebras A and C(∆).

We call a map ϕ : A → B between C∗-algebras an isometric ∗-
isomorphism if ϕ is bijective, a homomorphism, an isometry, and pre-
serves the involution: ϕ(x∗) = (ϕ(x))∗. In other words, such a map
preserves the complete C∗-algebra structure (set, algebraic structure,
norm, involution).

It now becomes clear that the Gelfand-Naimark Theorem is a very
powerful structural result; it says that C(K) provides a universal model
for arbitrary commutative C∗-algebras. Every commutative C∗-algebra
can be identified with C(K); in fact, we can be more specific: K can
be taken to be the maximal ideal space ∆ with the Gelfand topology,
and then the Gelfand transform provides an identification map.

Note also that the Gelfand transform on C∗-algebras has much better
properties than on general Banach algebras; see again our discussion
at the end of Chapter 8.

For the proof, we will need the following result.

Theorem 9.6 (Stone-Weierstraß). Let K be a compact Hausdorff space,
and suppose that A ⊆ C(K) has the following properties:
(a) A is a subalgebra (possibly without unit);
(b) If f ∈ A, then f ∈ A;
(c) A separates the points of K: if x, y ∈ K, x 6= y, then there is an
f ∈ A with f(x) 6= f(y);
(d) For every x ∈ K, there exists an f ∈ A with f(x) 6= 0.

Then A = C(K).

This closure is taken with respect to the norm topology. So we could
slightly rephrase the statement as follows: if g ∈ C(K) and ε > 0 are
given, then we can find an f ∈ A such that ‖f − g‖∞ < ε.
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This result is a far-reaching generalization of the classical Weierstraß
approximation theorem, which says that every continuous function on a
compact interval [a, b] can be uniformly approximated by polynomials.
To obtain this as a special case of Theorem 9.6, just put K = [a, b] and
check that

A =

{
p(x) =

N∑
n=0

anx
n : an ∈ C, N ∈ N0

}
satisfies hypotheses (a)–(d). We don’t want to prove the Stone-Weierstraß
Theorem here; a proof can be found in most topology books. Or see
Folland, Real Analysis, Theorem 4.51. We are now ready for the

Proof of the Gelfand-Naimark Theorem. We first claim that φ(u) ∈ R
for all φ ∈ ∆ if u ∈ A is self-adjoint. To see this, write φ(u) = c + id,
with c, d ∈ R, and put x = u+ ite, with t ∈ R. Then φ(x) = c+ i(d+ t)
and xx∗ = u2 + t2e, so

c2 + (d+ t)2 = |φ(x)|2 ≤ ‖x‖2 = ‖xx∗‖ ≤ ‖u2‖+ t2.

It follows that 2dt ≤ C, with C := ‖u2‖ − d2 − c2, and this holds for
arbitrary t ∈ R. Clearly, this is only possible if d = 0, so φ(u) = c ∈ R,
as claimed.

It now follows that the Gelfand transform preserves the involution:
for x ∈ A we can write x = u+ iv with u, v self-adjoint, and then

φ(x∗) = φ(u− iv) = φ(u)− iφ(v) = φ(u) + iφ(v) = φ(x).

Recall that the involution on C(∆) was defined as the pointwise com-
plex conjugate, so, since φ ∈ ∆ is arbitrary here, this calculation indeed
says that x̂∗ = x̂ = (x̂)∗.

We also learn from this that Â ⊆ C(∆) satisfies assumption (b)
from the Stone-Weierstraß Theorem. It is straightforward to establish
the other conditions, too; for example, to verify (c), just note that if
φ, ψ ∈ ∆, φ 6= ψ, then φ(x) 6= ψ(x) for some x ∈ A, so x̂(φ) 6= x̂(ψ).

So Theorem 9.6 shows that Â = C(∆).
As the next step, we want to show that the Gelfand transform is

isometric. Let x ∈ A, and put y = xx∗. Then y is self-adjoint, and
therefore the C∗-property gives ‖y2‖ = ‖y‖2, ‖y4‖ = ‖y2y2‖ = ‖y2‖2 =
‖y‖4, and so forth. The general formula is ‖yn‖ = ‖y‖n, if n = 2k is
a power of 2. Now we can compute the spectral radius by using the
formula from Theorem 7.8(b) along this subsequence. It follows that
r(y) = limn→∞ ‖yn‖1/n = ‖y‖. Since ‖ŷ‖ = r(y) by Theorem 8.8(c),
this shows that ‖ŷ‖ = ‖y‖ for y of the form y = xx∗. We can now use
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the C∗-property on both algebras C(∆) and A to conclude that also
‖x̂‖ = ‖x‖ for arbitrary x ∈ A.

So the Gelfand transform is an isometry, and this implies that this
map is injective (obvious, because only the zero vector can get mapped

to zero) and its range Â is a closed subspace of C(∆) (not completely
obvious, but we have encountered this argument before; see the proof

of Proposition 4.3). We proved earlier that Â = C(∆), so it now follows

that Â = C(∆). We have established all the properties of the Gelfand
transform that were stated in Theorem 9.5. �

We now discuss in detail the Gelfand transform for the three com-
mutative C∗-algebras C(K), c, L∞(0, 1).

