
6. Hypothesis testing

6.1. Introduction. We now take a look at hypothesis tests, which are
a rather different kind of statistical procedure. We will again observe
the values of a random sample X1, . . . , Xn, drawn from a distribution
that depends on an unknown parameter θ, but rather than try to guess
the exact value of θ, we would now like to reach a decision between a
null hypothesis H0 and an alternative H1. Both H0 and H1 are claims
about the parameter θ, so they are of the type H0 : θ ∈ S0, H1 : θ ∈ S1.

Let’s look at an example. Say I have a coin that is either fair (p =
θ = 1/2), or it comes up heads less often than it should (p < 1/2). I
want to test the null hypothesis H0 : p = 1/2 against the alternative
H1 : p < 1/2. It seems natural to proceed as follows. I will observe
a random sample of size n based on this distribution P (X1 = 1) = p,
P (X1 = 0) = 1− p, and I will reject H0 in favor of H1 if the observed
value of T = X1 + . . .+Xn is too small.

This set of outcomes

C = {(x1, . . . , xn) : T (x1, . . . , xn) ≤ t}
that leads to the rejection of H0 is called the critical region of the test.
If (x1, . . . , xn) /∈ C, then we will accept H0; in fact, for typical tests, it
is better to say that we are not able to reject H0.

There are two types of error possible here. If H0 is true, but is
rejected by the test, we speak of a type I error; if H0 is false, but is not
rejected, we say that a type II error occurred. We will be interested in
the corresponding probabilities

α = sup
θ∈S0

Pθ((X1, . . . , Xn) ∈ C),

γ(θ) = Pθ((X1, . . . , Xn) ∈ C) (θ ∈ S1).

We call α the significance of the test and γ(θ) its power function. So
the significance is the probability of committing a type I error, in a
worst case scenario, and the power function at a specific θ ∈ S1 gives
us the probability of avoiding a type II error for this θ.

Ideally, we would like to keep α small and γ close to 1, but these
requirements are partly contradictory and we will have to compromise.
When designing tests, one usually gives priority to the significance.
Typically, one tries to keep this below a previously chosen small prob-
ability such as 0.05 or 0.01.

Let’s now design concrete tests for the situation outlined above, to
detect loaded coins. Let’s start out with a test based on a random
sample of size n = 5. We already said that we want to use a critical
region of the type C = {x : T (x) ≤ t}, with T = X1 + . . . + Xn. If I
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take t = 0, say, then only the outcome X1 = . . . = X5 = 0 is in C, so

α = P (X1 = 0, . . . , X5 = 0) = 2−5 =
1

32
= 0.03125;

no maximization is necessary here because the null hypothesis deter-
mines θ = p = 1/2 completely. This is a reasonably small significance.
Unfortunately, we are paying a price for this: the power function of
this test is very unimpressive. We have

γ(p) = Pp(X1 = 0, . . . , X5 = 0) = (1− p)5.
A few typical values are γ(0.1) ' 0.59, γ(0.3) ' 0.17, γ(0.49) ' 0.035.
Recall that γ(p) is the probability of being able to reject H0 when it is
indeed false, and p is the value of the parameter. So we would like γ
to be close to 1, and our test doesn’t perform very well in this respect,
especially for coins that only have a mild bias.

This is an important general lesson that can be extracted from this
simple example. When designing a test in this way, we are really hoping
to be able to reject H0. If this doesn’t happen, the test was to some
extent a failure or at least not very conclusive. Indeed, suppose in
the example above you observed T = 1, so you’d have to accept H0.
Obviously, it would be ridiculous to claim that the fact that the coin
came up heads once in five coin flips is supporting evidence for what
H0 claims is true, namely, the coin is fair. All that can be said is that
this outcome does not justify rejection of H0 at the chosen significance.

When designing a test with controlled significance, take as the null
hypothesis the claim you are hoping to refute. Failure to reject H0 must
not be interpreted as evidence in favor of H0.