Example 9.5. Let K be a compact Hausdorff space and consider the
C∗-algebra A = C(K). We know from the Gelfand-Naimark Theorem
that C(K) ∼= C(∆), but we would like to explicitly identify ∆ and the
Gelfand transforms of functions f ∈ C(K).

We will need the following tool:

Lemma 9.7 (Urysohn). Let K be a compact Hausdorff space. If A,B
are disjoint closed subsets of K, then there exists f ∈ C(K) with 0 ≤
f ≤ 1, f = 0 on A and f = 1 on B.

See, for example, Folland, Real Analysis, Lemma 4.15 (plus Propo-
sition 4.25) for a proof.

It is clear that the point evaluations φx(f) = f(x) are complex homo-
morphisms for all x ∈ K. So we obtain a map Ψ : K → ∆, Ψ(x) = φx.
Urysohn’s Lemma shows that Ψ is injective: if x, y ∈ K, x 6= y, then
there exists f ∈ C(K) with f(x) 6= f(y) (just take A = {x}, B = {y}
in Lemma 9.7). So φx(f) 6= φy(f) and thus φx 6= φy.

I now claim that Ψ is also surjective. If this were wrong, then there
would be a φ ∈ ∆, φ /∈ {φx : x ∈ K}. Let I = N(φ), Ix = N(φx) =
{f ∈ C(K) : f(x) = 0} be the corresponding maximal ideals. By
assumption and (the uniqueness part of) Theorem 8.5(a), I 6= Ix for
all x ∈ K. Since I is also maximal, this implies that I is not contained
in any Ix. So for every x ∈ K, there exists an fx ∈ I with fx(x) 6= 0.
Since the fx are continuous, we can find neighborhoods Ux of x with
fx(y) 6= 0 for all y ∈ Ux. By compactness, K is covered by finitely many

of these, say K =
⋃N
j=1 Uxj . Now let g =

∑N
j=1 fxjfxj . Then g ∈ I and

g > 0 on K (because the jth summand is positive on Uxj), so g is
invertible in C(K) (with inverse 1/g). This is a contradiction because
the ideal I 6= C(K) cannot contain invertible elements; see Theorem
8.3(a).
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We conclude that ∆ = {φx : x ∈ K}. This identifies ∆ as a set with

K. Moreover, f̂(φx) = φx(f) = f(x), so if we use this identification,
then the Gelfand transform of a function f ∈ C(K) is just f itself.

We now want to show that the identification map Ψ is a homeomor-
phism, so in fact ∆ (with the Gelfand topology) can be identified with
K as a topological space. We introduce some notation: write TG for the
Gelfand topology on ∆, and let TK be the given topology on K, but
moved over to ∆. More precisely, TK = {Ψ(U) : U ⊆ K open }. Since
Ψ is a bijection, it preserves the set operations and thus TK indeed is
a topology.

Notice that every f̂ : ∆→ C is continuous if we use the topology TK
on ∆. This is almost a tautology because TK is essentially the original

topology and f̂ is essentially f , and these were continuous functions to

start with. For a more formal verification, notice that f̂ = f ◦Ψ−1, so

if V ⊆ C is open, then f̂−1(V ) = Ψ(f−1(V )), which is in TK .

So TK is a topology that makes all f̂ continuous. This implies that
TG ⊆ TK , because TG can be defined as the weakest such topology.
Moreover, ∆ is a compact Hausdorff space with respect to both topo-
logies. This follows from Theorem 8.8(a) (for TG) and the fact that by
construction of TK , (∆, TK) is homeomorphic to K. Lemma 8.9 now
shows that TG = TK . We summarize:

Theorem 9.8. Let K be a compact Hausdorff space. Then the maximal
ideal space ∆ of the C∗-algebra C(K) is homeomorphic to K. A ho-
meomorphism between these spaces is given by Ψ : K → ∆, Ψ(x) = φx,
φx(f) = f(x). Moreover, if ∆ is identified in this way with K, then the
Gelfand transform of a function f ∈ C(K) is just f itself.

At least with hindsight, this does not come as a big surprise. The
Gelfand transform gives a representation of a commutative C∗-algebra
A as continuous functions on a compact Hausdorff space (namely, ∆),
but if the algebra is already given in this form, there is no work left
to be done, and indeed the Gelfand transform does not do anything
(except change names) on C(K). From that point of view, Theorem
9.8 seems somewhat disappointing, but we can in fact draw interesting
conclusions:

Theorem 9.9. Let K and L be compact Hausdorff spaces. Then K
is homeomorphic to L if and only if the algebras C(K) and C(L) are
(algebraically!) isomorphic.

In this case, C(K) and C(L) are in fact isometrically ∗-isomorphic
as C∗-algebras.
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Here, we say that A and B are algebraically isomorphic if there exists
a bijective homomorphism (in other words, an isomorphism) ϕ : A →
B. We do not require ϕ to be isometric or preserve the conjugation.

Proof. Suppose that C(K) and C(L) are isomorphic as algebras. By
Theorem 9.8, K ∼= ∆K , L ∼= ∆L, but the construction of ∆ and its
Gelfand topology only uses the algebraic structure (we already discus-
sed this feature of the Gelfand transform in Chapter 8), so ∆K

∼= ∆L.
Or, to spell this out somewhat more explicitly, if ϕ : C(K)→ C(L) is
an algebraic isomorphism, then φL 7→ φK = φL ◦ ϕ defines a homeo-
morphism from ∆L onto ∆K .

Exercise 9.3. Prove the converse statement. Actually, prove right away
the stronger version that C(K) and C(L) are isometrically ∗-isomorphic
if K ∼= L. Also, if the above sketch doesn’t convince you, try to write
this down in greater detail. More specifically, give a more detailed ar-
gument that shows that the map defined at the end of the proof indeed
is a homeomorphism.

�

Example 9.6. Our next example is A = c. This is a C∗-algebra with
the conjugation (x∗)n = xn; in fact, c is a subalgebra of the C∗-algebra
`∞. We want to discuss its Gelfand representation c ∼= C(∆). We start
out by finding ∆. I claim that we can identify ∆ with N∞ ≡ N ∪ {∞}
(this is just N with an additional point, which we choose to call “∞”).
More precisely, n ∈ N corresponds to the complex homomorphism
φn(x) = xn, and φ∞(x) = limn→∞ xn. It’s easy to check that these
φ’s are indeed complex homomorphisms. Moreover, these are all ho-
momorphisms. This could be seen as in Example 9.5, but we can also
just recall that the dual space c∗ can be identified with `1(N∞): we
associate with y ∈ `1(N∞) the functional

Fy(x) =
∞∑
n=1

ynxn + y∞ · lim
n→∞

xn.

See Example 4.4; we called the additional point 0 there (rather than
∞), but that of course is irrelevant.

Exercise 9.4. Show that Fy is a homomorphism precisely if y = en or
y = e∞.

With this identification of ∆ with N∞, the Gelfand transform of an
x ∈ c becomes the function x̂(n) = φn(x) = xn, x̂(∞) = limxn. So x̂
is just the sequence xn itself, with the limit added as the value at the
additional point ∞.
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Now what is the Gelfand topology on N∞? First of all, all subsets of
N are open. To see this, just note that

{m} = {n ∈ N∞ : |êm(n)− 1| < 1} = êm
−1 ({z : |z − 1| < 1}) ,

so this is indeed an open set for all m ∈ N. Similarly, the sets {n ∈
N : n ≥ k} ∪ {∞} are open for all k ∈ N because they are also inverse
images of open sets U ⊆ C under suitable functions x̂. For example,
we can take U = {|z| < 1} and xn = 1 for n < k and xn = 0 for n ≥ k.

By combining these observations, we see that a subset U ⊆ N∞ is
open in the Gelfand topology if:

• ∞ /∈ U or
• U ⊇ {n : n ≥ k} ∪ {∞} for some k ∈ N

This actually gives a complete list of the open sets. We can prove this
remark as follows: First of all, the collection of sets U described above
clearly defines a topology on N∞. It now suffices to show that eve-
ry x̂ : N∞ → C is continuous with respect to this topology, because
the Gelfand topology was defined as the weakest topology with this
property. Continuity of x̂ at n ∈ N is obvious because {n} is a neigh-
borhood of n. To check continuity at ∞, let ε > 0 be given. Since
x̂(∞) = limn→∞ x̂(n), there exists k ∈ N such that

|x̂(n)− x̂(∞)| < ε for n ≥ k.

Since U = {n : n ≥ k}∪{∞} is a neighborhood of∞, this verifies that
x̂ is continuous at ∞ also.

This topology TG is a familiar object: the space (N∞, TG) is called
the 1-point compactification of N; please refer to a topology book for
further information. Here, the compactness of (N∞, TG) also follows
from Theorem 8.8(a). In the case at hand, TG also has the following
characterization:

Exercise 9.5. Show that TG is the only topology on N∞ that induces
the given topology on N (all sets open) and makes N∞ a compact space.

We summarize:

Theorem 9.10. The maximal ideal space ∆ of c is homeomorphic
to the 1-point compactification N∞ of N. The Gelfand transform of an
x ∈ c is just the original sequence, supplemented by its limit: x̂(n) = xn,
x̂(∞) = lim xn.

Example 9.7. In the previous two examples, the final results could have
been guessed at the very beginning: it was not very hard to realize the
given C∗-algebra as continuous functions on a compact Hausdorff space.
Matters are very different for A = L∞(0, 1), which is our final example.
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Neither ∆ as a set nor its Gelfand topology are directly accessible,
but we will obtain useful information anyway. It will turn out that the
topological space (∆, TG) has rather exotic properties.