This is the (legal) principle in dubio pro reo in action. While we
suspect that H0 is false and are eager to reject it, we design our tests in
such a way that false rejections will only happen a controlled percentage
of the time when H0 is actually true.

On a related note, the general remarks I made long ago, in Chapter
2, are also relevant here: ideally, we would like to know conditional
probabilities of the type P (H0 holds|X1 = x1, . . . , Xn = xn), which
tell us about the null hypothesis being valid (or not), given what we
just observed. These, however, are inaccessible, and what we actually
control are the conditional probabilities the other way around, where
the condition talks about θ and the event is about the values of the
random sample.

Let’s return to the concrete example. What happens if I make the
critical region larger, in an attempt to increase the power of the test?
Say I take C = {T ≤ 1}. While this will increase the power, as
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intended, it will unfortunately also hurt the significance: we now have

α = P (T = 0, 1) = 2−5 +

(
5

1

)
2−5 = 6 · 2−5 ' 0.19,

so the probability of a type I error is now six times as large as before,
and one would typically dismiss this test as having an α that is too
large. If we want a better power function, we will have to increase the
sample size.

So let’s try our luck with n = 10 now. The critical region will of
course again be of the form T ≤ t. If we want a better power function
than above, then we will have to take t at least equal to 1. Let’s give
the critical region C : T ≤ 1 a try. Then

α = 2−10 +

(
10

1

)
2−10 = 11 · 2−10 ' 0.011,

so this test achieves a rather good significance. Its power function is
given by

γ(p) = (1− p)10 + 10p(1− p)9;
a few typical values are γ(0.1) ' 0.74, γ(0.3) ' 0.15, γ(0.4) ' 0.046.
This isn’t much better than before but recall that this test has a better
significance. We can sacrifice some of this and take C : T ≤ 2. Then

α = 2−10 +

(
10

1

)
2−10 +

(
10

2

)
2−10 = 56 · 2−10 ' 0.055.

Exercise 6.1. Show that for this test, γ(0.1) ' 0.93, γ(0.3) ' 0.38,
γ(0.4) ' 0.17.

For large n, we would typically use an approximation by normal
distributions to work out the relevant probabilities, backed up by the
Central Limit Theorem. More precisely, the random variable

T − np√
np(1− p)

is approximately N(0, 1)-distributed. In particular, this means that if
we want to achieve a significance α with a critical region of the type
T ≤ t, then we need to choose t such that

P

(
Z ≤ 2t− n√

n

)
= α

for a random variable Z ∼ N(0, 1).

Exercise 6.2. Derive this in more detail.
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For example, if we want α = 0.01, then we need

2t− n√
n

= −2.33

or

(6.1) t =
n

2
− 1.165

√
n.

This follows because P (Z ≤ 2.33) ' 0.99, as we extract from a table.
For n = 1000, this gives t = 463.

Similarly, we can approximate the power function in this style. For
the t from (6.1), we have that T ≤ t precisely if

Z :=
T − np√
np(1− p)

≤ t− np√
np(1− p)

=
n(1/2− p)− 1.165

√
n√

np(1− p)
,

and, as we observed above, the random variable Z is approximately
N(0, 1)-distributed. For example, if n = 1000 and p = 0.45, then this
is the event Z ≤ 0.84, which has probability

γ(0.45) ' P (Z ≤ 0.84) ' 0.8.

So this test is quite good at detecting even slight irregularities of our
coin. A more biased coin, say p = 0.4, will almost certainly be found
out: γ(0.4) ' 0.99998

Finally, let’s return to small samples, let’s say n = 10 (though this is
not essential for what I’m about to say). This time, let’s work with the
critical region C : T = 9, 10. This critical region certainly looks ridicu-
lous: we are rejecting H0 precisely for those outcomes that intuitively
provide the most convincing evidence against the alternative.