We introduce a measure on ∆ as follows: Consider the functional
C(∆) → C, f̂ 7→

∫ 1

0
f(x) dx. This is well defined because every conti-

nuous function on ∆ is the Gelfand transform of a unique element of
L∞(0, 1), by the Gelfand-Naimark Theorem. Moreover, the functional

is also linear and positive: if f̂ ≥ 0, then f ≥ 0 almost everywhere, be-
cause the Gelfand transform preserves spectra, and on C(∆) and L∞,
these are given by the range and essential range of the function, respec-
tively (see Proposition 7.9 and Exercise 7.5(b)). Therefore,

∫ 1

0
f dx ≥ 0

if f̂ ≥ 0. The Riesz Representation Theorem now shows that there is
a unique regular positive Borel measure µ ∈M(∆) such that∫ 1

0

f(x) dx =

∫
∆

f̂(φ) dµ(φ)

for all f ∈ L∞(0, 1). See Folland, Real Analysis, Theorem 7.2 (and
Proposition 7.5 for the regularity). We can think of µ as Lebesgue

measure on (0, 1), moved over to ∆. Notice also that 1̂ = 1, so µ(∆) =∫ 1

0
dx = 1.
We will now use µ as our main tool to establish the following proper-

ties of ∆ and the Gelfand topology. Taken together, these are rather
strange.

Theorem 9.11. (a) If V ⊆ ∆, V 6= ∅ is open, then µ(V ) > 0.
(b) If g : ∆→ C is a bounded (Borel) measurable function, then there

exists an f̂ ∈ C(∆) such that g = f̂ µ-almost everywhere.
(c) If V ⊆ ∆ is open, then V is also open.

(d) If E ⊆ ∆ is a Borel set, then µ(
◦
E) = µ(E) = µ(E).

(e) ∆ does not have isolated points, that is, {φ} is not open for any
φ ∈ ∆.
(f) ∆ does not have non-trivial convergent sequences: If φn, φ ∈ ∆,
φn → φ, then φn = φ for all large n.

Some comments are in order. Parts (a) and (b) imply that L∞(∆, µ) =
C(∆): every bounded measurable function has exactly one continuous
representative.

The property stated in part (c) is sometimes referred to by saying
that ∆ is extremally disconnected. Part (c) in particular implies that ∆
is totally disconnected: the only connected subsets of ∆ are the single
points.
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Exercise 9.6. Prove this fact. In fact, please prove the corresponding
general statement: If X is a topological Hausdorff space in which the
closure of every open set is open and M ⊆ X has more than one
point, then there are disjoint open sets U, V that both intersect M
with M ⊆ U ∪ V .

So far, none of this is particularly outlandish; indeed, discrete to-
pological spaces such as N or finite collections of points (all subsets
are open) have all these properties. However, part (e) says that ∆ is
decidedly not of this type. We must give up all attempts at visualizing
∆ and admit that ∆ is such a complicated space that no easy intuition
will do justice to it. Note also that some of the above properties (for
example, (b), (c), and (d)) seem to suggest that ∆ might have many
open subsets, but we also know that ∆ is compact, and that works in
the other direction.

Proof. (a) Let V ⊆ ∆ be a non-empty open set. Pick φ ∈ V . By

Urysohn’s Lemma, there exists f̂ ∈ C(∆) with 0 ≤ f̂ ≤ 1, f̂(φ) = 1,

and f̂ = 0 on V c. Again, since the Gelfand transform preserves spectra,
we then also have f ≥ 0, but f is not equal to zero (Lebesgue) almost
everywhere. Thus

0 <

∫ 1

0

f(x) dx =

∫
∆

f̂(φ) dµ(φ) =

∫
V

f̂(φ) dµ(φ),

and we can conclude that µ(V ) > 0.
(b) Let g : ∆ → C be a Borel function with |g(φ)| ≤ M . We now

use the fact that continuous functions are dense in Lp spaces (p <∞)
if (like here) the underlying measure is a regular Borel measure on a
compact space. See Folland, Real Analysis, Proposition 7.9 for a slightly
more general version of this result.

In particular, we can find f̂n ∈ C(∆) with ‖f̂n − g‖2 → 0. In fact,

we may assume that |f̂n| ≤M also.

Exercise 9.7. Prove this remark. Suggestion: If |f̂ | > M at certain

points, we could just redefine f̂ on this set and obtain a new function
that is bounded by M , and this will in fact give a better approximation
to g. However, we also need to make sure that the new function is
still continuous. Use Urysohn’s Lemma to give a careful version of this
argument.
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By the basic properties of the Gelfand transform, we now obtain∫ 1

0

|fm(x)− fn(x)|2 dx =

∫ 1

0

(fm(x)− fn(x))(fm(x)− fn(x)) dx

=

∫
∆

(
(fm − fn)(fm − fn)

)̂dµ
=

∫
∆

∣∣∣f̂m(x)− f̂n(x)
∣∣∣2 dµ(x)→ 0 (m,n→∞).