However, let us just work out the relevant probabilities anyway. First
of all, the significance of this test is the same as the one with critical
region T = 0, 1, by the symmetry of the distribution for p = 1/2. So

α = 2−10 + 10 · 2−10 ' 0.011,

which is actually reasonably small. So from a formal point of view,
our silly looking test performs quite well if our only criterion is the
significance. The problem, of course, is the power function, which is
unnecessarily small due to our bad choice of critical region. Indeed, it
is given by

γ(p) = p10 + 10p9(1− p).
For example, γ(0.1) ' 9 · 10−9, γ(0.45) ' 4.5 · 10−3, so biased coins
are almost never detected by this test. Another undesirable feature is
that the power function gets larger as p approaches 1/2, so the more
biased a coin is, the less likely it becomes that our test will detect
this. Essentially, this test will erroneously reject about 1.1% of the
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fair coins, but it becomes almost impossible that H0 will get rejected
when the coin is in fact appreciably biased. So, to summarize, there
are of course very concrete reasons for dismissing this test, but these
will have to involve the power function; if the significance is our only
concern, then this grotesque test is not inferior to the reasonable tests
discussed earlier.

6.2. Neyman-Pearson tests. We now analyze these issues more sys-
tematically. We would like to develop tests that are in some sense
optimal. To do this, we focus for now on a simplified situation: the
parameter takes only two values θ = θ0 (and this is the null hypothesis)
or θ = θ1 (which serves as the alternative). It will also be useful to
consider randomized tests, to gain some extra flexibility when designing
tests.

Definition 6.1. A randomized test works as follows: Let C,D be dis-
joint sets of possible values of the random sample, and let 0 ≤ q ≤ 1.
Then reject H0 if (x1, . . . , xn) ∈ C, and if (x1, . . . , xn) ∈ D, reject H0

with probability q.

In other words, we reject H0 unconditionally if the outcome is in
the critical region C, and if it is in D, we perform an independent
random experiment (we could draw a point uniformly from [0, 1]) to
decide between rejection and acceptance. This latter part looks strange
at first (if my test has a random component, maybe I should have
thought about that part a little harder in advance), but it will come in
handy when we build tests to order. If q = 0 or q = 1, the randomness
disappears.

We also introduce the function

ϕ(x) =


1 x ∈ C
q x ∈ D
0 otherwise

;

here, we have again abbreviated x = (x1, . . . , xn). We can now run the
test as follows: draw a point u uniformly from [0, 1], and observe the
random sample X1 = x1, . . . , Xn = xn; reject H0 if ϕ(x1, . . . , xn) > u.

We can also express the significance and power in terms of ϕ. We
have

α = P0(X ∈ C) + qP0(X ∈ D) = E0ϕ(X);

the subscript 0 reminds us that we are using the distribution with
θ = θ0 here. Since the alternative now just states that θ = θ1, the
power function is no longer a function but just a single probability, and
it is similarly given by γ = E1ϕ(X). Finally, note that if, conversely,
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we are given a step function ϕ that takes the three values 0, q, 1, then
this determines a unique randomized test, by just setting C = ϕ−1({1})
and D = ϕ−1({q}).

In fact, we can go further and also admit arbitrary test statistics
0 ≤ ψ(X) ≤ 1. As before, we then reject H0 if a random number u
drawn uniformly from u ∈ [0, 1] satisfies u ≤ ψ(X). We have no real
use for such tests here, but for example Theorem 6.4 is true (and will
be proved) in this generality.

Definition 6.2. We say that a test ϕ is most powerful of significance α
if E0ϕ(X) = α and E1ϕ(X) ≥ E1ψ(X) for all tests ψ with E0ψ(X) ≤
α.

So, as the terminology suggests, a most powerful test achieves the
best possible power at a given significance. Notice that things are done
in this order: we first insist on a specific value for the significance and
then optimize the power under this constraint.

Definition 6.3. A test of the form

ϕ(x) =


1 L0(x) < kL1(x)

q L0(x) = kL1(x)

0 L0(x) > kL1(x)

is called a Neyman-Pearson test.

Here L refers to the likelihood function. Recall that L(x1, . . . , xn) =
P (X1 = x1, . . . , Xn = xn) in the discrete case, and in the continuous
case, we work with the product of the individual densities instead.