So f := limn→∞ fn exists in L2(0, 1). On a suitable subsequence, we
can obtain f(x) as a pointwise limit. This shows that |f | ≤ M almost
everywhere, so f ∈ L∞(0, 1). By the same calculation as above, we now
see that∫

∆

∣∣∣f̂n(x)− f̂(x)
∣∣∣2 dµ(x) =

∫ 1

0

|fn(x)− f(x)|2 dx→ 0,

that is, f̂n → f̂ in L2(∆, µ). On the other hand, f̂n → g in this space by

construction of the f̂n, so g = f̂ in L2(∆, µ), that is, almost everywhere

with respect to µ, and f̂ ∈ C(∆), as desired.
(c) g = χV c is a bounded Borel function because the only preimages

that can occur here are ∅, V , V c, ∆. By part (b), there exists f̂ ∈ C(∆)

with g = f̂ µ-almost everywhere. Now f̂−1(C \ {0, 1}) is an open set

of µ measure zero. By part (a), the set is actually empty, and thus f̂
only takes the values 0 and 1. This argument also shows that the sets

V ∩ f̂−1(C \ {0}) and V
c ∩ f̂−1(C \ {1}) are empty. Put differently, we

have f̂ = 0 on V and f̂ = 1 on V
c
. Therefore,

V ⊆ f̂−1 ({0}) ⊆ V .

Now f̂−1({0}) is also closed (it is the preimage of a closed set), and
since V is the smallest closed set that contains V , this shows that

f̂−1({0}) = V . We can also obtain this set as f̂−1(C \ {1}), which is
open, so indeed V is an open set.

(d) First of all, let V ⊆ ∆ be open. Consider again the function

g = χV c and its continuous representative f̂ from the proof of part (c).

We saw above that f̂ = 0 exactly on V . On the other hand, g = 0 on V ,

and since g = f̂ almost everywhere, this implies that µ(V ) = µ(V ). By

passing to the complements, we also see from this that µ(
◦
A) = µ(A) if

A ⊆ ∆ is closed.
If E ⊆ ∆ is an arbitrary Borel set and ε > 0 is given, we can use the

regularity of µ to find a compact set K ⊆ E and an open set V ⊇ E
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such that µ(V ) < µ(K) + ε. It then follows that

µ(E) ≤ µ(V ) = µ(V ) < µ(K) + ε = µ(
◦
K) + ε < µ(

◦
E) + ε.

Now ε > 0 was arbitrary, so µ(E) ≤ µ(
◦
E). Since clearly µ(

◦
E) ≤ µ(E) ≤

µ(E), we obtain the claim.
(e) Suppose that {φ0} were an open set. Since points in Hausdorff

spaces are always closed, the function χ{φ0} would then be continuous

and thus be equal to f̂ for some f ∈ L∞(0, 1). We can now again use
the fact that the Gelfand transform preserves spectra to deduce that f
itself is the characteristic function of some measurable set M ⊆ (0, 1),
|M | > 0: f = χM (this follows because the essential range of f has to
be {0, 1}). Pick a subset M ′ ⊆M such that both M ′ and M \M ′ have
positive Lebesgue measure.

Exercise 9.8. Prove the existence of such a set M ′. Does a correspon-
ding result hold on arbitrary measure spaces (do positive measure sets
always have subsets of strictly smaller positive measure)?

Let g = χM ′ . Then clearly fg = g, so f̂ ĝ = ĝ. Since f̂(φ) = 0 for

φ 6= φ0, this says that ĝ = cf̂ for some c ∈ C. On the other hand,
it is not true that g = cf almost everywhere, so we have reached a
contradiction. We have to admit that {φ0} is not open.

(f) Let φn → φ be a convergent sequence, and assume that φn is not
eventually constant. By passing to a subsequence, we may then in fact
assume that φn 6= φ for all n ∈ N. Pick disjoint neighborhoods U1 and
V1 of φ1 and φ, respectively. Since φn → φ, we can find an index n2

such that φn2 ∈ V1. Now pick disjoint neighborhoods U ′2 and V ′2 of φn2

and φ, respectively, and put U2 = U ′2 ∩V1, V2 = V ′2 ∩V1. These are still
(possibly smaller) neighborhoods of the same points.

We can continue this procedure. We obtain pairwise disjoint neigh-
borhoods U1, U2, U3, . . . of the members of the subsequence φ1, φn2 , φn3 , . . ..
Since all the Uj’s are in particular open, the formula

g(φ) =


1 φ ∈

⋃
j∈N U2j−1

−1 φ ∈
⋃
j∈N U2j

0 otherwise

defines a (bounded) Borel function g. By part (b), g = f̂ almost eve-

rywhere for some f̂ ∈ C(∆). We now observe that we also must have

f̂(φn2j−1
) = 1, f̂(φn2j

) = −1, because if f̂ took a different value at one

of these points, then f̂ and g would differ on an open set, and this has
positive measure by (a).
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Exercise 9.9. Let f : X → Y be a continuous function between topo-
logical spaces. Show that f is also sequentially continuous, that is, if
xn → x, then f(xn)→ f(x).