The NP test is very reminiscent of maximum likelihood estimation:
we reject H0 if what we actually observed was, before it happened, not
sufficiently likely under H0, compared with its probability under H1.
We can also say that we make the likelihood ratio T = L0(X)/L1(X)
our test statistic, and we will reject H0 if T < k.

Example 6.1. Let’s return to the coin flip example, with a coin that is
either fair (= null hypothesis), or is biased with θ = p = 1/4. Then
L0(x1, . . . , xn) = 2−n is actually independent of the outcome, and

L1(x) = 4−x1−...−xn(3/4)n−x1−...−xn .

We can simplify this by introducing the statistic T = X1 + . . . + Xn,
as above. Then L1(x) = 4−t(3/4)n−t = 3n−t4−n, where t = T (x). So
we are going to reject H0 when 2−n < k3n−t4−n, or, equivalently, when
t < t0. (If t = t0, there might be a randomized decision.) Here k and
t0 are related by k = 2n3t0−n; we won’t need this here, but we will
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briefly refer to this formula in the next example. We have essentially
the recovered the common sense test from the previous section.

Theorem 6.4 (Neyman-Pearson). For any α ∈ [0, 1], there exist k =
k(α) and q = q(α) so that the corresponding NP test has significance
α. This test is a most powerful test at this significance.

This can be made more concrete. If we took k = q = 0, then this
would give the (trivial) test that always accepts, and this achieves
significance 0. We now make the critical region larger by increasing
k until we are at the given significance, if this can be done. In other
words, if there exists a k such that P0(L0 < kL1) = α, then we take
this k and set q = 0.

Notice that P0(L0 < kL1) should approach 1 when we send k → ∞
because the event gets larger and larger. However, if our distribution
is discrete, then the value of P0 will jump at certain values of k, and
there is no guarantee that we will be able to hit α exactly. In this case,
we fix the value of k at which we jump past α, that is,

(6.2) P0(L0 < kL1) < α ≤ P0(L0 ≤ kL1),

and we will then have to assign a suitable value to q to make the
significance exactly equal to α anyway. We will see that the correct
value is

(6.3) q =
α− P0(L0 < kL1)

P0(L0 = kL1)
.

Notice that the denominator can not be zero here, or otherwise we
couldn’t have (6.2). Also, if we go through this argument again, we see
that k, q are essentially unique. More precisely, any choice of k, q that
achieves the desired significance leads to the same ϕ(X); even more
precisely, any two such functions will be equal to one another with
probability one.

Example 6.2. Let’s continue the discussion of Example 6.1. I would
like to construct the NP test for α = 0.05 and random samples of size
n = 5. As we observed above, the event L0 < kL1 can be rewritten as
T < t0, where T = X1 + . . . + X5. When t0 increases through 0, the
significance becomes P0(T = 0) = 2−5 = 1/32, which is still smaller
than the desired significance α = 0.05. However, when t0 increases past
1, then we obtain P0(T = 0, 1) = 6 · 2−5 = 3/16, which is too large.
So we are in the second case above. We must take the k that makes
t0 = 1. So k = 2531−5 = 32/81 ' 0.4. Moreover, we need the q from
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(6.3):

q =
0.05− P0(T = 0)

P0(T = 1)
=

0.05− 2−5

5 · 2−5
=

1.6− 1

5
= 0.12

Let’s summarize: we reject H0 if T = 0, and if T = 1, we reject
randomly with probability q = 0.12.

Proof of Theorem 6.4. We want to check that the test constructed above,
in the paragraphs following the statement of the theorem, is a most
powerful test at significance α. I’ll denote the corresponding step func-
tion by ϕ. Let’s first check that the significance is indeed equal to α.
This is clear if we are in the first case. If our test was constructed via
(6.2), (6.3), then

E0ϕ(X) = P0(L0 < kL1) + qP0(L0 = kL1) = α,

by these equations, as desired.
Now let ψ be an arbitrary test with E0ψ(X) ≤ α. In the remain-

der of this proof, I’ll assume that the distributions are discrete, but a
completely analogous argument works in the continuous case. We split

E1(ϕ(X)− ψ(X)) =
∑
x

(ϕ(x)− ψ(x))L1(x)

intro three parts, according to L0(x) < kL1(x), L0(x) = kL1(x), and
L0(x) > kL1(x). If we denote the corresponding (partial) sums by S1,
S2, and S3, respectively, then I claim that in all three cases, we have

(6.4) Sj ≥
1

k

∑′
(ϕ(x)− ψ(x))L0(x);

the prime at the sum sign reminds us that the summation is only over
the outcomes consistent with the condition we imposed. Now (6.4)
clearly holds for j = 2, with equality in fact, because in this case
L0 = kL1. If j = 1, then ϕ(x) = 1, so ϕ(x)−ψ(x) ≥ 0 and L1 > L0/k,
so again the inequality holds. Finally, if j = 3, then ϕ(x) = 0, so this
time we have ϕ(x) − ψ(x) ≤ 0, and since also L1 < L0/k, we again
obtain (6.4). So by putting the individual parts back together, we see
that

E1(ϕ(X)− ψ(X)) ≥ 1

k
E0(ϕ(X)− ψ(X)).

Now E0ϕ(X) = α and E0ψ(X) ≤ α by assumption, so this is ≥ 0, as
claimed. �

Example 6.3. Suppose we have N(0, σ)-distributed data, and we want
to test H0 : σ = 1 against the alternative H1 : σ = 2. Let’s set up a
NP test with significance α = 0.05.
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Since f(x) = (2πσ2)−1/2e−x
2/(2σ2), the ratio of the likelihood func-

tions is given by

(6.5)
L0

L1

= 2ne−3(x
2
1+...+x

2
n)/8.

We will reject H0 if L0/L1 < k, where k will be chosen such that the
probability of this event (under H0) equals α = 0.05. Note that this
will be possible since the distributions are continuous; no randomness
is required in the test design.

Now, by (6.5), the condition that L0/L1 < k is equivalent to T > c,
where T denotes the test statistic T = X2

1 + . . .+X2
n (and c = c(k) is

a suitable constant that could in principle be obtained from k). Recall
that T ∼ χ2(n). So we can obtain c directly as the unique value for
which P (Y > c) = α = 0.05 for a χ2(n)-distributed random variable
Y . For example, if n = 20, then c = 31.41, as we read off from a table.
To summarize: the NP test for n = 20 at significance α = 0.05 will
reject H0 : σ = 1 if

T = X2
1 +X2

2 + . . .+X2
20 > 31.41.

In other words, we will be able to reject H0 if T is at least about 1.5
times as large as its expected value E0T = 20.

By Theorem 6.4, this is the most powerful test (at this significance).
What is its power equal to? To answer this, notice that under H1,
the random variables Xj/2 are iid and standard normal. Thus, still
assuming H1, we have T/4 ∼ χ2(20). So if Y again denotes a fixed
χ2(20)-distributed random variable, then we have

γ = P1(T > 31.41) = P (Y > 31.41/4) ' P (Y > 7.85) > 0.99.

For large n, we can work with normal approximations of the distri-
bution of T .

Exercise 6.3. Use the CLT to show that (under H0), (T − n)/(2n)1/2

is approximately N(0, 1)-distributed for large n.

Exercise 6.4. Show that the (approximate) NP test (for large n) of
significance α = 0.01 will reject H0 if

1

n

(
X2

1 + . . .+X2
n

)
> 1 +

2.33
√

2√
n

= 1 +
3.3√
n
.