From this Exercise, we obtain f̂(φn) → f̂(φ), but clearly this is not
possible if these values alternate between 1 and −1. �

We now return to the general theory of C∗-algebras.

Theorem 9.12. Suppose that A is a commutative C∗-algebra that is
generated by one element x ∈ A. Then ∆ ∼= σ(x).

If A is a (not necessarily commutative) C∗-algebra and C ⊆ A,
then we define the C∗-algebra generated by C to be the smallest C∗-
subalgebra B ⊆ A that contains C. It is very important to recall here
that we are using the convention that subalgebras always contain the
original unit e ∈ A. The following Exercise clarifies basic aspects of
this definition:

Exercise 9.10. (a) Show that there always exists such a C∗-algebra
B ⊆ A by defining B to be the intersection of all C∗-algebras B′ with
e ∈ B′ and C ⊆ B′ ⊆ A.
(b) Prove that B has the following somewhat more explicit alternative
description:

B = {p(b1, . . . , bM , b∗1, . . . , b
∗
N) : p polynomial , bj ∈ C}

More precisely, the p’s are polynomials in non-commuting variables;
these are, as usual, linear combinations of products of powers of the
variables, but the order of the variables matters, and we need to work
with all possible arrangements.

Back to the case under consideration: The hypothesis of Theorem
9.12 means that the only C∗-algebra B ⊆ A with e, x ∈ B is B = A.
Equivalently, the polynomials p(x, x∗) =

∑N
j,k=0 cjkx

j(x∗)k are dense in
A; notice also that we don’t need to insist on non-commuting variables
in p here because A is commutative.

The conclusion of the Theorem states that ∆ and σ(x) (with the
relative topology coming from C) are homeomorphic.

Proof of Theorem 9.12. The Gelfand transform of x provides the ho-
meomorphism we are looking for: x̂ : ∆→ σ(x) is continuous and onto.
If x̂(φ1) = x̂(φ2) or, equivalently, φ1(x) = φ2(x), then also

φ1(x∗) = φ1(x) = φ2(x) = φ2(x∗),
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and thus φ1(p) = φ2(p) for all polynomials in x, x∗. Since these are
dense in A by assumption and φ1, φ2 are continuous, we conclude that
φ1(y) = φ2(y) for all y ∈ A. So x̂ is also injective.

Summing up: x̂ : ∆ → σ(x) is a continuous bijection between com-
pact Hausdorff spaces. In this situation, the inverse is automatically
continuous also, so we have our homeomorphism. To prove this last re-
mark, we can argue as in Lemma 8.9 (or we could in fact use this result
itself): Suppose A ⊆ ∆ is closed. Then A is compact, so x̂(A) ⊆ σ(x)
is compact, thus closed. We have shown that the inverse image of a
closed set under x̂−1 is closed, which is one of the characterizations of
continuity. �

Exercise 9.11. (a) Let B ⊆ A be the C∗-algebra that is generated by
C ⊆ A. Show that B is commutative if and only if

xy = yx, xy∗ = y∗x

for all x, y ∈ C.
(b) Show that the C∗-algebra generated by x is commutative if and
only if x is normal.

Theorem 9.12 in particular shows that A ∼= C(σ(x)) if the commu-
tative C∗-algebra is generated by a single element. We can be a little
more specific here:

Theorem 9.13. Suppose that the commutative C∗-algebra A is gene-
rated by the single element x ∈ A. Then there exists a unique isometric
∗-isomorphism Ψ : C(σ(x))→ A with Ψ(id) = x.

Here, id refers to the function id(z) = z (“identity”).

Proof. Uniqueness is clear because x generates the algebra, so Ψ−1 is
determined as soon as we know Ψ−1(x). To prove existence, we can
simply define Ψ−1 as the Gelfand transform, where we also identify ∆
with σ(x), as in Theorem 9.12. More precisely, let Ψ−1(y) = ŷ◦x̂−1. �

Exercise 9.12. If you have doubts about this definition of Ψ−1, the fol-
lowing should be helpful: Let ϕ : K → L be a homeomorphism between
compact Hausdorff spaces. Show that then Φ : C(L)→ C(K), Φ(f) =
f ◦ ϕ is an isometric ∗-isomorphism between C∗-algebras. (“Change of
variables on K preserves the C∗-algebra structure of C(K).”)

We will use Theorem 9.13 to define f(x) := Ψ(f), for f ∈ C(σ(x))
and x ∈ A as above. We interpret f(x) ∈ A as “f , applied to x”,
as is already suggested by the notation. There is some logic to this
terminology; indeed, if we move things over to the realization C(σ(x))
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of A, then f is applied to the variable (which corresponds to x) in a
very literal sense.