The statistic T/n could be used as an estimator for σ2; in fact, we
showed earlier that this is the MVUE for an N(0, σ) distribution with
parameter θ = σ2. So for large n we only need T/n to be slightly larger
than its expected value 1 under H0 to be able to reject H0; the excess
needed decays at the rate ∼ n−1/2.
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6.3. Uniformly most powerful tests. We now drop (some of) the
artificial assumptions of the previous section. We again allow composite
hypotheses Hj : θ ∈ Sj. As above, we consider randomized tests, and
it will again be convenient to describe these in terms of the associated
step function ϕ(X). The following analog of Definition 6.2 suggests
itself:

Definition 6.5. We say that a test ϕ is uniformly most powerful at
significance α if: (1) supθ∈S0

Eθϕ(X) = α; (2) if ψ is another test with
supθ∈S0

Eθψ(X) ≤ α, then Eθϕ(X) ≥ Eθψ(X) for all θ ∈ S1.

So again a UMP test achieves the best power function at a given
significance, but this condition has become even stronger than before:
the UMP test beats all other tests at all individual parameter values
compatible with the alternative. The first important thing to realize
about UMP tests is that they don’t always exist.

Example 6.4. This is an artificial example, just designed to make this
point. The parameter θ takes three values, let’s say θ = 0, 1, 2. We
will work with a random sample of size n = 1, and the corresponding
random variable X = X1 also takes three values X = 0, 1, 2, with these
probabilities:

X 0 1 2
θ = 0 0.1 0.8 0.1
θ = 1 0 0.1 0.9
θ = 2 0.9 0.1 0

I want to test H0 : θ = 0 against the alternative H1 : θ = 1, 2 at
significance α = 0.1, and I claim that there is no UMP test ϕ for this.
Indeed, among the competitors ψ that we have to compare ϕ with
are the NP tests that test H0 against the modified alternatives θ = 1
and θ = 2, respectively. In the first case, the NP test has the critical
region X = 2. This is clear because the likelihood ration L0(X)/L1(X)
gets minimal at X = 2, and we achieve exactly the right significance
α = 0.1 if we include this value X = 2 and nothing else. Let’s call this
test ψ1. So ψ1(2) = 1, ψ1(x) = 0 for x = 0, 1. Its power is given by
E1ψ1(X) = 0.9.

Similarly, the NP test of H0 against the alternative θ = 2 is given by
ψ2(0) = 1, ψ2(x) = 0 for x = 1, 2, and this also has power E2ψ2(X) =
0.9.

Thus, a hypothetical UMP test ϕ would have to satisfy Eθϕ(X) ≥ 0.9
for θ = 1, 2. For example, for θ = 1, this says that

0.1ϕ(1) + 0.9ϕ(2) ≥ 0.9.
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Since 0 ≤ ϕ ≤ 1, this implies that ϕ(2) ≥ 8/9. Similarly, the inequality
on the power function at θ = 2 will show that ϕ(0) ≥ 8/9. But then
E0ϕ(X) ≥ 0.1 · 8/9 + 0.1 · 8/9 > 0.1, and it now turns out that ϕ
cannot achieve the requested significance. There is no UMP test at
significance α. This is not really surprising. The alternative consists
of two parts, and what we would really like to do at one these two
values of the parameter will not work well at all at the other parameter
value, so there is no procedure that is always best. (However, recall
that the definition of the MVUE involved a similar uniform optimality:
the variance of the MVUE beats any other unbiased estimator at each
individual value of the parameter. As we have discussed at some length,
MVUEs exist in a wide variety of situations. So it is certainly not
outright ridiculous to hope for such a property.)

Intuitively, we’d probably go with the (randomized) test ϕ(0) =
ϕ(2) = 1/2, ϕ(1) = 0 as a compromise. This sensibly rejects H0 (some
of the time) when the extreme values X = 0, 2 occur, which are much
more compatible with one of the two possibilities the composite alter-
native has to offer than with the null hypothesis. However, for either
value θ = 1, 2, this test is beaten hands down by the corresponding NP
test: for example, E1ϕ(X) = 0.45, while the NP test had power 0.9.

Let us now look at a situation where there are no such conflicts
between different θ values from the alternative and UMP tests do exist.

Definition 6.6. A family of distributions (indexed by θ, as usual) is
said to have monotone likelihood ratio in the statistic T if for all θ1 > θ2,
there exists a strictly increasing function F = Fθ1,θ2 such that

(6.6)
L(x, θ1)

L(x, θ2)
= F (T (x)).

For example, the coin flip distribution P (X1 = 1) = θ, P (X1 = 0) =
1− θ has MLR in T = X1 + . . .+Xn because L = θT (1− θ)n−T , so

L1(x)

L2(x)
=

(
θ1
θ2

)T (
1− θ1
1− θ2

)n−T
,

and the right-hand side is an increasing function of T when θ1 > θ2
because then θ1/θ2 and (1− θ2)/(1− θ1) are both > 1.

Exercise 6.5. Show that the N(0, θ) distribution has MLR in T =
X2

1 + . . .+X2
n.

Exercise 6.6. Consider the exponential distribution f(x) = e−x/θ/θ,
x > 0. Show that this distribution has MLR in T = X1 + . . .+Xn.
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Exercise 6.7. Show that the Poisson distribution P (X1 = x) = e−θθx/x!
has MLR in T = X1 + . . .+Xn.

Suppose now that the distribution under consideration has MLR in
a statistic T . Consider the null hypothesis H0 : θ ≥ θ0, and we test
this against the alternative H1 : θ < θ0 (we focus on this situation, but
of course a similar analysis is possible for the reverse inequalities). We
now design our test as follows:

(6.7) ϕ(X) =


1 T (X) < k

q T (X) = k

0 T (X) > k

The parameters k and 0 ≤ q ≤ 1 are again adjusted so that the test
achieves the desired significance α. This condition essentially deter-
mines k, q uniquely, in the sense that ϕ1 = ϕ2 with probability one for
any two such functions.

Notice that this test generalizes NP tests in a natural way. In fact,
if we use such a ϕ to test H0 : θ = θ0 against H1 : θ = θ1, then it
becomes exactly an NP test.

Theorem 6.7. The test ϕ is a UMP test.

Proof. Consider the NP test ϕ for H0 : θ = θ0 against H1 : θ = θ1
for a fixed θ1 < θ0. This test is of the form (6.7) because the NP test
has ϕ = 1 when L0/L1 < c, but by (6.6), this condition is equivalent
to F (T (x)) < c and thus also to T (x) < k, for suitable k, since F is
strictly increasing. Also note that ϕ is independent of θ1; indeed, we
find k, q from the condition

Pθ0(T < k) + qPθ0(T = k) = α,

which does not involve θ1.
By Theorem 6.4, we have Eθ1ϕ(X) ≥ Eθ1ψ(X) for any test ψ with

Eθ0ψ(X) ≤ α. Moreover, as pointed out, this holds for all θ1 < θ0. So
ϕ is a UMP test.

It remains to show that ϕ achieves the desired significance. So far, we
have only shown that Eθ0ϕ(X) = α, but we need this, as an inequality
with ≤, for all θ ≥ θ0.

Fix such a θ′ > θ0 and consider the test ϕ as a test for H0 : θ = θ′,
H1 : θ = θ0. Since ϕ has the correct general structure, it is an NP test
at the significance α′ = Eθ′ϕ(X) it achieves. Now by construction, its
power is given by Eθ0ϕ(X) = α. This implies that α ≥ α′, as desired,
because an NP test can never have a power that is smaller than its
significance. Indeed, if this were the case, then the test ψ(X) = α′
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(that is, ignore the data and randomly reject with probability equal to
the significance) would outperform ϕ, which is impossible because ϕ,
being an NP test, is most powerful. �

Example 6.5. Consider the N(θ, 1) distribution

f(x) = (2π)−1/2e−(x−θ)
2/2.

Let’s fix θ1 > θ2 and let’s look at the likelihood ratio

L1

L2

= exp

(
1

2

n∑
j=1

(
(xj − θ2)2 − (xj − θ1)2

))

= exp

(
(θ1 − θ2)

n∑
j=1

xj +
1

2

(
θ22 − θ21

))
.