So we can talk about continuous functions of elements of C∗-algebras,
at least in certain situations. We have just made our first acquaintance
with the functional calculus.

It may appear that the previous results are rather limited in scope
because we specifically seem to need commutative C∗-algebras that are
generated by a single element. That, however, is not the case because we
can often use these tools on smaller subalgebras of a given C∗-algebra.
Here are some illustrations of this technique.

Definition 9.14. Let A be a C∗-algebra. An element x ∈ A is called
positive (notation: x ≥ 0) if x = x∗ and σ(x) ⊆ [0,∞).

Theorem 9.15. Let A be a (not necessarily commutative) C∗-algebra.
(a) If x = x∗, then σ(x) ⊆ R.
(b) If x is normal, then r(x) = ‖x‖.
(c) If x, y ≥ 0, then x+ y ≥ 0.
(d) xx∗ ≥ 0 for all x ∈ A.

Proof. (a) Consider the C∗-algebra B ⊆ A that is generated by x. Since
x is normal (even self-adjoint), B is commutative by Exercise 9.11(b).
So the Gelfand theory applies to B. In particular, σB(x) = {φ(x) : φ ∈
∆B}, and this is a subset of R, because φ(x) = φ(x∗) = φ(x). Since
σA(x) ⊆ σB(x), this gives the claim.

(b) Consider again the commutative C∗-algebra B ⊆ A that is ge-
nerated by x. By the Gelfand theory (on B), rB(x) = ‖x‖, but, as
observed earlier, in Chapter 7, the spectral radius formula shows that
rA(x) = rB(x).

(c) We will make use of the following simple transformation property
of spectra, which follows directly from the definition:

Exercise 9.13. Show that if c, d ∈ C, x ∈ A, then σ(cx+de) = cσ(x)+d;
this second set is of course defined as the collection of numbers cz + d,
with z ∈ σ(x).

By hypothesis, σ(x) ⊆ [0, ‖x‖]. By the Exercise, σ(x − ‖x‖e) ⊆
[−‖x‖, 0], and now (b) implies that

∥∥x−‖x‖e∥∥ ≤ ‖x‖. Similarly,
∥∥y−

‖y‖e
∥∥ ≤ ‖y‖. Thus∥∥x+ y − (‖x‖+ ‖y‖)e

∥∥ ≤ ‖x‖+ ‖y‖,

and now a final application of the Exercise yields

σ(x+ y) ⊆ [0, 2(‖x‖+ ‖y‖)].
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(d) Obviously, y = xx∗ is self-adjoint. We will again consider the
commutative C∗-algebra B ⊆ A that is generated by y. We know that
B ∼= C(∆B). The function |ŷ| − ŷ is continuous, so there exists z ∈ B
with ẑ = |ŷ|−ŷ. Since ẑ is also real valued, this function is a self-adjoint
element of C(∆B), and thus z = z∗ as well. Let w = zx and write
w = u + iv, with u, v self-adjoint. Then ww∗ = zxx∗z = zyz = z2y; in
the last step, we used the fact that y and z both lie in the commutative
algebra B. On the other hand,

ww∗ = (u+ iv)(u− iv) = u2 + v2 + i(vu− uv),

w∗w = (u− iv)(u+ iv) = u2 + v2 + i(uv − vu),

so w∗w = 2u2+2v2−ww∗ = 2u2+2v2−z2y. I now claim that u2, v2 ≥ 0.
Since u, v are self-adjoint, this can again be seen by investigating the
ranges of the Gelfand transforms on suitable commutative subalgebras,
as in the proof of part (a). Moreover, we also have

(9.1) −ẑ2ŷ = −(|ŷ| − ŷ)2ŷ = 2ŷ2(|ŷ| − ŷ) ≥ 0,

so −z2y ≥ 0. By part (c), w∗w ≥ 0. Now Exercise 7.10 implies that
ww∗ ≥ 0, and by Corollary 7.12(a), this also holds in the subalgebra B.
But, as computed earlier, ww∗ = z2y, so by combining this with (9.1),
we conclude that ẑ2ŷ ≡ 0, so at all points of ∆B, either ŷ = 0 or ẑ = 0.
In both cases, ŷ ≥ 0, so we finally see that σA(y) ⊆ σB(y) ⊆ [0,∞), as
claimed. �

Here’s a very important and pleasing consequence of this material:

Theorem 9.16. Let B be a C∗-algebra and let A ⊆ B be a C∗-
subalgebra. Then σA(x) = σB(x) for all x ∈ A.