This formula shows that this distribution has MLR in T = X1+ . . . Xn.
Let’s now design the UMP test described above, for H0 : θ ≥ 0,

H1 : θ < 0. Since T is a continuous random variable, we don’t need
randomization to achieve a requested significance α. Rather, we must
choose k so that P0(T < k) = α. Now if θ = 0, then T ∼ N(0,

√
n),

or we can say that Z = T/
√
n ∼ N(0, 1), and thus we need k with

P (Z < k/
√
n) = α for a standard normal random variable Z. We will

then reject H0 if T < k, or maybe it’s more convenient to say this in
terms of the sample mean: we will reject if X < k/n.

This completes the general description of this test. For example, if
we want α = 0.05, then, since P (Z < −1.645) ' 0.05, we will take
k = −1.645

√
n, so we will reject if X < −1.645/

√
n. Since X is the

MVUE for θ, one would naturally be inclined to favor H1 whenever
X < 0, and indeed, for large n, this test will be in a position to reject
H0 if X is just slightly smaller than zero.

Example 6.6. Finally, let’s return to the urn with an unknown num-
ber N of balls in it. We would like to test H0 : N ≥ N0 against the
alternative H1 : N < N0. We draw balls according to the distribution
P (X1 = x) = (1/N)χ{1,...,N}(x). To check whether the theory we dis-
cussed above applies, let’s fix N1 > N2 and let’s look at the likelihood
ratio

(6.8)
L1(x)

L2(x)
=

{(
N2

N1

)n
maxxj ≤ N2

undefined maxxj > N2

.

The quotient is undefined in the second case because L2 = 0 then. Per-
haps we can with some artistic license set T = maxXj and “define” a
function F (t) as F (t) = (N2/N1)

n for t ≤ N2 and F (t) =∞ otherwise,
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so that (perhaps) the current situation would still be close, at least in
spirit, to the one of Definition 6.6.

Be that as it may, we can also just set up such a test, without directly
referring to any general theory. So we are looking for k, q so that the
test ϕ with ϕ = 1 for T < k and ϕ = q for T = k has significance α.
Now for integer k,

PN0(T < k) =

(
k − 1

N0

)n
, PN0(T = k) =

(
k

N0

)n
−
(
k − 1

N0

)n
,

so to achieve the desired significance α, we will have to take the k with
((k − 1)/N0)

n < α ≤ (k/N0)
n or, equivalently,

α1/nN0 ≤ k < α1/nN0 + 1.

For large n, since α < 1, α1/n → 1, this will give k = N0 and then

q =
α− ((N0 − 1)/N0)

n

1− ((N0 − 1)/N)n
=
αNn

0 − (N0 − 1)n

Nn
0 − (N0 − 1)n

.

This completes the design of our test. We always reject H0 : N ≥ N0

if T < N0, and we reject it with probability q if T = N0. This last
part seems strange because if T = maxXj took the value N0, we know
for sure that H0 is true and we are deliberately committing a type
I error. However, we can afford to do this because PN0(T < N0) =
((N0 − 1)/N0)

n is smaller than α (this will certainly be true for fixed
α > 0 and N0 and large enough n), and the general design mechanism
erroneously thinks it gains extra power in return for this folly. This,
however, is not the case: if the alternative N < N0 is valid, then
T < N0 also with certainty, so no power is gained by also rejecting
(some of the time) for T = N0.

So, to sum this up, the reasonable thing to do is to reject H0 when
T < N0 and (always) accept otherwise. This achieves a better signifi-
cance than what we asked for (for large n, that is), and it is trivially a
UMP test at its significance because its power satisfies PN(T < N0) =
1. For example, if N0 = 10 and n = 100, then we obtain power 1 in
this way with a significance of α = (9/10)100 ' 2.7 · 10−5.

Of course, this whole test (“reject H0 in favor of H1 precisely if H1

has not been refuted by the data”) looks just like the obvious thing
to be doing. So while careful study of sophisticated theory may pro-
vide additional insight into the inner workings of things (it is hoped),
common sense is not to be disdained either.