Proof. It is clear that σA(x) ⊇ σB(x) (see also our discussion in Chapter
7), so it suffices to show that if y ∈ A∩G(B), then also y ∈ G(A). Now
if y ∈ A∩G(B), then y∗ ∈ A∩G(B) and thus also yy∗ ∈ A∩G(B). In
particular, 0 /∈ σB(yy∗). Theorem 9.15(d) now shows that σB(yy∗) ⊆
(0,∞). By Corollary 7.12(a), σA(yy∗) = σB(yy∗). Hence 0 /∈ σA(yy∗),
so (yy∗)−1 ∈ A, and thus also y−1 = y∗(yy∗)−1 ∈ A. �

We conclude this chapter with a short digression. Suppose that xu =
ux. Does this imply that also x∗u = ux∗? For arbitrary u, this can only
be true if x is normal (take u = x). This condition is indeed sufficient,
and in fact we can prove a more general result along these lines.

Theorem 9.17. Let A be a C∗-algebra and let x, y, u ∈ A. Suppose
that x, y are normal and xu = uy. Then also x∗u = uy∗.
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Proof. We need some preparation. For w ∈ A, define ew :=
∑∞

n=0
1
n!
wn.

This series converges absolutely, and just as for the ordinary expo-
nential function, we can show that ev+w = evew = ewev if vw = wv.
Involution is a continuous operation (it is in fact isometric), and this
implies that (ew)∗ = ew

∗
. When applied to w = t − t∗ (where t ∈ A is

arbitrary), these formulae show that

ew (ew)∗ = ewew
∗

= ewe−w = ew−w = 1;

here we denote the unit element of A by 1 (rather than e, as usual),
to avoid confusion with the base of the exponential function. It follows
that 1 = ‖ew (ew)∗‖ = ‖ew‖2 or

(9.2) ‖et−t∗‖ = 1 for all t ∈ A.
The assumption that xu = uy can be used repeatedly, and thus also

xnu = uyn for all n ≥ 0. Multiplication is continuous, so this implies
that exu = uey or u = e−xuey. We now multiply this identity by ex

∗

and e−y
∗

(from the left and right, respectively). Since x, y are normal,
this gives

ex
∗
ue−y

∗
= ex

∗−xuey−y
∗
,

and now (9.2) shows that ‖ex∗ue−y∗‖ ≤ ‖u‖. This whole argument
can be repeated with x, y replaced by zx, zy, with z ∈ C, so it is also
true that ‖f(z)‖ ≤ ‖u‖, where f(z) = ezx

∗
ue−zy

∗
. For every F ∈ A∗,

the new function g(z) = F (f(z)) is an entire function; the analyticity
follows from the series representations of the exponential functions.
Since g is also bounded (|g(z)| ≤ ‖F‖ ‖u‖), this function is constant
by Liouville’s theorem. Since this is true for every F ∈ A∗, f itself has
to be constant:

f(z) = ezx
∗
ue−zy

∗
= u = f(0),

or ezx
∗
u = uezy

∗
for all z ∈ C. We obtain the claim by comparing the

first order terms in the series expansions of both sides (more formally,
subtract u, divide by z and let z → 0). �

Exercise 9.14. Let A be a commutative algebra with unit. True or false:
(a) There exist at most one norm and one involution on A such that
A becomes a C∗-algebra.
(b) There exist a norm and an involution on A such that A becomes a
C∗-algebra.

Exercise 9.15. Let A be a C∗-algebra and let x, y be normal elements
of A that commute: xy = yx. Show that

σ(x+ y) ⊆ σ(x) + σ(y) := {w + z : w ∈ σ(x), z ∈ σ(y)},
σ(xy) ⊆ σ(x)σ(y) := {wz : w ∈ σ(x), z ∈ σ(y)}.
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Also show that both inclusions can fail if x, y don’t commute.
Suggestion: Consider suitable 2× 2-matrices for the counterexamples.

Exercise 9.16. Let A be a C∗-algebra and let x ∈ A be normal. Then
we can define f(x) ∈ A, for f ∈ C(σ(x)), as follows: Consider the
commutative C∗-algebra B ⊆ A that is generated by x, and then use
Theorem 9.16 and the original definition of f(x) ∈ B, which was based
on Theorem 9.13.

Prove the spectral mapping theorem: σ(f(x)) = f(σ(x)).
Hint: This follows very quickly from Theorem 9.16 and the fact that the
map f 7→ f(x) sets up an isometric ∗-isomorphism between C(σ(x))
and B. Just make sure you don’t get confused.

Exercise 9.17. Consider the following subalgebra of C2×2 = B(C2) :

A =

{
y =

(
a b
b a

)
: a, b ∈ C

}
(a) Show that A is a commutative C∗-algebra (with the structure in-

herited from B(C2); in particular,
(
a b
b a

)∗
=
(
a b
b a

)
). Remark: Most of

this is already clear because we know that the bigger algebra B(C2) is
a C∗-algebra.
(b) Show that A is generated by x =

(
0 1
1 0

)
.

(c) Show that ∆ = {φ1, φ2}, where φ1(y) = a+ b, φ2(y) = a− b.
(d) Find σ(x) and confirm the (here: obvious) fact that ∆ ∼= σ(x), as
asserted by Theorem 9.12.
(e) Find f(x) ∈ A, for the functions f(z) = |z| and f(z) = (|z|+ z)/2.


